Exoplanet Distributions for Cool Stars

Courtney Dressing

Assistant Professor at UC Berkeley

ExoPAG

Boston, MA

July 29, 2018

Advantage 1: M Dwarfs are Prevalent

75% of stars are M dwarfs

(Winters+2015, Henry+2006)

Atmospheric signals are larger

Sredit: ESC

Radial velocity signals are larger

Planet/star contrast ratios are more favorable

Advantage #3:

Potentially Habitable Planets Have Short Orbital Periods

Advantage #3:

Potentially Habitable Planets Have Short Orbital Periods

Transits are more frequent & more likely

Advantage #4:

Planets Orbiting M Dwarfs are Common

An Artist's Rendition of Proxima Cen b

An Artist's Rendition of Proxima Cen b

Star Mass = $12\% M_{Sun}$ 1.3 pc away

> Planet Mass ≥ 1.27 M_{earth} Period = 11.186 days

Habitable Zone periods: 9-25 days

TRAPPIST-1 hosts 7 planets!

Planet c 2.4d 1.1R_{Earth}

Planet d 4.0d 0.8R_{Earth}

Planet e 6.1d 0.9R_{Earth}

Planet f 9.2d 1.0R_{Earth}

Planet g 12.4d 1.1R_{Earth}

Planet h 18.8d 0.8R_{Earth}

Transit Timing Variations Probe the Compositions of the TRAPPIST-1 Planets

Do the tiniest stars have even more planets?

Initial Answer: Yes, Smaller Stars Host More Planets

Initial Answer: Yes, Smaller Stars Host More Planets

Initial Answer: Yes, Smaller Stars Host More Planets

Mulders et al. (2015)

Muirhead et al. (2015)

K2 is Expanding the Census of Planets Orbiting Cool Dwarfs **41%** of K2 targets are small stars (Huber et al. 2016)

K2 is Expanding the Census of Planets Orbiting Cool Dwarfs **41%** of K2 targets are small stars (Huber et al. 2016) ...but many were poorly characterized!

K2 is Expanding the Census of Planets Orbiting Cool Dwarfs

K2 is Expanding the Census of Planets Orbiting Cool Dwarfs

Our Typical Targets are Roughly Half the Size of the Sun

85% of the Planets & Candidates are Smaller than Neptune

Spectra are Expensive!

How can we classify the full K2 M dwarf sample?

Spectra are Expensive!

How can we classify the full K2 M dwarf sample?

- Trained random forest using spectroscopically-classified stars
- Reported probabilities that individual targets are M dwarfs

G. Duvvuri
CU grad student
Former SURF student

Spectra are Expensive!

How can we classify the full K2 M dwarf sample?

- Trained random forest using spectroscopically-classified stars
- Reported probabilities that individual targets are M dwarfs

G. Duvvuri
CU grad student
Former SURF student

Girish Estimated K2's Sensitivity to Planetary Systems Orbiting M Dwarfs

G. Duvvuri
CU grad student
Former SURF student

Girish Estimated K2's Sensitivity to Planetary Systems Orbiting M Dwarfs

G. Duvvuri
CU grad student
Former SURF student

Gaia Parallaxes Constrain Stellar Properties

Gaia Parallaxes Constrain Stellar Properties

Gaia Parallaxes Constrain Stellar Properties

How do planets orbiting M dwarfs compare to those orbiting Sun-like stars?

M Dwarf Planets Also Show a Radius Gap

M Dwarf Planets Also Show a Radius Gap

Mayo+ 2018 Fulton+ 2018

The Location of the Gap May Depend on Stellar Mass

Wu, submitted to AAS journals, arXiv:1806.04693

Small telescopes are finding small planets orbiting small stars!

MEarth & MEarth-South

ExTrA

Next-Generation Transit Survey

Current & Upcoming RV Spectrographs Targeting Small Stars

NRES

IESS

Explorer Mission

George Ricker (P.I.)

Roland Vanderspek (Deputy P. I.)

Massachusetts Institute of Technology

science center shared between MIT + Harvard/Smithsonian CfA

Ricker et al., JATIS, (2014)

240 "Super-Earths"

1870 "Sub-Neptunes"

TESS will Find Planets Orbiting a Wide Variety of Stars

TESS M Dwarfs are Likely to Host Additional Planets

Follow-up Transit Observations will Confirm Transit Times & Recover Single-Transit Events

Credit: NASA/JPL

Follow-up Transit Observations will Confirm Transit Times & Recover Single-Transit Events

Jordan Fleming (2nd year UCB grad) is analyzing *Spitzer* observations of transiting planets

Credit: NASA/JPL

TESS Planets Will be Ideal Targets for Radial Velocity Mass Measurement

Keck Telescopes on Mauna Kea in Hawaii

TESS Planets Will be Ideal Targets for Radial Velocity Mass Measurement

Andy Mayo (incoming UCB grad) will measure masses of TESS planets

Transits, Eclipses, and Phase Curves of Exoplanets Reveal Atmospheric Properties

TESS Planets will be Attractive Targets for Atmospheric Characterization

Space-based observations will

complement ground-based observations

Giant Magellan Telescope

- Commissioning in 2023
- 24.5-m diameter
- First-light instruments
 - G-CLEF: visible echelle spectrograph
 - GMACS: Visible Multi-Object Spectrograph
- Future instruments
 - GMTIFS: Near-IR IFU & Adaptive Optics Imager
 - GMTNIRS: IR Echelle Spectrograph
 - MANIFEST: Facility Fiber Optics Positioner
 - ComCam: Commissioning Camera

European Extremely Large Telescope

- Operations beginning in 2024
- 39-m diameter
- First-light instruments
 - MICADO (ELT-CAM): diffraction-limited NIR imager
 - HARMONI (ELT-IFU: single-field nearinfrared wide-band integral field spectrograph
 - MAORY (MCAO): multi-conjugate adaptive optics system
- Future instruments
 - METIS (ELT-MIDIR): Mid-IR imager & spectrometer
 - ELT-HIRES: high-resolution spectrometer
 - ELT-MOS: multi-object spectrometer

Credit:ESO/L. Calcada

- First Light 2026
- 30-m Diameter
- First-light Instruments
 - WFOS: Wide-field Optical Spectrometer
 - IRIS: Infrared Imaging Spectrograph
 - IRMS: Infrared Multi-object Spectrometer
 - NFIRAOS: Narrow Field InfraRed Adaptive Optics System

Stellar Activity Affects Planets

Imaging Earthlike Planets

Credit: Planetary Spectrum Generator Tool

LUVOIR Enables Exoplanetology

Design Your Own Observations Using Our Online Tools http://asd.gsfc.nasa.gov/luvoir/tools/

Tools

This page links to performance simulation and visualization tools for the LUVOIR mission, a future ultraviolet / optical / near-infrared observatory concept.

These widgets are experimental. If they are not working, email Jason Tumlinson (STScI). For the Planetary Spectrum Generator, email Geronimo Villanueva (GSFC).

Coronagraphic Spectra of Exoplanets

Simulate optical/near-IR reflection spectra of various exoplanets with realistic noise.

Multiplanet Yield Tool

Tool for visualizing yields of observed exoplanets (of various types) as function of basic mission parameters.

Planetary Spectrum Generator

Advanced tool for simulating spectra of Solar System bodies (with LUVOIR and other telescopes).

HDI Photometric ETC

Basic exposure time calculator for optical photometry in multi-band images.

LUMOS Spectroscopic ETC

Simple exposure time calculator for UV spectroscopy.

UV MOS Visualizer

See the impact of UV multi-object spectroscopy on the study of stellar clusters and their feedback.

High-Resolution Imaging

Examples of astronomical objects viewed with different sized telescopes.

> Contact NASA

> Privacy Policy & Important Notices

> Page Last Updated: Fri, Dec 01, 2017

Kepler revealed that planets orbiting cool dwarfs are common

- Kepler revealed that planets orbiting cool dwarfs are common
- TESS will find dozens of small planets orbiting nearby stars

- Kepler revealed that planets orbiting cool dwarfs are common
- TESS will find dozens of small planets orbiting nearby stars
- Ground-based facilities will characterize planetary systems

- Kepler revealed that planets orbiting cool dwarfs are common
- TESS will find dozens of small planets orbiting nearby stars
- Ground-based facilities will characterize planetary systems
- HST, JWST, & ELTs will probe planetary atmospheres

- Kepler revealed that planets orbiting cool dwarfs are common
- TESS will find dozens of small planets orbiting nearby stars
- Ground-based facilities will characterize planetary systems
- HST, JWST, & ELTs will probe planetary atmospheres
- Future flagships like LUVOIR will search for habitable & inhabited worlds

Additional Slides

0.4 microns

2.4 microns

0.4 microns

2.4 microns

2.4 microns

Sample Observation: LUVOIR Spectrum of Proxima Centauri b

Credit: LUVOIR Tools

Simulated LUVOIR Observation

MIT TESS website: https://tess.mit.edu/ NASA TESS website: https://tess.gsfc.nasa.gov/ **TESS** National Aeronautics and Space Administration Goddard Space Flight Center TESS, the Transiting Exoplanet Survey Satellite is an MIT-led NASA mission to spend two years discovering transiting exoplanets by an all-sky survey. The TESS Science Office is run by MIT and the Harvard-Smithsonian Center for Astrophysics. The TESS Mission **Education and Outreach News and Resources** The TESS Mission TESS — Transiting Exoplanet Survey Satellite Overview DISCOVERING NEW EARTHS AND SUPER-EARTHS IN THE SOLAR NEIGHBORHOOD Why TESS? The Transiting Exoplanet Survey Satellite (TESS) is an Explorer-class planet finder. In the first-ever spaceborne all-sky transit survey, TESS will identify planets ranging from Earth-sized to gas giants, orbiting a wide range of stellar types and Follow TESS online! **Ground Operation** orbital distances. The principal goal of the TESS Followers Likes Follow 2.164

NASA_TESS

TESS Test Image (Credit: NASA/MIT/TESS)

Twitter: @NASA_TESS, Facebook: NASATESS

Tweets & replies

NASA TESS @ @NASA TESS · Jun 21

@NASA TESS Mission Update: #TESS continues to operate in its science orbit

Tweets

Follow-up Observations Will Be Essential to Identify False Positives

Light Curves for 200,000 Stars

Transit-like Signals (3000 signals)

Imaging (2500 survive)

Reconnaissance Spectroscopy (1700 survive)

Selected RV Targets (100)

50

NASA Level 1 Science Requirement

Planets smaller than 4 R_F with measured masses

How Common are Planetary Systems Orbiting Late M Dwarfs?

How Common are Planetary Systems Orbiting Late M Dwarfs?

How Common are Planetary Systems Orbiting Late M Dwarfs?

Consistent with Berta-Thompson+ 2013; 2015 2013,

Studies of Late M Dwarf Planet Occurrence are Limited by Small Stellar Sample Size

Studies of Late M Dwarf Planet Occurrence are Limited by Small Stellar Sample Size

TESS Pixels are Large (20" x20")

Furlan et al. 2017, AJ, 153, 71

The Coolest TESS Planets will Orbit M Dwarfs

Ensemble Studies of Multiple Planets Can Reveal Population Properties

The Data are Best Explained by a Mixture Model Containing Two Types of Atmospheres

The LUVOIR Architectures

Architecture A

- 15-m diameter telescope
- Fits in 8.4-m fairing
 - Space Launch System Block 2
- Bulk of work completed
- Refinements in progress

Instruments

ECLIPS A

LUMOS A

High-Definition Imager

POLLUX

Architecture B

- 8-m diameter telescope
- Fits in 5-m fairing
 - e.g., Delta IV Heavy, Falcon Heavy
- Work began in September 2017

Instruments

ECLIPS B

LUMOS B

HDI B

Transit Timing Variations Probe the Compositions of the TRAPPIST-1 Planets

