Exoplanet Demographics: Latest Results from The Kepler Group

Steve Bryson, Jeff Coughlin, Susan E. Thompson, Natalie Batalha, Chris Burke, and the Former *Kepler* Team

ExoPAG 21 – January 4, 2020

What's New This Time?

- Small, long-period planet occurrence around GK dwarfs
 - Near Earth orbital period, radius < 2.5 R_{Earth}
- Robust, high-resolution vetting completeness and false alarm reliability
 - Astrophysical FP reliability via Morton False Positive Probabilities
- A new Gaia-informed stellar properties catalog
 - Consistently treating the entire stellar sample through isochrone fitting
 - Berger et al. *in prep*.
 - Mostly single stars via fit quality cuts
- Chris Burke's Poisson-likelihood-based occurrence rates
 - Dual power law in period and radius
- Details in arXiv:1906.03575

Detection and Vetting Completeness

Robust False Alarm Reliability Measurements

Effect of many instrumental artifacts near the Kepler orbit

Our Baseline Planet Candidate Population

- Planets colored by reliability
- Few small, long-period planets
- Small, long-period planets have reliability < 0.5
- Contours are completeness averaged over all stars

ζ_{Earth} (within 20% of Earth's period and radius)

- We find that for long-period, small planets, reliability cuts the occurrence rate in half.
- Gaia vs. DR25 stellar radii cut ζ_{Earth} by 60%
- We expect that any occurrence rate method will see these kinds of impact

SAG 13 $\eta_{\oplus} = 0.126^{+0.095}_{-0.055}$ ($0.302^{+0.181}_{-0.113}$ without reliability)

Is This a Good Measurement?

- These rates are low
 - Our SAG13 η_{Farth} value 0.126 is 4.6 times lower than the SAG13 nominal value 0.58
- Is the Robovetter being too harsh?
 - DR25 catalog has significantly fewer long-period, small candidates than previous catalogs
- For DR25, Robovetter thresholds were chosen to balance completeness and reliability
- Experiment: Try catalogs based on different Robovetter thresholds
 - High reliability, low completeness
 - Low reliability, high completeness
 - Pass DR25 false positives that the *Kepler* False Positive Working Group (FPWG) deemed as possible planets (ends up with low reliability, high completeness)
- Each choice of thresholds are as valid as the "standard" DR25 thresholds
 - So a "good" measurement should give the same value for these cases

Different Robovetter Threshold PC Catalogs

ζ_{Earth} With Completeness, Without Reliability

$\zeta_{\rm Earth}$ With Completeness and Reliability

SAG13 η_{Earth} Is Similar

Lesson

- Occurrence rates are sensitive to completeness and reliability
- Vetting completeness and reliability are individually sensitive to vetting choices
 - Makes occurrence rates that account for, e.g., only completeness sensitive to vetting choices
- But occurrence rates accounting for completeness and reliability together are relatively insensitive to vetting choices
 - At least for our method
- Apply your favorite occurrence rate method to these four catalogs to test for agreement
 - Available via Github, including synthetic data to measure reliability and completeness
 - https://github.com/stevepur/DR25-occurrence-public/
- We propose that insensitivity to these vetting choices is necessary (though not sufficient) for a good occurrence rate measurement

η_{Earth} in Insolation-Radius (Preliminary!!)

Habitable zone η_{Farth}

2.50

2.25

2.00

1.75

1.25

1.00

0.75

0.50

B_p [**R** ⊕] R_p [**R** ⊕]

- Same method but period replaced with insolation

What's Next?

- Improved Robovetter vetting for higher completeness and reliability
 - Make better use of pixel-level data
 - More probabilistic analysis replacing hard thresholds
- Improved population models
 - Informed by theory
- Better understanding of uncertainties
 - Particularly in completeness analysis
- Account for correlations in multi-planet systems
- Generalize
 - To K2/TESS/CHEOPS/PLATO... data
 - Different systematics
 - Other detection methods
 - Integration of data from multiple detection methods

Backup Slides

DR25 Occurrence Fit

Short Orbits, Larger Planets Is Similar

Insolation for the Stellar Population

DR25 Insolation-Radius Occurrence Fit

