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- What is APOGEE?

- Exoplanet Host Stars and
APOGEE

- Stellar Characterization for
Exoplanet-hosting stars >
especially

M-dwarfs

- Pioneering quantitative
spectroscopic analysis of M-
dwarfs




What is APOGEE?

Galactic Chemical Cartography : focus on
red giants

Part of SDSS Il & IV

R=22,500 NIR H-band (A1.52-1.69um) 300- —0.50 —0.25
fibers

Kinematic (~100 m/s): can get 30m/s with
effort

Chemical (~0.1 dex)

~20 elements per star = f(T.g, log g, [m/H])
277,000 stars in DR14

500,000 stars by 2020

APOGEE-1 (2011 - 2014)

APOGEE-2 adds complete sky coverage
from Las Campanas 2.5m

Last Data Release 14 (DR14) - public

(kpc)

H-band region excellent for quantitative
spectroscopy of M-dwarfs (+ hotter FGK
dwarfs)!

— host star characterization

— detailed chemistry

— TESS targets
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Observed normalized
spectrum + fit

2M00015350+6459174

APOGEE Data: typical red
giant
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The APOGEE Instrument %

SDSSIII

* Built at the University of Virginia with private industry and other
SDSS-IlI collaborators.
John Wilson: Instrument Scientist
Fred Hearty: Project Manager
Mike Skrutskie: Instrument Group Leader
» The APOGEE instrument employs 300-fiber multiplexing / high resolution / infrared.
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Targets dominated by red giants: quantitative spectroscopy of cool giants
- Now includes cool dwarfs

T.+= 3000 — 6000K

A1.52 - 1.69um

C, N, O determined from molecular transitions: CO, OH, CN

Everything else—> atomic lines, almost all neutral. Till, Nd II, Ce I, Yb Il

Stellar parameters and chemical abundances all hang on the APOGEE

spectral line list

Line list in a state of ~constant evolution/upgrades: new version in 2018
- each analysis version is an improvement
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* DR14: ATLASO +
MARCS

e Future releases will

use MARCS N ~Individual Chemical Element Abundances & Best Abundances Fit (2" Iteration) _




Relative Flux

Relative Flux

Exoplanet Host Stars in APOGEE

Dwarfs were not targets of the
initial science goals

NIR spectral region found to be
particularly suitable for M-dwarfs
— ExoPlanet hosts

M-dwarfs (+ FGK) now targeted

Kepler 138
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An example of APOGEE targeting in the K2 C3
field. The red dots represent M-dwarfs
observed by K2 and now targeted as part of
APOGEE-2. There is also a program to observe
TESS M-dwarfs.



THE LONG ANDSHORT OF Iy An Example: APOGEE and

IRON-RICH STARS HOST

suomER-pEmmETs.- Kepler Exoplanet Systems
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Focus =2 The Importance of APOGEE Analyses of M-dwarfs

Why M-dwarfs?
* Most numerous type of star in the Galaxy
* Low-mass; Low luminosity; Long-lived (almost live for ever); not evolved

* M-dwarfs are the least studied class of stars; detailed chemistry not
known

The Opportunity of M-dwarfs for APOGEE — plays to APOGEE’s strengths

* Detailed chemical compositions of M-dwarfs via optical spectroscopy is
difficult—at best due to line blanketing

* Near-infrared spectra are cleaner; APOGEE region has lines of many
elements

*  M-dwarfs are bright in IR

Connection with Exoplanet field

* M-dwarfs are important in the search for Earth-like exoplanets: M dwarfs have
more small planets (Dressing et al.)

* Accurate stellar parameters for exoplanet host stars are crucial

* Need to know the stellar radius to know the planet radius (transits:
measure Rp/R¥*)

* Stellar metallicity influences planet formation. To what level the detailed
chemistry of stars also influence planet formation? similar C/O ratios
control ice chemistry in protoplanetary disk

* K2 targets skewed towards the cooler K + M dwarfs
* Important fraction of TESS targets are M-dwarfs

Radius (Solar Radii)
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Effective Temperature (K) Effective Temperature (K)

Stellar radius versus T for
~119,000 K2 targets (left panel)
from Huber et al. (2015) and
~190,000 Kepler targets from
Huber et al. (2014), color-coded
by the log of number of targets.
Note the shift towards a much
larger fraction of M-dwarfs in the
K2 mission, pointing to the
importance of M-dwarf studies in
current exoplanet transit
missions, such as TESS.



Progress Report on M-dwarf work
with APOGEE

 APOGEE is opening a new window to characterize M-
dwarfs; change the landscape

Initially, M-dwarfs were not APOGEE survey targets
* Observed serendipitously + Ancillary projects + BTX

APOGEE-1: =
Pl S. Mahadaven: 1400 M-dwarfs for RVs, vsin i =
P1 V. Smith: M-dwarfs exoplanet hosts (~70 stars) 3

APOGEE-2:

Pl V. Smith: “M-dwarfs with planets in the Kepler + K-2 4

fields” (e.g. ~2,500 M-dwarfs in K2 C3 field)

+ adding M dwarfs to plates (when observing main survey s

DR14

ASPCAP

targets and Manga fields)
BTX; w/ SDSS V: M-dwarfs part of the targets in TESS CVZ

*  More than ~20,000 M-dwarfs observed with APOGEE
(includes observations from the NMSU 1m telescope)

e Survey mode: Potential to observe large number of
M-dwarfs change the landscape in terms of M dwarf
stellar characterization

5000 4000 3000
Terr (K)

Calibrated ASPCAP results for
DR14 ~ 280,000 stars

Solid grey isochrones (PARSEC):

[Fe/H]=0.0; ages 1 - 10 Gyr

Dotted dark gray isochrones (PARSEC):

[Fe/H]=-1.0; age 10 Gyr and [Fe/H]=+0.5; age 10 Gyr



Using APOGEE to Pioneer Precision Chemical Abundances
Analysis of M-dwarfs

* Need an analysis method tailored for the M-dwarfs: Modified the APOGEE line list;
selected spectral windows (initial APOGEE science goals not focussed on dwarfs)

Bt o
y P N

“Proof of concept” Sample (Diogo Souto et al. 2017)
warm M dwarfs (Teff~3850K; log g~4.75)

> Kepler-138: 3 exoplanets; Kepler-138b > Mars-like size planet

> Kepler-186: 5 exoplanets; Kepler-186f > earth-size planet @ HZ
Detailed Chemistry: C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Ni

“Benchmark” Sample: Calibration sample for establishing the baseline scales for
T.«, metallicity + chemical abundances

M dwarfs @ binary systems with hotter companions (analyzed from optical)

* M-dwarfs in open clusters > Pleiades (Ph.D. thesis Cintia Martinez at ON)
Rotation; activity; magnetic fields = effects on radii

Extending to cooler M dwarfs: M4.0 exoplanet-hosting star at ~3pc
(Teff=3230K; log g=4.96) Souto et al. (2018)

> Ross 128: Msin(i)= 1.35 Mearth; 9.9 day period exoplanet
Detailed chemistry: C, O, Mg, Al, K, Ca, Ti, and Fe
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Molecular lines important for M-
dwarfs
* H,0 - 26M
lines in APOGEE window; cut to ~1M
lines for inclusion in line list

* FeH + SiH
Kurucz (CD-ROM 18) + other
hydrides (not in DR14)

* Presence of H,0O that becomes
important for low Teffs (top panel)

* FeH: not important for red giants
* Work in progress: Continue to

improve and identify missing lines
(other hydrides?)



Apogee pixels carry information on the detailed

chemistry of M-dwarfs: 14 elements — C, O, Na,

Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe + Ni

Not as many elements as in the red giants as
some of the spectral lines become too weak: e.g.
CN

Kepler 138 & Kepler 186

Atomic lines of 12 species; only A(C) and A(O) Souto et al. (2017)
from molecular lines only
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Spectroscopic diagnostics and pushing to

cooler M-dwarfs: Ross 128 (Souto et al. 2018)

: A(O) — logg[MARCS], = 5.00 dex
| A(O) — logg[PHOENIX] = 4.90 dex

— T
A(O) from OH lines A
== = A(O) from H,0 lines 1

t A(Fe) —logg[MARCS] = 4.92 dex
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| sensitivity of the OH,
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4 indicators to set T, log g, A(Fe) and A(O) for the computation of model atmospheres
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Stellar and Planetary Characterization of the Ross 128 Exoplanetary
System from APOGEE Spectra
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Detailed Chemistry for M dwarfs in the Galaxy

* [El/Fe] vs [Fe/H] for the local Disk pop. Souto Ph.D. Thesis
e M-dwarfs Binary star sample

e Abundances for FGK dwarfs used to 06 1
define the behavior of el/Fevs Fe/Hin '
the local Disk are from optical high-res

0.2

[X/Fe]

0.0

-0.2

* No M dwarfs results for comparison... ,‘
These would be the first results for o], ikiygh
several chemical elements for M-dwarfs ‘

[X/Fe]

* Some differences for some elements, “04]
such as, V, Mn (need some work); but o
0.4 1

some optical also for V? K? perhaps Ti? 0

[X/Fe]

0.0

-0.2 4

* Still need to investigate systematic

-0.4

differences; promising results for most 06 ]
elements
* Just starting to probe the detailed n
chemistry of the Galactic population 043

. -15 10 -05 00 05 -15 -10 05 00 05-15 -1.0 -05 00 05
with the largest number of stars (FeH] [Feh] [Feh
Brown (Teske et al. 2015); Blue (Adibekyan et al. 2012); Gray
(Bensby et al. 2014) Pink (Allende Prieto et al 2004);

Green (Reddy et al. 2003)



Conclusions: APOGEE and M-dwarfs

20,000 M-dwarfs observed and
counting... 77 M-dwarf S/N

Southern APOGEE spectrograph began distribution
observing in 2017 from Las Campanas
2.5-m > full-sky coverage

Line list will continue to be improved
(2018 is latest update): more complete
lists, better atomic data, in particular f-
values, more molecules as needed

Working to establish ASPCAP for M-
dwarf analysis = pathfinder manual
analyses completed/underway

Include M-dwarfs and push down to L-
and T-dwarfs

Currently Kepler/K2 follow-up = future
follow-up of TESS

Number of Stars




