

#### The Extreme-uv Stellar Characterization for Atmospheric Physics and Evolution (ESCAPE) Mission Concept

Exploring the physics and evolution of potentially habitable worlds

Kevin France University of Colorado ExoPAG - 19 June 2020









Berkelev



## The liquid water "Habitable Zone"



. .

2





## The liquid water "Habitable Zone"











#### A more complete picture of the Habitable Zone: Stellar impacts and space weather







#### A more complete picture of the Habitable Zone: Stellar impacts and space weather





Which star-planet systems are conducive to the maintenance of habitable conditions? Where should NASA and its partners commit their resources?



#### Stellar EUV (10 – 91nm) flux: the driver of atmospheric escape



High-energy stellar photons control the atmospheric physics and chemistry of temperate, rocky planets. The EUV dominates heating of the upper atmosphere and drives escape.



## EUV environment is the dominant uncertainty for exoplanet atmosphere survival





#### Adapted from France et al. (2016)

·. · .

SCAP

### EUV environment is the dominant uncertainty for exoplanet atmosphere survival

ESCAPE





dwarf EUV: Allison Youngblood - CU

### EUV environment is the dominant uncertainty for exoplanet atmosphere survival

SCAPE





1 dwarf EUV: Allison Youngblood - CU



### Impulsive Stellar Eruptions Drive Atmospheric Escape

Flares & CMEs

Optically Inactive M star ( $P_{rot} \sim 40$  days).



- Flares may dominate EUV output of active stars
- Stellar particle bombardment drives ion escape, charge exchange, pickup/sputtering loss processes





## **ESCAPE Science Objectives**



1) Determine if stellar radiation environments permit habitable conditions to exist on rocky exoplanets



## **ESCAPE Science Objectives**



1) Determine if stellar radiation environments permit habitable conditions to exist on rocky exoplanets

2) Characterize stellar EUV evolution & flares, and their impact on habitable environments



## **ESCAPE Science Objectives**



1) Determine if stellar radiation environments permit habitable conditions to exist on rocky exoplanets

2) Characterize stellar EUV evolution & flares, and their impact on habitable environments

3) Determine the impact of coronal mass ejections on atmospheric mass loss

ESCAPE ESCAPE CULARD - Ball - MERC - SAO - PEU - UCB

## The ESCAPE Science and Implementation



Atmospheric models using ESCAPE data as inputs quantify atmospheric loss rates and identify the most promising habitable planet targets



ESCAPE CULARE - Ball - MERC - SAO - PRU- UCB

## The ESCAPE Science and Implementation



EUV & FUV (7 - 180 nm) spectroscopy of 200 nearby stars, including most promising exoplanet hosts

Launch in spring 2025 with a 2 year primary mission





SCAPI

#### > 100 x sensitivity of EUVE:

First statistical study of EUV irradiance on planet-hosting stars

## The ESCAPE Science Program

SCAP





> 100 x sensitivity of EUVE:
 First statistical study of EUV irradiance on important stellar/planetary timescales.

 Evolutionary (Myr - Gyr)
 Rotation/Stellar Cycle (days - years)
 Impulsive (minutes - hours)

AU Mic data dapted from Kowalski et al.



> 100 x sensitivity of EUVE:
 1) CME frequency distribution via coronal dimming (10 - 15 F, G, and K stars)
 2) Relationship between flares and CMEs
 3) CME kinetic energy for brightest stars



**The ESCAPE Instrument** 







## The ESCAPE Instrument



#### ESCAPE Spacecraft:

- Ball BCP 100 spacecraft
- ADCS system (< 5" pointing stability and < 30" pointing control)
- Ka and S-band comm.
  - Fabricated and integrated by Ball, building on heritage from WISE, GPIM, and in development for IXPE and SPHEREx







(Euv Stellar Characterization for Atmospheric Physics and Evolution)



ESCAPE explores the high-energy radiation environments of nearby habitable zones.



(Euv Stellar Characterization for Atmospheric Physics and Evolution)



ESCAPE explores the high-energy radiation environments of nearby habitable zones.

ESCAPE provides the essential stellar context for exoplanet habitability and provides a roadmap for future life-detection missions.



(Euv Stellar Characterization for Atmospheric Physics and Evolution)



ESCAPE explores the high-energy radiation environments of nearby habitable zones.

ESCAPE provides the essential stellar context for exoplanet habitability and provides a roadmap for future life-detection missions.

High-throughput grazing incidence optical system and heritage spacecraft enables EUV observations of 200 nearby stars of a range of masses and ages to be surveyed in a 2 year mission.



(Euv Stellar Characterization for Atmospheric Physics and Evolution)



#### **Backup Slides**



# Science Team

The study of stellar impacts on terrestrial exoplanets is an inherently interdisciplinary endeavor.

The ESCAPE science team combines experts from astrophysics, heliophysics, and planetary science.

| Name                      | Role (Sci Section)                          |
|---------------------------|---------------------------------------------|
| Kevin France, CU, LASP    | PI; responsible for overall mission success |
| Brian Fleming, CU         | IS & DPI; system optical design lead        |
| Jeremy Drake, SAO         | PS; planning/execution of science program   |
| James Mason, GSFC         | DPS; dimming analysis lead (D.2.3)          |
| SCIENCE CONTRIBUTION      |                                             |
| Joel Allred, GSFC         | Co-I; EUV flare modeling lead (D.2.3)       |
| Ute Amerstorfer, IWF      | Collab.; ion processes modeling (D.2.3)     |
| Martin Barstow, Leicester | Collab.: EUV ISM studies lead (D.2.4)       |
| Zach Berta-Thompson, CU   | Co-I; M dwarf follow-up lead (D.2.1)        |
| Vincent Bourrier, U Gen   | Collab.; escape observer (D.2.1)            |
| Luca Fossati, IWF Graz    | Collab.; escape observer (D.2.1)            |
| Cynthia Froning, UT       | Co-I; FUV observation lead (D.2.1)          |
| Cecilia Garraffo, CfA     | Co-I; stellar wind modeling lead (D.2.1,3)  |
| Guillaume Gronoff, LaRC   | Co-I; particle influences lead (D.2.3)      |
| Meng Jin, LM              | Co-I: dimming modeling lead (D.2.3)         |
| Tommi Koskinen,. UofA     | Co-I; thermal escape modeling lead (D.2.1)  |
| Adam Kowalski, CU         | Co-I: stellar flare analysis lead (D.2.3)   |
| Herbert Lichtenegger, IWF | Collab.; ion processes modeling (D.2.3)     |
| Jeffrey Linsky, CU        | Co-I: ISM correction lead (D.2.4)           |
| Rachel Osten, JHU/STScI   | Co-I: stellar CME & particle lead (D.2.3)   |
| Sabrina Savage, MSFC      | Co-I: solar contexts lead (D.2.2)           |
| Allison Youngblood, GSFC  | Co-I; M dwarf EUV analysis lead (D.2.1)     |
| INSTRUMENT CONTRIBUTION   |                                             |
| Matthew Beasley, SwRI     | Co-I; telescope design scientist            |
| James Green, CU           | Co-I; EUV calibration lead                  |
| Ken Kobayashi, MSFC       | Co-I: telescope optic scientist (D.2.2)     |
| Randall McEntaffer, PSU   | Co-I; diffraction gratings lead             |
| David McKenzie, MSFC      | Co-I: telescope fabrication lead (D.2.2)    |
| Suzanne Romaine, SAO      | Co-I; optical alignment lead                |
| Oswald Siegmund, UCB      | Co-I; Detector scientist                    |





(Euv Stellar Characterization for Atmospheric Physics and Evolution)

#### ESCAPE Hardware:

ESCAPE

- Instrument, MSFC, UCB, SAO, PSU, LASP
- Instrument I&T, LASP
- Observatory I&T, Ball

#### ESCAPE Data:

Processing, LASPArchiving, MAST





## The Local ISM



The EUV \*is\* observable. The challenge has been an observational one, not an astrophysical one.





## The ESCAPE Target Sample





- Solar System Planets
- Known Exoplanets
- ESCAPE observations
- planned for known exoplanet systems
- ESCAPE observations planned for systems without known exoplanets

Target list will be updated with new RV and transit results during Phases B - D.