

The 2017 ExEP Technology Gap List

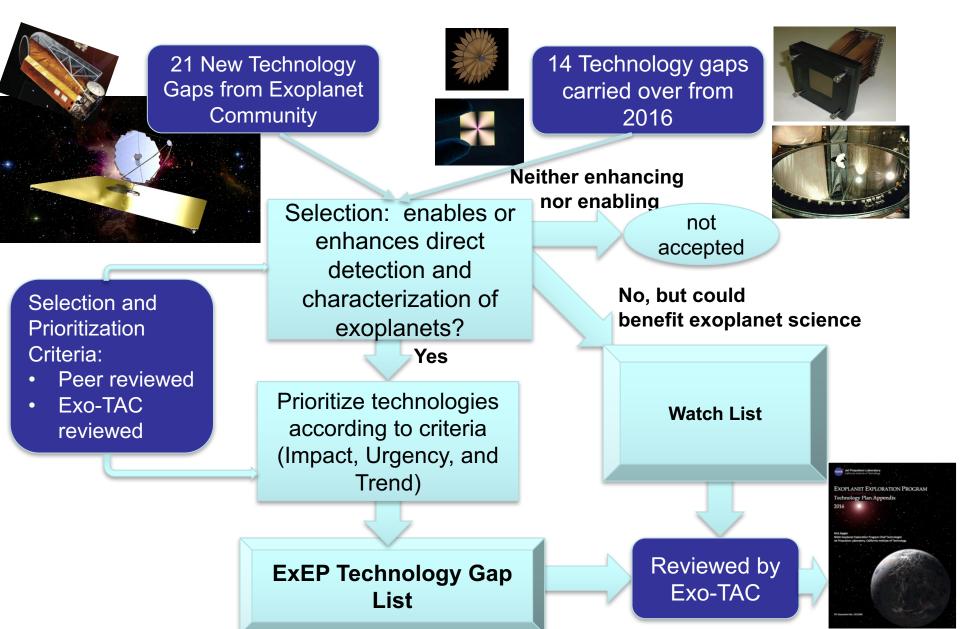
Brendan Crill Deputy Technology Development Manager Exoplanet Exploration Program Jet Propulsion Laboratory / Caltech

ExoPAG 15 Grapevine, TX 3 January 2017


Copyright 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

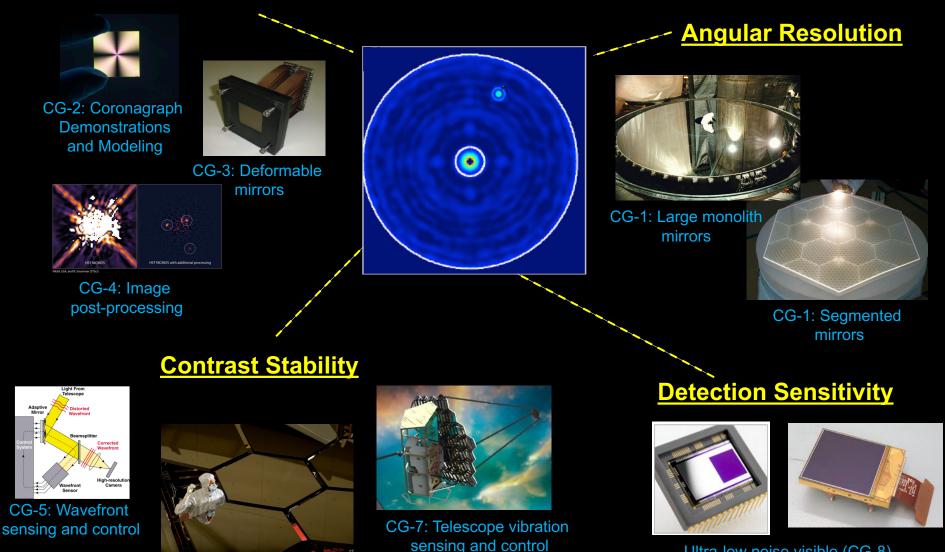
- The ExEP's Technology Gap List (TGL) responds to the missions and technologies cited in the Astrophysics Implementation Plan (AIP), which in turn responds to the 2010 Decadal Survey and mid-decadal assessment.
- The AIP calls for studies of large- and probe-class missions for the direct imaging and characterization of exoplanets.
- The TGL (and the annual Technology Plan Appendix) responds to the enabling and enhancing technology needs of these missions.
- The TGL and the Appendix are used to guide investments, including the SAT/TDEM and directed development or IR&D development.

- 1. Technology gaps considered for tracking and development by the ExEP must support APD exoplanet science missions as:
 - described in the Astrophysics Implementation Plan;
 - directed through the Science Mission Directorate;
 - selected through open competition;
 - described in the APD 30-year roadmap; or,
 - defined by the needs of the 2020 Decadal Survey large mission concepts.
- 2. The subset of these gaps that either <u>enables</u> or <u>enhances</u> the direct detection and characterization of exoplanets are selected and prioritized onto the ExEP Technology Gap List (TGL).
 - Technologies that address these gaps are the ones prioritized for development and considered for resource allocation
 - The list is published in the annual Technology Plan Appendix
 - Some of these technologies may be funded outside of the ExEP and will require collaboration amongst programs.
- 3. The remaining technology gaps are considered to benefit exoplanet science and will be captured onto a second "Watch List" in the annual Technology Plan Appendix
 - These gaps will be tracked and re-evaluated annually for potential TGL inclusion



- Received 21 Technology Gaps
 - 7 from LUVOIR STDT
 - 2 from HabEx STDT (on top of current ExEP gap list)
 - 8 from Far-IR Surveyor STDT
 - 4 from community at large
- Most were consolidated within existing gaps or merged
 with each other

Technology Selection and Prioritization Process

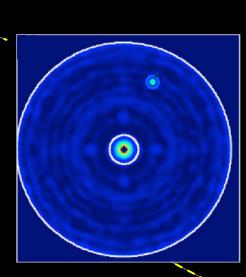


- Zero new enabling technologies
 - Polarization, for the first time, added to Coronagraph Architecture gap
- Four new enhancing technology gaps added to the gap list
 - UV Ultra-low Noise Detector (LUVOIR)
 - UV/Vis/NIR Mirror Coatings (LUVOIR/HabEx)
 - Extreme Precision Ground-based Radial Velocity (HabEx)
 - Mid-IR Spectral Coronagraph (OST)
- Four gaps for the Watch List (not currently recommended for funding from ExEP)
 - Sub-Kelvin Coolers (OST)
 - Advanced Cryocooler (OST)
 - mid-IR Ultra-low Noise Detectors (LUVOIR)
 - Astrometry
- 2017 version of Technology Gap List posted here: <u>https://exoplanets.nasa.gov/exep/technology/gap-lists/</u>

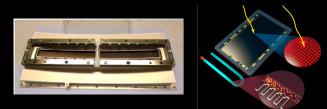
The Enabling Coronagraph/Telescope Technology <u>Contrast</u> Gaps

Ultra-low noise visible (CG-8) and infrared (CG-9) detectors

CG-6: Segment phasing and rigid body sensing and control


The Enhancing Coronagraph/Telescope Technology Gaps **Contrast**

CG-11 Mid Infrared Spectral Coronagraph


CG-10 UV/Vis/NIR mirror coatings

M-1: Ultra-high precision Radial Velociity

Ultra-low noise UV detectors (CG-12)

Starshade Technology Needs

Starlight Suppression

S-1: Controlling Scattered Sunlight Formation Sensing and Control

S-3: Lateral Formation Sensing

Deployment Accuracy and Shape Stability

S-2: Starlight Suppression and Model Validation

S-5: Petal Positioning Accuracy and Opaque Structure

S-4: Petal Shape And Stability

Starshade Gaps

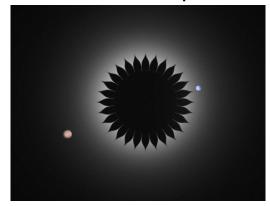


Table A.4 Starshade Technology Gap List

Title	Description	Current	Required
Control Edge- Scattered Sunlight	Limit edge-scattered sunlight with optical petal edges that also handle stowed bending strain.	Graphite edges meet all specs except sharpness, with edge radius ≥10 µm.	Optical petal edges manufactured of high flexural strength mate with edge radius ≤ 1 µ and reflectivity ≤ 10%
Contrast Performance Demonstration ar Optical Model Validation	Experimentally validate the equations that predict the contrasts achievable with a starshade.	Experiments have validated optical diffraction models at Fresnel number of ~500 to contrasts of 3×10 ⁻¹⁰ at 632 nm.	Experimentally valida models of starlight suppression to \$ 3×10 ⁻¹¹ at Fresnel numbers \$ 50 over 51 825 nm bandpass.
Lateral Formation Flying Sensing Accuracy	Demonstrate lateral formation flying sensing accuracy consistent with keeping telescope in starshade's dark shadow.	Centroid accuracy ≥ 1% is common. Simulations have shown that sensing and GN&C is tractable, though sensing demonstration of lateral control has not yet been performed.	Demonstrate sensing lateral errors ≤ 0.20 m scaled flight separatio and estimated centroi positions $\leq 0.3\%$ of optical resolution. Cor algorithms demonstra with lateral control er ≤ 1 m.
Flight-Like Petal Fabrication and Deployment	Demonstrate a high- fidelity, flight-like starshade petal and its unfurling mechanism.	Prototype petal that meets optical edge position tolerances has been demonstrated.	Demonstrate a fully integrated petal, inclu blankets, edges, and deployment control interfaces. Demonstra flight-like unfurling mechanism.
Inner Disk Deployment	Demonstrate that a starshade can be autonomously deployed to within the budgeted tolerances.	Demonstrated deployment tolerances with 12m heritage Astromesh antenna with four petals, no blankets, no outrigger struts, and no launch restraint.	Demonstrate deploym tolerances with flight- minimum half-scale in disk, with simulated petals, blankets, and interfaces to launch restraint.
	Control Edge- Scattered Sunlight Contrast Performance Demonstration ar Optical Model Validation Lateral Formation Flying Sensing Accuracy Flight-Like Petal Deployment	Control Edge- Scattered Limit edge-scattered Sunlight Limit edge-scattered Sunlight petal edges that also handle stowed bending strain. Contrast Experimentally validate Performance ar pedic the contrasts Domostration ar pedic the contrasts Atteral Demonstrate lateral Formation formation flying sensing Accuracy Demonstrate lateral Petal formotion flying sensing Accuracy Demonstrate lateral Petal fidelity, flight-like Petal fidelity, flight-like Parioration and starshade's dark shadow. Flight-Like Demonstrate a high- Petal fidelity, flight-like Fabrication and starshade petal and its Deployment Demonstrate that a Deployment Starshade can be	Control Edge- Scattered Sunlight Limit edge-scattered sunlight with optical petal edges that also handle stowed bending strain. Graphite edges meet all spees except sharpness, with edge radius 210 µm. Contrast Performance Demonstration optical Model Validation Experimentally validate the equations that predict the contrasts achievable with a starshade. Experiments have validated optical diffraction models at Freene number of -500 accuracy consistent with accuracy as the starshade so the starshade so the starshade's dark shadow. Lateral Formation Pying Sensing Accuracy Demonstrate lateral formation flying sensing accuracy consistent with starshade's dark shadow. Centroid accuracy > 1% is the equations that double the exception ontomously delived. Flight-Like Petal Fabrication and Deployment Demonstrate a high- fidelity, flight-like starshade petal and its unfuring mechanism. Prototype petal that meets optical edge position tolerances has been demonstrated. Inner Disk Deployment Demonstrate that a starshade can be autonomously deployed tolerances. Demonstrated deployment tolerances

EXOPLANET EXPLORATION PROGRAM Technology Plan Appendix 2017

Brendan Crill Deputy Technology Development Manager

Nick Siegler Program Chief Technologist

NASA Exoplanet Exploration Program Jet Propulsion Laboratory, California Institute of Technology

IPI Document No: 1513240

JPL Document No: 1513240

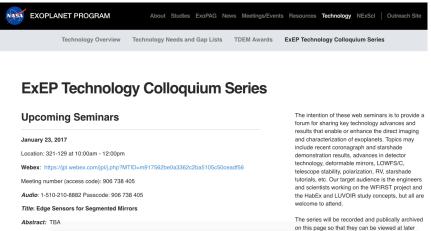
Coronagraph Gaps

Title	Description	Current	Required
Specialized Coronagraph Optics	Masks, apodizers, or beam-shaping optics to provide starlight suppression and planet detection capability.	A linear mask design has yielded 3.2×10 ⁻¹⁹ mean raw contrast from 3-16 λ/D with 10% bandwidth using an unobscured pupil in a static lab demonstration.	Circularly symmetric masks achieving $\leq 1 \times 10^{-10}$ contrast with IWA $\leq 3\lambda/D$ and $\geq 10\%$ bandwidth on obscured or segmented pupils.
Low-Order Wavefront Sensing & Control	Beam jitter and slowly varying large-scale (low- order) optical aberrations may obscure the detection of an exoplanet.	Tip/tilt errors have been sensed and corrected in a stable vacuum environment with a stability of 10 ⁻³ λ rms at sub-Hz frequencies.	Tip/tilt, focus, astigmatism, and coma sensed and corrected simultaneously to $10^{41}\lambda$ ($\sim 10^{15}$ of pm) rms to maintain raw contrasts of $\leq 1 \times 10^{-10}$ in a simulated dynamic testing environme
Large-Format Ultra-Low Noise Visible Detectors	Low-noise visible detectors for faint exoplanet characterization with an Integral Field Spectrograph.	Read noise of < 1 e-/pixel has been demonstrated with EMCCDs in a 1k × 1k format with standard read- out electronics	Read noise < 0.1er/pixel in ≥ 4k × 4k format validated t a space radiation environm and flight-accepted electron
Large-Format Deformable Mirrors	Maturation of deformable mirror technology toward flight readiness.	Electrostrictive 64x64 DMs have been demonstrated to meet ≤ 10-9 contrasts in a vacuum environment and 10% bandwidth.	≥ 64x64 DMs with flight-lik electronics capable of wavefront correction to ≤ 1 contrasts. Full environment testing validation.
Efficient Contrast Convergence	Rate at which wavefront control methods achieve 10 ⁻¹⁹ contrast.	Model and measurement uncertainties limit wavefront control convergence and require many tens to hundreds of iterations to get to 10 ⁻¹⁰ contrast from an arbitrary initial wavefront.	Wavefront control methods that enable convergence to 10 ⁻¹⁰ contrast ratios in fewe iterations (10-20).
Post-Data Processing	Techniques are needed to characterize exoplanet spectra from residual speckle noise for typical targets.	Few 100x speckle suppression has been achieved by HST and by ground-based AO telescopes in the NIR and in contrast regimes of 10-5 to 10-5, dominated by	A 10-fold improvement over the raw contrast of ~10% in visible where amplitude err are expected to no longer b negligible with respect to phase errors.

2017 update coming mid-January

*Topic being addressed by directed-technology development for the WFIRST/AFTA coronagraph. Consequently, coronagraph technologies that will be extended under the WFIRST/AFTA technology development are not eligible for TDEMs.

phase error


https://exoplanets.nasa.gov/exep/technology

ExEP Technology Web Colloquium Series

Exoplanet Exploration Program

- Brings together exoplanet scientists and technologists from WFIRST, LUVOIR, HABEX, and general community to discuss recent technology results
- First installment was on November 29, 2016:
 - Title: The ExEP Segmented Coronagraph Design Analysis Study
 - Speakers: S. Shaklan (JPL), G. Ruane (Caltech), N. Zimmerman (STScl), R, Belikov (NASA-Ames), O. Guyon (UA)
 - $\circ~$ If you missed it, see the archived audio/video
- Second telecon scheduled for January 23, 2017 (10 am PST)
 - Title: Edge Sensors for Segmented Telescopes
 - Speakers: S. Knight (Ball), C. Shelton (JPL)

https://exoplanets.nasa.gov/exep/technology/tech_colloquium/

4: Critical technology - required to meet mission concept objectives; without this technology, applicable missions would not launch		
3: Highly desirable - not mission-critical, but provides major benefits in enhanced science capability, reduced critical resources need, and/or reduced mission risks; without it, missions may launch, but science or implementation would be compromised		
2: Desirable - not required for mission success, but offers significant science or implementation benefits; if technology is available, would almost certainly be implemented in missions		
1: Minor science impact or implementation improvements; if technology is available would be considered for implementation in missions		

Urgency (weight: 10)	4: reduced risk needed for missions currently in pre-formulation or formulation.		
	3: In time for the Decadal Survey (2019); not necessarily at some TRL but reduced risk by 2019.		
	2: Earliest projected launch date < 15 yr (< 2030)		
	1: Earliest projected launch date > 15 yr (> 2030)		

Trend	4: (a) no ongoing current efforts, or (b) little or no funding allocated		
(weight: 5)			
	3: (a) others are working towards it but little results or their performance goals are very far from the need, (b) funding unclear, or (c) time frame not clear		
	2: (a) others are working towards it with encouraging results or their performance goals will fall short from the need, (b) funding may be unclear, or (c) time frame not clear		
	1: (a) others are actively working towards it with encouraging results or their performance goals are close to need, (b) it's sufficiently funded, and (c) time frame clear and on time		

Footnote: to be deemed "ready," the technology is available to NASA at TRL 6 by the earliest possible Preliminary Design Review (PDR) of a mission; or at TRL 5 by the start of Phase A

		Immediate	Urgoneri	Trond	Total
<u>Gap ID</u>	Gap Title	Impact	<u>Urgency</u>	<u>Trend</u>	<u>Total</u>
	Weight:	10	10	5	
S-2	Starlight Suppression and Model Validation	4	4	2	90
S-1	Control Edge-Scattered Sunlight	4	4	2	90
S-3	Lateral Formation Flying Sensing	4	4	2	90
S-4	Petal Shape	4	4	2	90
S-5	SS Deployment and Shape Stability	4	4	2	90
CG-1	Large Aperture Mirrors	4	3	3	85
CG-2	Coronagraph Architecture	4	3	3	85
CG-6	Mirror Figure / Segment Phasing, Sensing & Control	4	3	3	85
CG-7	Telescope Vibration Control	4	3	3	85
CG-9	NIR Ultra-Low Noise Detector	4	3	3	85
CG-3	Wavefront Sensing and Control	4	3	2	80
CG-5	Deformable Mirrors	4	3	2	80
CG-8	Visible Ultra-Low Noise Detector	4	3	2	80
M-1	Extreme Precision Radial Velocity	3	3	3	75
CG-4	Post-Data Processing	4	2	2	70
CG-10	UV/NIR/Vis mirror coatings	3	3	2	70
CG-11	Mid-IR Spectral Coronagraph	2	3	3	65
CG-12	UV Ultra-low noise detector	2	3	2	60

Prioritized List

Enabling Gap Enhancing Gap Watch List

Watch List

Sub-Kelvin Coolers		
Advanced Cryocooler		
Mid-IR Ultra-low Noise Detector		
Astrometry		

- 2017 Technology Gap List reflects a more formalized and inclusive selection and prioritization process
 - included inputs from the community, in particular STDTs
 - Included participation from other program offices
 - reviewed by ExoTAC
 - We'll repeat this process starting in June

Received 21 new Gaps from the community

- Five were either redundant with each other or already captured on the existing gap list
- Four were folded into the existing gap list (all polarization-related)
- Four enhancing gaps added to the prioritized list
- Three gaps added to Watch List
- Five not selected
- Results from this process provided to SAT/TDEM Program Officer at NASA HQ

Recommendation for ExEP Investments

S-2	Starlight Suppression and Model Validation	Starshade technology development activity
S-1	Control Edge-Scattered Sunlight	Starshade technology development activity
S-3	Lateral Formation Flying Sensing	Starshade technology development activity
S-4	Petal Shape	Starshade technology development activity
S-5	SS Deployment and Shape Stability	Starshade technology development activity
CG-1	Large Aperture Mirrors	Solicited in SAT/TCOR-16; and in SAT/TDEM-16 only as part of a systems-level study
CG-2	Coronagraph Architecture	Solicited in SAT/TDEM-16
CG-6	Mirror Figure / Segment Phasing, Sensing & Control	Solicited in SAT/TDEM-16 only as part of a systems-level study
CG-7	Telescope Vibration Control	Solicited in SAT/TCOR-16; and in SAT/TDEM-16 only as part of a systems-level study
CG-9	NIR Ultra-Low Noise Detector	Solicited in SAT/TCOR-16
CG-3	Wavefront Sensing and Control	Solicited in SAT/TCOR;-16 and in SAT/TDEM-16 only as part of a systems-level study; currently being advanced by WFIRST project
CG-5	Deformable Mirrors	Solicited in SAT/TDEM-16 only as part of a systems-level study
CG-8	Visible Ultra-Low Noise Detector	Solicited in SAT/TCOR-16
<mark>M-1</mark>	Extreme Precision Radial Velocity	NN-EXPLORE; ADAP, ATP possibly provide opportunities for data analysis / stellar jitter theory
CG-4	Post-Data Processing	Currently being advanced by WFIRST project
<mark>CG-10</mark>	UV/NIR/Vis mirror coatings	Solicited in SAT/TCOR-16; and SAT/TDEM-16 only as part of a systems-level study
CG-11	Mid-IR Spectral Coronagraph	Solicited in SAT/TCOR-16
CG-12	UV Ultra-low noise detector	Solicited in SAT/TCOR-16