

Exoplanet Exploration Program Technology Update

Nick Siegler (Chief Technologist)

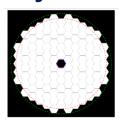
Brendan Crill (Deputy Chief Technologist)

Pin Chen (Deputy Technology Manager)

Exoplanet Exploration ProgramJet Propulsion Laboratory / California Institute of Technology

ExoPAG 21, Honolulu, HI

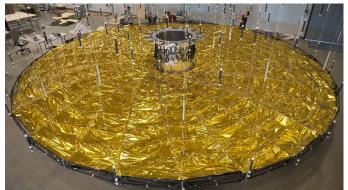
3 January 2020


Current Technology Activities

Technology Gaps

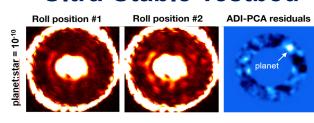
Segmented Coronagraph Design & Analysis Study

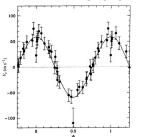
iSA Telescope Study



SAT Grants

- Coronagraphy Detectors
- Wavefront control
- PolarizationEPRV


Starshade Development


DM Survey

Ultra-Stable Testbed

EPRV Initiative

RV Spectrograph (NEID at WIYN)

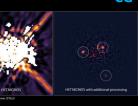
Technology Gap List

Unified Technology Gap List

- includes gaps within all of NASA's three programs
- single, biennial Technology Report
- common database of past activities (one-stopshop for proposers)

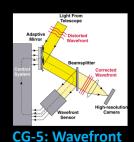
Exoplanets Technology Gap List

- annual report
- subset of the Unified report
- most up to date single report for all exoplanet technology supporting NASA's space missions


V-NIR Coronagraph/Telescope Technology Gaps

Contrast

CG-3: Deformable **Mirrors**

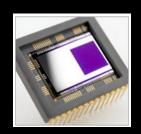

CG-4: Data **Post-Processing**

Angular Resolution

CG-1: Segmented Mirrors

Contrast Stability

Sensing and Control



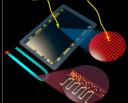

CG-6: Mirror Segment Phasing

CG-7: Telescope Vibration Sensing and Control or Reduction

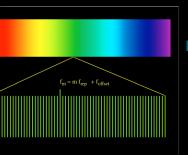
Detection Sensitivity

Ultra-low Noise Visible (CG-8) and Infrared (CG-9) Detectors

Other Technology Gaps


UV Contrast

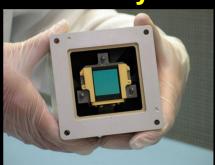
CG-10 UV/V/NIR Mirror Coatings


UV Detection Sensitivity

CG-12: Ultra-low Noise UV Detectors

Stellar Reflex Motion Sensitivity

M-2: Laser Frequency Combs for Space-based EPRV

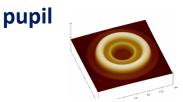


M-1: Ground-based Ultra-high Precision Radial Velocity

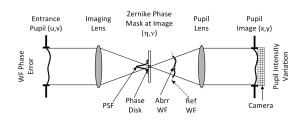
M-3: Astrometry

Transit Spectroscopy Sensitivity

M-4: Ultra-stable Mid-IR Detectors for Transit Spectroscopy


WFIRST Coronagraph Instrument

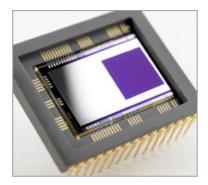
Technology Demonstration


High-contrast coronagraph masks with a highly obscured

- •Narrow FoV, HLC (360° az.) & SPC (2x65° az.): 3-9 λ /D, $4x10^{-9}$ contrast, 10% BW.
- •Wide FoV, SPC: 6-20 λ/D, 4x10⁻⁹ contrast, 10% BW

Low order wavefront sense / control

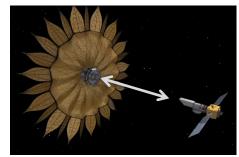
- Zernike LOWFS applies Z5-Z11 corrections to DM1 and Z4 to FCM.
- FSM corrects LOS jitter to 0.8 mas


Deformable mirrors

 Implementing connector solutions to reach TRL 6 by mid-2020

mid-2020

Ultra-low noise EMCCD for space



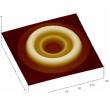
- Flight design meets the 5 year instrument lifetime requirement
- ESA contribution.

Integral field spectrograph + coronagraph

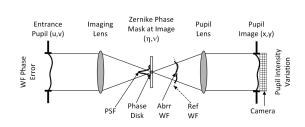
Starshade accomodation for possible rendezvous mission (pending 2020 Decadal Survey)

 Full set of detailed interface requirements captured in Lvl 2 Project IRD

WFIRST Coronagraph Instrument


Technology Demonstration

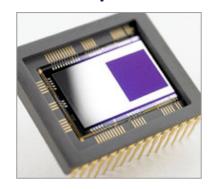
High-contrast coronagraph masks with a highly obscured



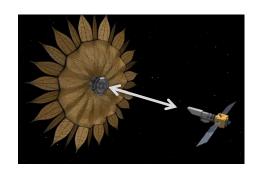
- •Narrow FoV, HLC (360° az.) & SPC $(2x65^{\circ} az.)$: 3-9 λ/D , $4x10^{-9}$ contrast, 10% BW.
- •Wide FoV, SPC: 6-20 λ/D , $4x10^{-9}$ contrast, 10% BW

Low order wavefront sense / control

- Zernike LOWFS applies Z5-Z11 corrections to DM1
- FSM corrects LOS jitter to 0.8 mas


Deformable mirrors

 Implementing connector solutions to reach TRL 6 by mid-2020


- Passed Instrument PDR!!!
- **Recent NASA Tiger Team** identified options to deliver required capabilities within cost and schedule constraints

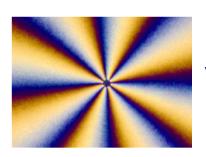
Ultra-low noise EMCCD for space

- Flight design meets the 5 year instrument lifetime requirement
- ESA contribution.

Starshade accomodation for possible rendezvous mission (pending 2020 Decadal Survey)

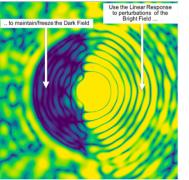
 Full set of detailed interface requirements captured in CGI Lvl 2

Active SAT Grants (1/2)



4 coronagraph masks/architectures

- Vector Vortex (Serabyn/NASA-JPL)
- Phase Induced Amplitude Apodization Complex Mask Coronagraph (Belikov/NASA-ARC)
- Apodized Pupil Lyot Coronagraph (Soummer/STScI)
- Super-Lyot Coronagraph (Trauger/NASA-JPL)

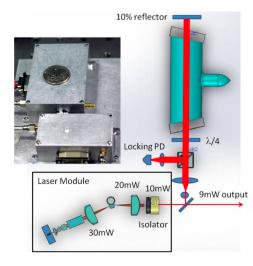

- Single fiber and optimization (Mawet/Caltech)
- Multi-star wavefront control (Belikov/NASA-ARC)
- WFC using light outside the dark field (Guyon/UA)
- MEMS deformable mirrors (Bierden/BMC)
- Polarization technique (Breckenridge/UA)

Vector Vortex (Serabyn)

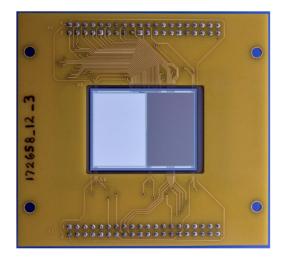
APLC (Soummer)

Linear Dark Field Wavefront Control (Guyon)

Active SAT Grants (2/2)



Detectors


- Vis-band rad-hard photon-counting detectors (Rauscher/NASA-GSFC)
- Ultra-stable MIR detector array (Staguhn/JHU)

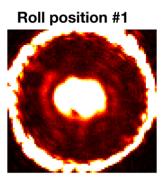
Extreme Precision Radial Velocity Observations

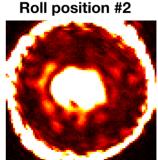
Optical etalon for radial velocity measurements (Leifer/NASA-JPL)

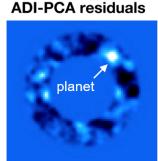
Etalon for EPRV (Leifer)

Photon-counting Vis-Band Detectors (Rauscher)

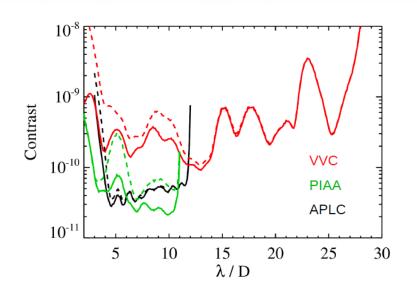
Ultra-Stable Coronagraph Testbed

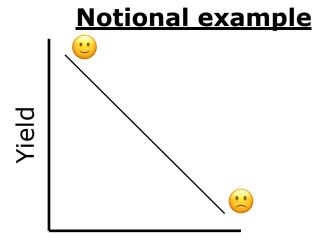

Decadal Survey Testbed (DST)




- Specifically designed for opto-mechanical stability permitting demonstration of 10⁻¹⁰ contrast
- DST established during commissioning 3.8x10⁻¹⁰ contrast @ 550 nm, 10% bandpass, 3-8 λ /D angular zone
- With post-processing: contrast of 1x10⁻¹⁰ can be reached for sensitivity w.r.t. Earth-size planets in habitable zone of Sun-like stars
- Commissioning phase complete facility ready for SAT investigations.
- Segmented pupil (static) will commence in FY20, targeting large space telescope concepts

olanet:star




ExEP's HCIT-2 Vacuum Chamber and the DST at JPL

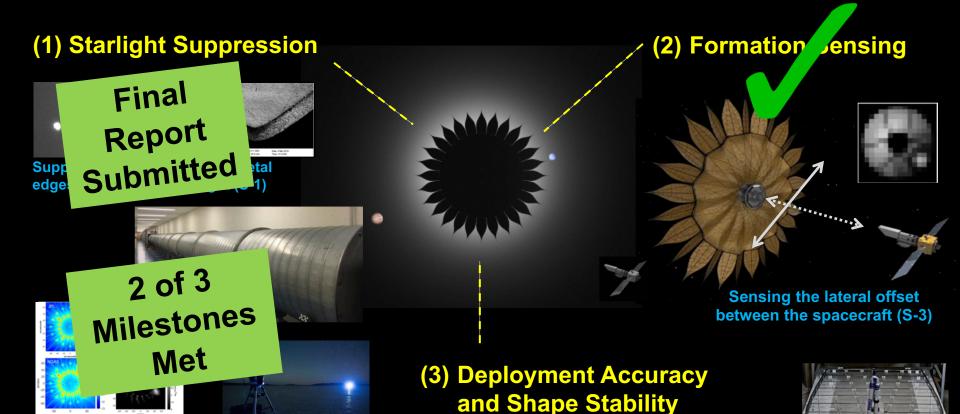
Segmented Coronagraph Design & Analysis Study

NASA EXOPLANET EXPLORATION PROGRAM

- Objective: Determine if there is at least one coronagraph architecture that can reach 1x10⁻¹⁰ contrast on a segmented telescope.
 - Four architectures appear to be promising
 - Vector Vortex, PIAA, Hybrid Lyot, Apodized Pupil Lyot Coronagraph
 - Whitepaper submitted to Astro2020
 Decadal Survey (Shaklan et al.)
- Do these coronagraphs put unrealistic requirements on the telescopes?

Segment phasing error (pm)

New Initiative: Deformable Mirror Survey



- Are there other DM technologies that may be better suited for flight qualification? Can they meet the 1x10⁻¹⁰ contrast goal. Are they scalable? Can they be matured in time for future exoplanet space missions?
 - ➤ Or should NASA continue its focus on the current two technology approaches (electrostrictive PMN and electrostatic MEMS)?

Survey deliverables:

- Survey and document viable DM technologies across the world to inform future exoplanet missions about their capabilities and technology readiness.
- 2. Make recommendations for DM technologies based on an assortment of success criteria and recommend how best to advance (directed vs competed).

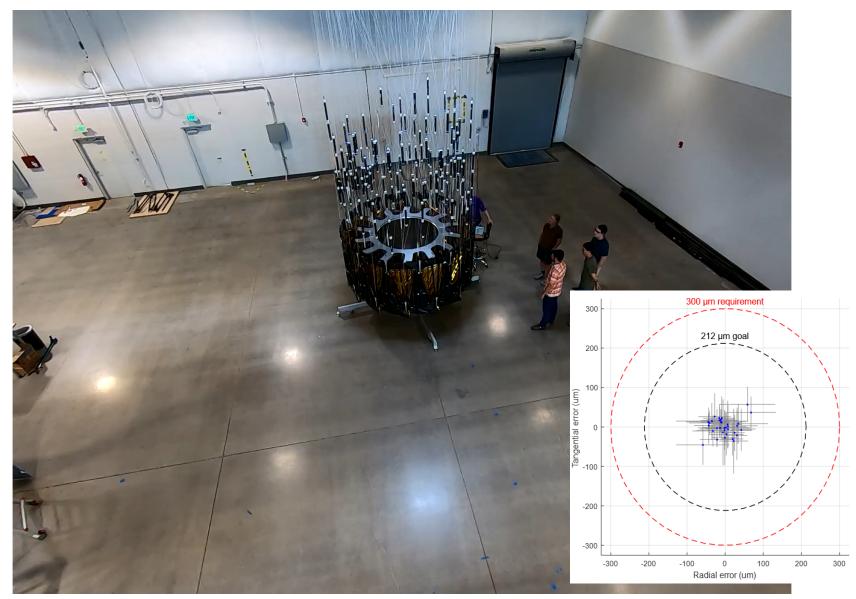
The Three Starshade Technology Gaps

Suppressing diffracted light from on-axis starlight and optical modeling (S-2)

Fabricating the petals to high accuracy (S-4) 13

Positioning the petals to high accuracy, blocking on-axis starlight, maintaining overall shape on a highly stable structure (S-5)

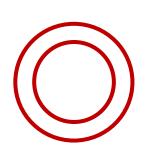
Petal Unfurling Demonstration

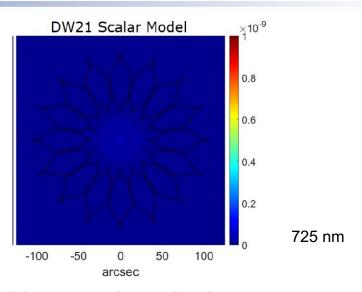


Tendeg/Roccor/NASA/JPL-Caltech

Starshade Inner Disk Deployment

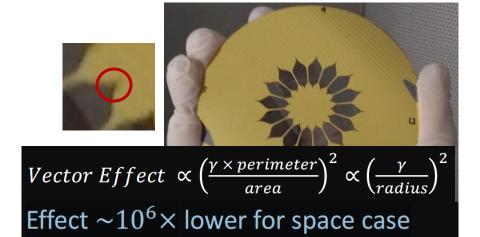
Starlight Suppression and Model Validation





Lead: Anthony Harness

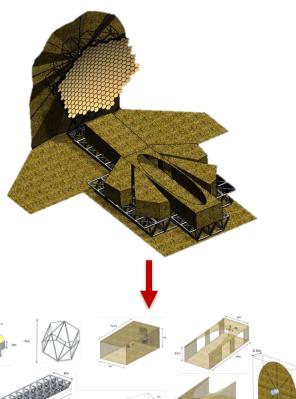
Optical Demonstration

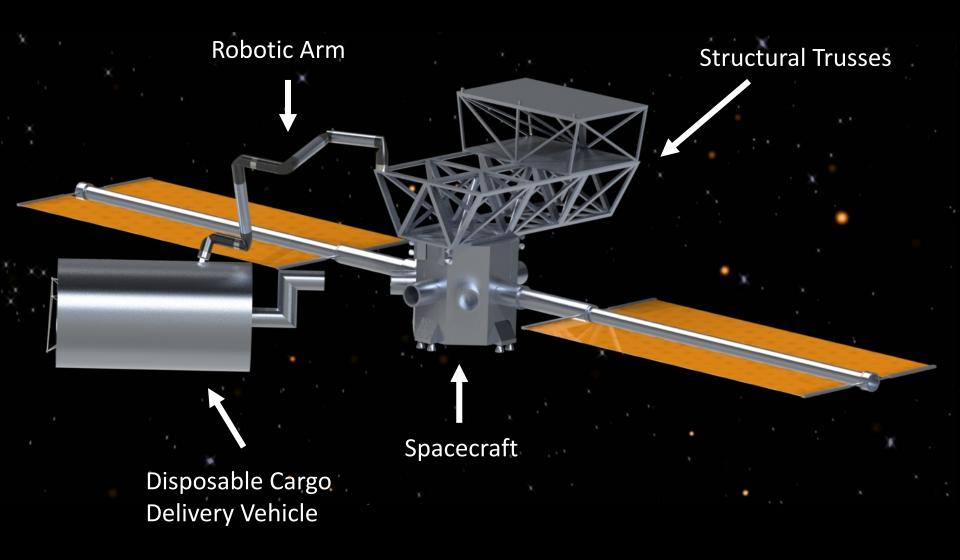


Best performance to date of a starshade at a flight-like Fresnel number!

- Demonstrated 10⁻¹⁰ contrast over a fraction of the IWA in multiple wavelengths across 10% bandpass.
- However, need to prove this vector diffraction behavior disappears at larger sizes.

λ		Fraction of Search Space
641 nm	18 ± 4 %	83 ± 4 %
660 nm	34 ± 6 %	77 ± 3 %
699 nm	2 ± 2 %	74 ± 5 %
725 nm	6 ± 2 %	65 ± 5 %


In-Space Assembled Telescope Study


NASA-chartered study answered the question:

When is it advantageous assembling space telescopes in space rather than building them on Earth and deploying them autonomously from single launch vehicles?

- Concluded <u>all</u> large future space telescope should consider iSA as the implementation approach separately or as part of a potential hybrid solution.
- No "tyranny of the launch vehicle fairing" relaxed mass and volume constraints
- Eliminates complex autonomous self-deployments
- Mitigates the risks associated with a single launch vehicle or deployment anomaly
- Reduces large standing army I&T costs

iSA Solves Servicing Dilemma

Welcome Baby-CAT

- Remi Soummer (STScI)
 delivered a coronagraph
 demonstration unit to the
 ExEP enabling
 demonstrations to the public
 and at scientific
 conferences.
- Unit is portable and can be shipped anywhere.
- Come see it at the NASA booth!

Looking Forward

Wiki Commons: https://foto.wuestenigel.com/empty-crystal-ball-on-white-background/

- We hope exoplanet space missions fare well in Astro 2020 as it did in both the Exoplanet Science and Astrobiology Science Strategy reports.
 - > A large reflected light direct imaging/spectroscopy mission
- Come hear our AAS Splinter Session on Sunday (1:55 pm, 306AB): "Are we Ready"?
- Will Astro 2020 say anything about mid-IR interferometry?
- And, one day, quantum telescopes (arrays)?