the Exoplanet ″/p⊕s Population Observation Simulator

Gijs Mulders U. Chicago

Ilaria Pascucci; Daniel Apai U. Arizona Fred Ciesla U. Chicago Christoph Mordasini U. Bern

EOS/NExSS

Planet Formation Models vs. Observed Exoplanets

(see also Remo Burn's talk)

https://github.com/GijsMulders/epos

- Mulders+ 2018
- Pascucci+ 2018; 2019

- Mulders+ 2018
- Pascucci+ 2018; 2019

- Mulders+ 2018
- Pascucci+ 2018; 2019
- Fernandes+ 2019

- Mulders+ 2018
- Pascucci+ 2018; 2019
- Fernandes+ 2019
- Mulders+ 2019
- Mulders+ 2020 in prep

Mo 11:10 am session 224

EPOS and eta_earth

Kepler has detected no reliable earth sized planet candidates in the habitable zone of sun-like stars

data from Thompson+ 2018, Berger+2019

Estimating underlying distribution

Estimating underlying distribution

Model	Fitted P	Fitted R	Function	Γ_{\oplus}	η_\oplus
#	days	R_\oplus		%	%
1	2–400	0.5–6	2D broken	$59.6^{+21.8}_{-25.4}$	$40.6^{+14.9}_{-17.3}$
2	2–400	0.5-2	P broken	$78.7^{+43.5}_{-39.2}$	$53.6^{+29.7}_{-29.7}$
3	12-400	0.5-6	R broken	$17.0^{+7.6}_{-5.6}$	$11.5_{-3.8}^{+5.2}$
4	12-400	1–6	R broken	$16.0\substack{+8.0\\-5.5}$	$10.9\substack{+5.5\\-3.7}$
5	25-400	0.5-6	R broken	$8.6^{+8.9}_{-5.1}$	$5.9\substack{+6.0 \\ -3.5}$
6	25-400	1–6	R broken	$8.0\substack{+10.3\\-5.4}$	$5.4\substack{+7.0\-3.7}$

(Mulders+ 2018)

Pascucci+ 2019

Estimating underlying distribution

Model∣ #	Fitted P days	Fitted R R_{\oplus}	Function	Γ_{\oplus}	$\eta_\oplus \ \%$
1	2–400	0.5–6	2D broken	$59.6^{+21.8}_{-25.4}$	$40.6^{+14.9}_{-17.3}$
2	2–400	0.5-2	P broken	$78.7\substack{+43.5\\-39.2}$	$53.6^{+29.7}_{-29.7}$
3	12-400	0.5-6	R broken	$17.0\substack{+7.6\\-5.6}$	$11.5^{+5.2}_{-3.8}$
4	12–400	1–6	R broken	$16.0\substack{+8.0\\-5.5}$	$10.9^{+5.5}_{-3.7}$
5	25–400	0.5-6	R broken	$8.6\substack{+8.9 \\ -5.1}$	$5.9\substack{+6.0 \\ -3.5}$
6	25-400	1–6	R broken	$8.0\substack{+10.3\\-5.4}$	$5.4^{+7.0}_{-3.7}$

(Mulders+ 2018)

Pascucci+ 2019

Rocky planets are over-represented at short periods, leading to overestimate of eta_earth (Lopez & Rice 2018)

Need a physically motivated planet distribution that describes covariance in period and radius

Planet Population Synthesis

Planet Population Synthesis

Bern Model (Mordasini 2018, Emsenhuber in prep)

(consistent with Pascucci+ 2019)

Summary

- EPOS is a framework for estimating exoplanet distributions from biased surveys (e.g. Kepler)
- In the absence of reliable planet candidates, eta_earth can only be estimated by extrapolation
- Presence of stripped cores at short periods leads to overestimate of eta_earth
- Occurrence of habitable zone rocky planets may be smaller than eta_earth (!)