

The Extreme Precision Radial Velocity Initiative Working Group

Scott Gaudi EPRV-WG Co-Chair

The Ohio State University

Jennifer Bur

Exoplanet Exploration Program Office

Jet Propulsion Laboratory, California Institute of Technology

(on behalf of the entire EPRV working group)

Some of the research presented here was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. © 2019 California Institute of Technology. Government sponsorship acknowledged.

Advances in EPRVs Have Stagnated at ~1 m s⁻¹.

Dumusque's RV challenge.

"Even with the best models of stellar signals, planetary signals with amplitudes less than 1 m s⁻¹ are rarely extracted correctly with current precision and current techniques.

In other words, we must do something fundamentally different than we have been doing to achieve 10 cm s⁻¹ precision and 1 cm s⁻¹ accuracy.

4.3.2. *RV Fitting Challenge*

In advance of the workshop, Xavier Dumusque orradial velocity data ⁹⁰. He provided simulated RV data sets, using the time stamps of HARPS observations for some well-sampled stars. The data contained stellar signals from from oscillations, granulation, spots and plages, magnetic cycles and Keplerian signals. Eight teams participated in this simulation and used different techniques to recover planetary signals, as detailed in Table 2. The results of the RV fitting challenge are fully described in Dumusque (2016). Here, we summarize the take away messages of this exercise.

ultimately penalized their ranking. Finally, planetary signals with amplitudes above 1 m s^{-1} were ganized a challenge⁸⁹ for fitting Keplerian signals in detected almost all of the time, while only 14% (4 out of 28) of true smaller signals were discovered. Out of these 4 true small signals, 2 would have been published: however, 2 false planetary signals would have been published as well. Therefore, even with the best models of stellar signals, planetary signals with amplitudes less than 1 m s^{-1} are rarely extracted correctly with current precision and current techniques.

Fischer et al. 2016, Dumusque 2016

What precision and accuracy do we need?

- The RV amplitude of an Earth-mass planet orbiting sunlike star (assuming sini~1) is ~9 cm/s.
- The signal-to-noise ratio (assuming uniform sampling in phase) is

$$\frac{S}{N} \approx \sqrt{\frac{N}{2}} \frac{K}{\sigma}$$

- Where *N* is the number of measurements, *K* is the RV semiamplitude, and σ is the per-measurement *precision*.
- Thus to detect an Earth analogue at S/N~10 (implying a m_psin*i* precision of ~10%), one requires $\frac{N^{1/2}}{\sigma} \approx 1.58 \ s/m$ (and observations over several years).
- Assuming a single-measurement precision of ~10 cm/s, this requires N~250 measurements.
- If observations are binned every 0.1 in phase, this then requires an accuracy of ~ 2.5 cm/s per bin.

Issues that must be overcome... (e.g., the Known Unknowns and the Unknown Unknowns)

The problem going from 10 m/s to 1 m/s were the number of unanticipated, unidentified errors.

The problem going from 1 m/s to 10 cm/s is the number of unanticipated and uncharacterized errors.

It is probably true that the challenge in going below 10 cm/s (which we have not yet reached) will be the number of unanticipated terms in the error budget and we will need new tools to address them.

National Academy of Sciences Exoplanet Science Strategy:

Improving the Precision of Radial Velocity Measurements Will Support Exoplanet Missions

FINDING: The radial velocity method will continue to provide essential mass, orbit, and census information to support both transiting and directly imaged exoplanet science for the foreseeable future.

FINDING: Radial velocity measurements are currently limited by variations in the stellar photosphere, instrumental stability and calibration, and spectral contamination from telluric lines. Progress will require new instruments installed on large telescopes, substantial allocations of observing time, advanced statistical methods for data analysis informed by theoretical modeling, and collaboration between observers, instrument builders, stellar astrophysicists, heliophysicists, and statisticians.

RECOMMENDATION: NASA and NSF should establish a strategic initiative in extremely precise radial velocities (EPRVs) to develop methods and facilities for measuring the masses of temperate terrestrial planets orbiting Sun-like stars.

NASA / NSF EPRV Initiative

Objective: The Extreme Precision Radial Velocity (EPRV) Working Group was chartered by the NASA Astrophysics Division (APD) and NSF Division of Astronomical Sciences (AST) to deliver a report that includes a recommendation for the most promising ground-based program architecture and supporting research efforts necessary to achieve the goal of measuring the masses of temperate, terrestrial planets orbiting nearby, Sun-like stars amenable to direct imaging with future mission concepts such as HabEx, LUVOIR, or Starshade Rendezvous.

https://exoplanets.nasa.gov/exep/NNExplore/EPRV

NASA / NSF EPRV Initiative

Objective: The Extreme Precision Radial Velocity (EPRV) Working Group was chartered by the NASA Astrophysics Division (APD) and NSF Division of Astronomical Sciences (AST) to deliver a report that includes a recommendation for the most promising ground-based program architecture and supporting research efforts necessary to achieve the goal of measuring the masses of temperate, terrestrial planets orbiting nearby, Sun-like stars amenable to direct imaging with future mission concepts such as HabEx, LUVOIR, or Starshade Rendezvous.

https://exoplanets.nasa.gov/exep/NNExplore/EPRV

First step: putting together a working group

Steering Group

Scott	Gaudi	Co-chair	The Ohio State University
Gary	Blackwood	Co-chair	NASA ExEP / Jet Propulsion Laboratory
Andrew	Howard		Caltech
David	Latham		Harvard-Smithsonian Center for Astrophysics
Debra	Fischer		Yale University
Eric	Ford		Pennsylvania State University
Heather	Cegla		University of Geneva
Peter	Plavchan		George Mason University
Andreas	Quirrenbach		Landessternwarte; University of Heidelberg
Jennifer	Burt		Massachusetts Institute of Technology
Eric	Mamajek	Ex officio	NASA ExEP / Jet Propulsion Laboratory
Chas	Beichman	Ex officio	NASA Exoplanet Science Institute / Caltech

Members

Chad	Bender	University of Arizona
Jonathan	Crass	Notre Dame University
Scott	Diddams	National Institute of Standards and Technology
Xavier	Dumusque	Université de Genève
Jason	Eastman	Harvard-Smithsonian Center for Astrophysics
Benjamin	Fulton	NASA Exoplanet Science Institute / Caltech
Sam	Halverson	Massachusetts Institutte of Technology
Raphaëlle	Haywood	Harvard-Smithsonian Center for Astrophysics
Fred	Hearty	Pennsylvania State University
Stephanie	Leifer	NASA / Jet Propulsion Laboratory
Johannes	Loehner-Boettcher	University Corp. for Atmospheric Research
Annelies	Mortier	Kavli Inst. for Cosmology, Univ. of Cambridge
Ansgar	Reiners	University of Göttingen
Paul	Robertson	University of California, Irvine
Arpita	Roy	Caltech
Christian	Schwab	Macquarie University
Andreas	Seifahrt	University of Chicago
Andrew	Szentgyorgyi	Harvard-Smithsonian Center for Astrophysics
Ryan	Terrien	Carleton University
Johanna	Teske	Carnegie Observatories/DTM
Samantha	Thompson	University of Cambridge
Gautam	Vasisht	NASA / Jet Propulsion Laboratory

Participants

Suzanne	Aigrain		Oxford University		
Megan	Bedell		Flatiron Institute		
Rebecca	Bernstein		Carnegie Observatories		
Ryan	Blackman		Yale University		
Cullen	Blake		University of Pennsylvania		
Lars	Buchhave		Technical University of Denmark		
John	Callas	Ex officio	NASA ExEP / Jet Propulsion Laboratory		
David	Ciardi	Ex officio	NASA Exoplanet Science Institute / Caltech		
William	Chaplain		University of Birmingham		
Jessi	Cisewski-Keh	e	Yale University		
Andrew	Collier-Camer	ron	Saint Andrews University		
Matthew	Cornachione		University of Utah		
Nadege	Meunier		University of Grenoble		
Joe	Ninan		Pennsylvania State University		
John	O'Meara		W. M. Keck Observatory		
Joel	Ong		Yale University		
Sharon	Wang		Carnegie Institution for Science		
Sven	Wedemeyer-E	Boehm	University of Oslo		
Lily	Zhao		Yale University		

ExoTAC (Exoplanet Technical Assessment Committee)

Alan	Boss Chair	Carnegie Institution for Science
Rebecca	Oppenheimer	American Museum of Natural History
Joe	Pitman	Heliospace Corporation
Lisa	Poyneer	Lawrence Livermore Laboratory
Stephen	Ridgeway	National Optical Astronomy Observatory

F. Approvals and Concurrences

Approve/	E-SIGNED by Douglas Hudgins on 2019-07-23 17:36:36 GMT	2019-07-23 17:36:36 UTC
Dr. Dougla	s M. Hudgins	Date
Exoplanet I	Exploration Program Scientist, NASA/	APD
	E-SIGNED by Jeff Neff on 2019-07-24 22:25:37 GMT	2019-07-24 22:25:37 UTC

Dr. James E. Neff Date NN-EXPLORE Program Director, NSF/AST

Time Line

Based on the 2018 ESS report:

"Radial velocity measurements are currently limited by variations in the stellar photosphere, instrumental stability and calibration, and spectral contamination from telluric lines. Progress will require new instruments installed on large telescopes, substantial allocations of observing time, advanced statistical methods for data analysis informed by theoretical modeling, and collaboration between observers, instrument builders, stellar astrophysicists, heliophysicists, and statisticians."

EXOPLANET SCIENCE STRATEGY

Based on the 2018 ESS report:

"Radial velocity measurements are currently limited by variations in the stellar photosphere, instrumental stability and calibration, and spectral contamination from telluric lines. Progress will require new instruments installed on large telescopes, substantial allocations of observing time, advanced statistical methods for data analysis informed by theoretical modeling, and collaboration between observers, instrument builders, stellar astrophysicists, heliophysicists, and statisticians."

EXOPLANET SCIENCE STRATEGY

So, what are we doing about all of these challenges?

Formation of Sub-Groups

Science Mission Drivers (leads: Howard & Bender) Identify science goals for the initiative and determine target star list to guide EPRV survey considerations Survey Strategy (Burt & Teske)

Evaluate ability of architectures to observe prime target list. Design 2020s PRV survey to characterize stellar variability & multiplicity

Instrument Performance Evaluation (Halverson) Assess top level system error budgets in the context of community derived science goals and requirements Pipelines, Analysis & Statistical Inference (Roy & Ford) Identify research efforts necessary to improve spectral analysis, RV determination & noise modeling

Instrumentation & Calibration (Leifer & Szentgyorgyi) Identify new EPRV and supporting instrumentation/technology needed before the 2030 survey begins

Realistic Resource Evaluation (Quirrenbach & Diddams) Evaluate expected costs, risks, and realism of EPRV architectures and supporting research efforts.

Intrinsic Stellar Variability (Cegla & Haywood) Identify observational and analytical techniques needed to characterize & correct various types of stellar variability Telluric Mitigation Strategies (Bender) Identify observational and analytical techniques needed to quantify the impacts of telluric lines in the Earth's atmosphere and mitigate their effects

Compiling a list of target stars

- Combined target lists from the HabEx, LUVOIR, and Starshade Rendezvous future mission concepts
- Eliminated stars with T_{eff} > 6200K or vsini > 10 km/s due to lack of RV information content

	Starshade Rendezvous	HabEx (4m)	LUVOIR-B (8m)	LUVOIR-A (15m)	Union Sample
# of stars	32	51	158	287	199
<v mag=""></v>	4.34	4.71	5.4	5.76	5.58
<distance> (pc)</distance>	8.2	8.8	12.1	15.36	15.18
F stars	4	12	48	99	112
G stars	14	16	55	98	101
K stars	9	18	39	58	58
M stars	1	4	15	29	31
"Sun-like" stars (Sp Type: F7-K9)	24	40	116	197	206

Compiling a list of target stars

- Combined target lists from the HabEx, LUVOIR, and Starshade Rendezvous future mission concepts
- Eliminated stars with T_{eff} > 6200K or vsini > 10 km/s due to lack of RV information content
- Stars split into a 'green' and 'yellow' list:
 - Green stars have vsini < 5 km/s and appear on at least two studies' target lists
 - Yellow stars have vsini < 10 km/s or appear on only one study target list

Definition of Musts & Wants

MUSTS	Success Criteria
M0a	Determine the feasibility by 2025 to detect (with a well characterized and sufficiently small false discovery rate) and measure the mass (msini with <=10% fractional precision) of <=1earth mass planets that orbit a 1 M_Sun main sequence star and receive insolation within 10% Insolation_Earth
M0b	Demonstrate the feasibility to detect (with a well characterized and sufficiently small false discovery rate) and measure the mass (msini with <=10% fractional precision) of <=1earth mass planets that orbit a 1 M_Sun main sequence star and receive insolation within 10% Insolation_Earth prior to 2030 Decadal Survey.
M1a	Design and execute a set of precursor surveys and analysis activities on the 'green' and 'yellow' stars on evolving target star list and on the Sun
M1b	Demonstrate the feasibility to survey each of the 'green' stars on evolving target list at the level of M0b.
M2	Meet Intermediate Milestone: By 2025, demonstrate on-sky feasibility with capabilities in-hand to detect <i>K</i> down to 30 cm/s for periods out to few hundred days using a statistical method that has been validated using simulated and/or observed spectra time-series
M4	Capture Knowledge from current and near-future generation of instruments, surveys, analysis, and coordination activities to help inform development of future EPRV instruments.

Definition of Musts & Wants

WANTS	Relative Science		Relative Difficulty	
W1	Survey as many 'yellow' stars as possible on evolving stellar target list.	W7	Prefer the architecture with the greatest relative probability of success to meet stellar variability requirement	
W2	Measure masses of temperate terrestrial planets orbiting M stars, not on yellow target list	W8	Relative difficulty to secure required telescopes/instruments, fraction of time, and observing	
W3	Use follow-up of transiting temperate terrestrial planets to inform the mass-radius relation from key transit discoveries		cadence and coordination between telescopes Prefer the architecture the greatest probability of success of	
	Validate methods of stellar variability mitigation, telluric	W9	achieving the survey referenced in M1b	
W4	mitigation, and statistical validation, key for the EPRV		Other Factors	
	method, including using follow-up of transiting planets		Take advantage of opportunities for international collaboration and draw from as broad of a pool of relevant	
	Relative Schedule	W11		
W5	Schedule: Start the precursor M1a surveys as soon as possible , so as to maximize impact at PDR on design of direct imaging missions (e.g. HabEx, LUVOIR)	W12	Maximize use of, and knowledge and understanding of, existing facilities (observatories), infrastructure, and	
	Schedule: Start the Dream Survey as soon as possible, so		hardware (including detectors)	
W6	as to maximize impact at PDR on design of direct imaging	W13	Maximize broader impacts in society	
	missions (e.g. HabEx, LUVOIR)	W14	Encourage free exchange of ideas, including data and	
	Relative Cost		source codes	
W10	Least estimated cost	W15	Implement as a coordinated and distributed program	
		W16	Encourage collaboration between the subdisciplines in stellar astrophysics, heliophysics, instrumentation, statistics and earth sciences (mitigating tellurics)	

Investigations into observing approaches

	0a : No New	Ob : New Funds	l : 2.4m telescopes							
	Using Existing	using existing	combined with				V : T.H.E-Like -			
	Assets and	assets and	NEID-esque		III : 10m class	IV : 25m class	3m class + SMF	VI : Exotic	VII : Exotic	
	Organization	organizations	instruments	II : 4-6m class	telescopes	telescope	Instruments	Telescope	Spectrograph	VIII : Hybrid
Architecture:	[Scott]	[Fred]	[Jenn]	telescopes [Andrew]	[O'Meara]	[Andy]	[Chas]	Tech [Peter]	Tech [Peter]	Exclusive [BJ]

Wavelength coverage
Spectral resolution
of telescopes and
assumed time allocation
Instrument noise floor
Instrument efficiency
Wavelength calibration
ina torong in banbration
source
source
Source Observing cadence
Observing cadence Desired RV precision
Observing cadence Desired RV precision Minimum SNR
Observing cadence Desired RV precision Minimum SNR requirement

Site selection for each facility in architecture Latitude, longitude and elevation Average weather loss Median Seeing

Steps taken to address stellar activity (observing cadence, minimum SNR, FTE investments, etc) Plans for survey plan to characterize stellar activity and eliminate problematic stars before EPRV survey

Improvements to data reduction and analysis pipelines

- Improvements to statistical planet detection efforts
- Investments in instrumentation testbeds

Example architecture layout

Description of observing set up at each facility

- Telescope aperture: 2.4m telescope
- Basic instrument description: Super-Neid, same basic instrument parameters as Neid but it has an instrumental noise floor of 10cm/s
- Is there a solar feed? Yes
- Any other key details for understanding the telescope/instrument combo? The telescopes are dedicated facilities, so they spend 100% of their time on the EPRV survey
- Details on any driving technologies (e.g. adaptive optics, fiber slicers, etc):

Fill in these details Wavelength : 380-930nm Resolution : 150k Total efficiency : 7% Instrument noise floor : 10 cm/s Telescope allocation : 100%

At each facility: 2.4m telescope + super Neid + solar feed

Super Neid: same design basics as Neid (wavelength coverage, gain, read noise, etc), but set instrument noise floor at 10 cm/s

Description of observing plan:

- Describe stellar target list: Include all stars on the green list
- Describe observing cadence: Observe each star at least once per night on at least one of the telescopes
- Describe goal RV precision and SNR: 10cm/s photon noise and SNR >= 300 during each visit to a given star
- Any other key details for observing strategy (overlapping standard stars, etc): Have 4 standard stars (2N/2S) that are observed on three telescopes in that hemisphere each night to allow for better informed RV data combination

And others we're not (...yet)

And others we're not (...yet)

After simulations, each architecture will be assessed by each working group using custom rubrics

Requirement	Bare Minimum	Strongly Recommended	Bonus			Minimum requirement	Best	Notes
) PRV observations of sun	Collect solar data for at least of half days each year for one solar cycle from a least 2 high priority instruments* and place in public archive. (Data collection + ~2 FTEs/year, GS or PD-level for associated analysis)	Collect solar data as many days as practical from three or more high priority instruments [*] as long as instruments are in operation and place in public archive. (Data collection + ~1 FTE/year/instrument, GS or PD-level for associated analysis)	Fund solar telescopes for additional high-priority instruments.	Cadence		Nightly	3x a night	Higher cadence preferred over larger sample
PRV observations of RV benchmark stars	Collect data on 4 RV benchmark stars from at least 2 high priority instruments* and place in in public archive. For cadence see Group D requirement. (Data collection + ~2 FTEs/year, GS or PD-level for associated analysis)	Collect data on 4-10 benchmark stars from three or more high priority instruments [*] and place in in public archive. For cadence see Group D requirement. (Data collection + ~1 FTEs/year/instrumnt, GS or PD-level for associated analysis)	Standardize data products and data format in archive.	Resolution SNR	ı	100k >300	130-180k 800-1000	Scaling: A*R^3 + B*R^2 + C*R + D
) R&A in Stellar Variability Mitigation	Develop and apply stellar variability for at least one wavelength-domain mitigation strategy and one temporal domain mitigation strategy. Verify, validate and assess utility of mitigation strategies using solar and RV benchmark star observations. ("4 FTEs/year, GS or PD level)	Develop and apply at least three stellar variability mitigation strategies for both wavelength and temporal domains. Verfy, validate and asses utility of each mitigation strategy using solar and RV benchmark star observations. ("& FTEs/year, GS or PD level)		Activity In	dicator	Ca HK (390 nm)	Ca HK + more	Visible range is primary wavelength range requested. Bonus if you push to 700-900nm and beyond.
Cross-comparisons of data fro different instruments to evaluate effectiveness of mitigation strategies and to	m Compare precision of RV amplitudes as a function of instrument specifications (e.g., R, SNR, sampling, etc.), temporal instrument characteristics (e.g., absolute and relative drift), observing strategies, and orbital period, for data meeting bare minimum requirements 18. a. 2. T2 FEX exar = 0.5 FEF or each instrument +	Compare precision of RV amplitudes as a function of instrument specifications (e.g., R, SNR, sampling, etc.), temporal instrument characteristics (e.g., absolute and relative drift), and observing strategies, orbital period, for all data, including both bare minimum and additional data collected to meet "stranety recommend" for	Fund teams closely associated with each instrument and at least one team quite distant from each high-priority instrument being compared to gain benefit of each	Suppleme Call to act	ntary obs. ion:	Solar telescope		
inform future spectrograph/survey designs	additional 1 FTE independent of any instrument team)	requirements 1 & 2. (~1 FTE/year/instrument + additional 2FTE/year not associated with an instrument team)	team's experience and independent perspectives					
Developing modular,) open-source pipeline for EPR science	Adapt existing proven RV pipeline (eg. ESPRESSO, future KPF public code) to be usable across instruments and open-source. Validate and verify result code on data from at least 2 high priority instruments. ("2ETE/year, 1 Engineer-level, 1 PD-level)	Fund development of community pipeline, based on heritage of best existing codes. Include modular design with multiple algorithms for key modules. Support multiple teams making targeted contributions to improve code. ("EFTE/year, 3 Engineer-level, 3 PD-level)	Gather instrument/testbed data on sub-pixel detector properties, calibration stability etc. for pipeline ingestion.	R&A Effort Plan for gl	: obal on	Group D Recommendation Yes		<u>Stellar Error Budget</u>
) Series of EPRV Data Challeng	Fund data challenges to compare effectiveness of strategies for: (1) mitigation of rotationally-modulated signals for sun, (2) mitigation of granulation, supergranulation and pulations for sun, (3) mitigation of combined stellar unlikeling technorum like technorum (1) for the fore component of unexp).	Fund a series of planned data challenges to address specific aspects of problem, using both simulated and real data, so as to compare effectiveness of strategies, learn from each exercise and improve the state-of-the-art. This would be limited by human capacity at '1 data	Strategy for integrating expertse/contributions from international colleagues.	Standardis products	ed data	Raw & processed + pipeline		

Category of information	Good	Better	Best
Stellar activity: rotation periods and long-term magnetic activity cycle	*Medium or high-resolution spectroscopic observations covering Ca H&K, with cadence of ~1/week, lasting ?? years	*High resolution (100,000+), moderate-S/N (100+) spectroscopic observations covering at least Ca H&K and deriving RVs, with cadence of every night for 2 months and ~1/week for the rest of the season, lasting ?? years	*High resolution (100,000+), high-S/N (300+) spectroscopic observations with stabilized spectrograph, covering Ca H&K + more activity indicators, and deriving RVs, with cadence of every night the whole season, lasting ?? years *Space-based photometry of targets deemed to be "quiet" in Ca H&K, cadence of 30 min or better, lasting 2+ months
Stellar multiplicity	*Gaia astronometry to look for companions stars via RUWE and Gaia RV	Good+ *Lower precision (10's to 100's of m/s) RV observations to look for stellar companions, with cadence of \sim 1/month	Better+ *High-resolution imaging to search for companions within 0.5"
Existence of other planets, particularly longer period	*Observations with any PRV spectrograph, cadence ~1/month, precision ~ 3 m/s, lasting for 5+ years	*Observations with any PRV spectrograph, cadence ~1/week, precision ~ 3 m/s, lasting for ~ 10 years	*Observations with a stabilized PRV spectrograph, cadence ~1/week, precision ~3 m/s, lasting for ~10 years

After simulations, each architecture will be assessed by each working group using custom rubrics

Requirement	Bare Minimum	Strongly Recommended	Bonus
PRV observations of sun	Collect solar data for at least of half days each year for one solar cycle from a least 2 high priority instruments* and place in public archive. (Data collection + ~2 FTEs/year, GS or PD-level for associated analysis)	Collect solar data as many days as practical from three or more high priority instruments as long as instruments are in operation and place in public archive. (Data collection + ~1 FTE/year/instrument, GS or PD-level for associated analysis)	Fund solar telescopes for addit high-priority instruments.
PRV observations of RV benchmark stars	Collect data on 4 RV benchmark stars from at least 2 high priority instruments* and place in in public archive. For cadence see Group D requirement. (Data collection + ~2 FTEs/year, GS or PD-level for associated analysis)	Collect data on 4-10 benchmark stars from three or more high priority instruments [*] and place in in public archive. For cadence see Group D requirement. (Data collection + ~1 FTEs/year/ <u>instrumnt</u> , GS or PD-level for associated analysis)	Standardize data products and format in archive.
R&A in Stellar Variability Mitigation	Develop and apply stellar variability for at least one wavelength-domain mitigation strategy and one temporal domain mitigation strategy. Verify, validate and assess utility of mitigation strategies using solar and RV benchmark star observations. (*4 FTs/year, GS or PD level)	Develop and apply at least three stellar variability mitigation strategies for both wavelength and temporal domains. Verify, validate and assess utility of each mitigation strategy using solar and RV benchmark star observations. ("& FTEs/year, GS or PD level)	
Cross-comparisons of data from different instruments to evaluate effectiveness of mitigation strategies and to inform future spectrograph/survey designs	Compare precision of RV amplitudes as a function of instrument specifications (e.g., R, SNR, sampling, etc.), temporal instrument characteristics (e.g., absolute and relative drift), observing strategies, and orbital period, for data meeting bare minimum requirements 18. 2, 1-2 FUYpar = 0.5 FTE or each instrument + additional 1 FTE independent of any instrument team)	Compare precision of RV amplitudes as a function of instrument pecifications (e.g., R, SNR, sampling, etc.), temporal instrument characteristics (e.g., absolute and relative drift), and observing strategies, orbital period, for all data, including both bare minimum and additional data collected to meet "strongby recommend" for requirements 1. 8.2. (°1 FT(typar/instrument + additional 2 <u>FTF</u> (year not associated with an instrument team)	Fund teams closely associated each instrument and at least o team quite distant from each high-priority instrument being compared to gain benefit of ea team's experience and independent perspectives
Developing modular, open-source pipeline for EPRV science	Adapt existing proven RV pipeline (eg. ESPRESSO, future KPF public code) to be usable across instruments and open-source. Validate and verify result code on data from at least 2 high priority instruments. ("ZETE/year, 1 Engineer-level, 1 PD-level)	Fund development of community pipeline, based on heritage of best existing codes. Include modular design with multiple algorithms for key modules. Support multiple teams making targeted contributions to improve code. (つらしく/year, 3 Engineer-level, 3 PD-level)	Gather instrument/testbed da sub-pixel detector properties, calibration stability etc. for pip ingestion.
Series of EPRV Data Challenges	Fund data challenges to compare effectiveness of strategies for: (1) mitigation of rotationally-modulated signals for sun, (2) mitigation of granulation, super-granulation and pulations for sun, (3) mitigation of combined stellar variability for other sun-like stars. (75-24 FTFs. surged over "6 vera")	Fund a series of planned data challenges to address specific aspects of problem, using both simulated and real data, so as to compare effectiveness of strategies, learn from each exercise and improve the state-of-the-art. This would be limited by human capacity at ~1 data	Strategy for integrating expertse/contributions from international colleagues.

		Minimum requirement	Best	Notes
				Higher cadence preferred over larger
ence		Nightly	3x a night	sample
olution		100k	130-180k	
		>300	800-1000	Scaling: A*R^3 + B*R^2 + C*R + D
vity Ind	licator	Ca HK (390 nm)	Ca HK + more	Visible range is primary wavelength range requested. Bonus if you push to 700-900nm and beyond.
plemen	ntary obs.	Solar telescope		
to actio	on:			
Effort		Group D Recommendation		Stellar Error Budget
i for glo rdinatio	ibal on	Yes		
dardise ducts	ed data	Raw & processed + pipeline		

Category of			
information	Good	Better	Best
Stellar activity: rotation periods and long-term magnetic activity cycle	*Medium or high-resolution spectroscopic observations covering	*High resolution (100,000+), moderate-S/N (100+) spectroscopic observations covering at least Ca H&K and deriving RVs, with cadence of every night	*High resolution (100,000+), high-S/N (300+) spectroscopic observations with stabilized spectrograph, covering Ca H&K + more activity indicators, and der RVs, with cadence of every night the whole season, lasting ?? years *Space-based photometry of target
	lasting ?? years	the season, lasting ?? years	better, lasting 2+ months
Stellar multiplicity	*Gaia astronometry to look for companions stars via RUWE and Gaia RV	Good+ *Lower precision (10's to 100's of m/s) RV observations to look for stellar companions, with cadence of \sim 1/month	Better+ *High-resolution imaging to search for companions within 0.5"
Existence of other planets, particularly longer period	*Observations with any PRV spectrograph, cadence ~1/month, precision ~ 3 m/s, lasting for 5+ years	*Observations with any PRV spectrograph, cadence ~1/week, precision ~ 3 m/s, lasting for ~ 10 years	*Observations with a stabilized PRV spectrograph, cadence ~1/week, precision ~3 m/s, lasting for ~10 years

Final recommendation on most promising observing approaches and most crucial research/analysis investments over the next decade

https://exoplanets.nasa.gov/exep/NNExplore/EPRV

https://exoplanets.nasa.gov/exep/NNExplore/EPRV

Questions?