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Goals

What we’d like
are specific, verifiable predictions as to what will be discovered by a given

exoplanet imaging system

What we can reasonably expect

are expectation values of a small number of science yield metrics with
(hopefully) defensible errorbars

We must be able to describe the range of potential science yields. This
means either:

Placing absolute bounds on the values of metrics (incredibly hard)
Describing the distributions of the metrics (still pretty hard)

In trying to describe the distributions of science yield metrics, you can
either try to directly calculate the moments of the distributions, or take a
Monte Carlo approach
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Motivating a Monte Carlo Approach

There are a lot of semi-autonomous pieces that go into a science yield
prediction

It is difficult to predict a priori which assumption will be the one that
limits the yield

Different people care most about different things

It is very difficult to build dynamic constraints into analytical modeling
tools

A proposed solution

Create a software architecture where every model component can be
independently upgraded/changed
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EXOSIMS
Savransky and Garrett (2015); https://github.com/dsavransky/EXOSIMS

SimulatedUniverse

MissionSimulation

PostProcessing

Timekeeping

Observatory

TargetList

PlanetPhysicalModel

OpticalSystem

StarCatalog

PlanetPopulation

Completeness

BackgroundSources

ZodiacalLight

input
speci�cation

SurveySimulation SurveyEnsemble

https://github.com/dsavransky/EXOSIMS
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What it Does
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What it Does Not Do:

Prevent garbage in/garbage out
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Additional Metrics are Trivial to Add

Mass (MJ )
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Additional Metrics are Trivial to Add

Radius (R⊕)
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Additional Metrics are Trivial to Add

Months after Mission Start
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Motivating Example: Population vs. Planet Model

Population describes distributions of parameters and occurrence rates
Model describes derived quantities and mappings between parameters
(albedo/phase, mass/radius, etc.)

Figure: Mass-radius relationship from Spiegel and Burrows (2012).
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Motivating Example: Population vs. Planet Model

Population describes distributions of parameters and occurrence rates
Model describes derived quantities and mappings between parameters
(albedo/phase, mass/radius, etc.)
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Figure 3. The mass-radius relation from dwarf planets to late-type stars. Points represent the 316 data against which our model
is conditioned, with the data key in the top-left. Although we do not plot the error bars, both radius and mass uncertainties
are accounted for. The red line shows the mean of our probabilistic model and the surrounding light and dark gray regions
represent the associated 68% and 95% confidence intervals, respectively. The plotted model corresponds to the spatial median
of our hyper parameter posterior samples.

responding to ��2 = 68.32 for 316 data points). Using

the Bayesian Information Criterion (BIC) to account for

the complexity of each model, we find that the more

complex model of H4 is favored at 9.9� confidence.

4. CLASSIFICATION

4.1. Classification with an MR relation

A unique aspect of this work was to use freely fitted

transitional points in our MR relation. As discussed

earlier, these transitional points essentially classify the

data between distinct categories, where the class bound-

aries occur in mass and are defined using the feature

of dR/dM. Such classes are evident even from vi-

sual inspection of the MR data (see Figure 3), but our

Bayesian inference of a self-consistent probabilistic bro-

ken power-law provides statistically rigorous estimates

of these class boundaries. In what follows, we discuss

the implications of the inferred locations of the class

boudnaries (T (1), T (2) and T (3)).

4.2. Naming the Classes

Rather than refer to each class as segments 1, 2, 3

and 4, we here define a name for each class to facilitate

a more physically intuitive discussion of the observed

properties. A naming scheme based on the physical pro-

cesses operating is appealing but ultimately disingenu-

ous since our model is deliberately chosen to be a data-

driven inference, free of physical assumptions about the

mechanics and evolution sculpting these worlds. We

consider it more appropriate, then, to name each class

based upon a typical and well-known member.

For segment 2, Neptune and Uranus are typical mem-

bers and are of course very similar to one another in ba-

sic properties. We therefore consider this class to define

Figure: Mass-radius relationship from Chen and Kipping (2016).
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Notes

Mission Simulation Ensembles are a hugely powerful tool for answering
practically any question about mission yields if you can trust the code

Build confidence in simulations by releasing all code, having independent
verification, and iterating on all simulation components with subject
matter experts

EXOSIMS is under active development and is continuously being updated

Please see https://github.com/dsavransky/EXOSIMS - in particular the
ICD and as-built documentation
Comments and pull requests very welcome

https://github.com/dsavransky/EXOSIMS
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