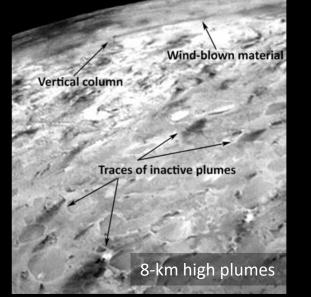
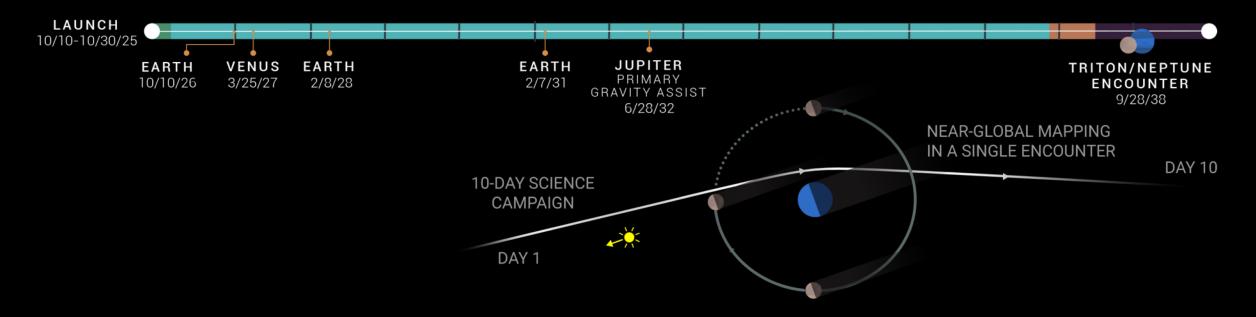

Louise Prockter, Principal Investigator


ExoPAG June 18 2020

Triton, the Solar System's weirdest moon, is a captured Kuiper Belt Object and possible ocean world. Trident would encounter Triton to:

- Explore how worlds become habitable
 - Is Triton an ocean world?
- Explore what drives processes on active worlds
 - What processes resurface Triton?
 - What processes drive Triton's plumes?
 - Why is Triton's ionosphere so intense?
- Explore vast, unseen lands
 - View Triton's unseen hemisphere!



All images: NASA/JPL

Highly efficient ballistic trajectory makes Trident possible on a Discovery budget

- New Horizons-like encounter of Triton
- Discovery mission cost (\$500M)
- Launch: 2025, arrive at Triton 2038
- Ballistic trajectory
- 2 MMRTGs, large battery for encounter operations

Primary participating organizations

JPL – Flight system management, mission management Ball – Spacecraft, AIT&V

Neptune as an Ice Giant 'archetype'

- Although our primary target is Triton, we would also be able to make observations of Neptune (in work)
- Trident would provide a unique new comparison dataset that will allow us to understand Ice Giant worlds around other stars in a new context, breaking away from Earth's sunlit view of these worlds
- The spacecraft would make specific observations that can be compared with recent or expected Earth-based (or near-Earth-based) observations of exoplanets, allowing us to compare and contrast sub-Neptune worlds with a Solar System object – here are three examples of how Trident will support exoplanetary studies:

Exoplanet observation	Trident observation	Comparison
Spectra of Ice Giant exoplanets at a wide range of inclinations and phases	Infrared spectral measurements of Neptune at multiple phases, from near-full illumination to near-darkness	Resolve the differing infrared reflectance and absorption features from an Ice Giant for the first time
Measurements related to heat flow from exoplanets	Visible images of Neptune's atmosphere at different phases, modelling the Bond Albedo	Modelling would give an understanding of an Ice Giant's heat flow and energy budget
Exoplanet radio or infrared auroral emissions, indicating magnetic fields and rotation	Nightside visible and infrared aurora observations, revealing the detailed structure of Neptune's aurora for the first time	This would help us understand the coupling between highly-complex Ice Giant magnetic fields and their surrounding space environment