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Motivations for SAG19

• There is confusion in the contrast metrics terminology and 
definitions 

• Discrepancies between what the community (95% ground-based) 
uses and what coronagraph designers/builders take as a metric 

• There is no gold standard in the community either 

• Every group, individual has their own way of measuring “contrast”, 
and perhaps worse, assess error bars (astrometry, photometry) 

• Leads to erroneous/ambiguous results when compiling and 
comparing published data (occurrence rates, orbital analysis, etc.)



The need for a standardization of high contrast 
imaging metrics across the board

• We need to go back to the basics of signal detection 
theory, and take example at the medical imaging world 
where definitions and rigorous methodologies are a matter 
of “life and death” 

• The Receiver Operating Characteristic (ROC) curve, 
plotting the true positive fraction as a function false 
negative fraction, as well as the Area Under the Curve 
(AUC) is the gold standard 

• ROC/AUC formalisms automatically captures false alarm 
probabilities and completeness



Signal Detection Theory: receiver operating characteristics
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ever, in order to reach this parameter space, the instru-
ment hosting the coronagraph has to provide exquisite
control over low-order aberrations, pointing jitter be-
ing the first order perturber, and most difficult to con-
trol. This stability requirement puts additional con-
straints on the instrument and facility, requiring ded-
icated low-order wavefront/pointing sensors and corre-
sponding correcting elements (mainly tip-tilt and/or de-
formable mirrors), which often have to be pushed to their
hardware and software limits. For a comprehensive re-
view of low-order wavefront sensor solutions chosen by
second-generation adaptive optics high contrast imagers,
such as GPI (Macintosh et al. 2014), SPHERE (Kasper
et al. 2012), SCExAO (Martinache et al. 2012) and P1640
(Oppenheimer et al. 2013), among others, see Mawet
et al. (2012) for instance. Current first-generation high-
contrast imaging instruments are also encroaching on the
small angle regime with, e.g., L’-band saturated imaging
(Rameau et al. 2013), the Apodizing Phase Plate (APP,
see, e.g., Quanz et al. 2010; Kenworthy et al. 2010, 2013),
the Vector Vortex Coronagraph (VVC, see, e.g., Serabyn
et al. 2010; Mawet et al. 2011b, 2013; Absil et al. 2013),
or the four-quadrant phase-mask coronagraph (FQPM,
Riaud et al. 2006; Serabyn et al. 2009; Boccaletti et al.
2012).

1.1. Past work on speckle statistics

Statistical tools to assess the significance of a point
source detection at large angles are most often based on
the assumption that the underlying noise is Gaussian.
However, it was noticed a decade ago that speckle noise in
raw high contrast images is never Gaussian (Perrin et al.
2003; Aime & Soummer 2004; Bloemhof 2004; Fitzger-
ald & Graham 2006; Soummer et al. 2007; Hinkley et al.
2007; Marois et al. 2008). The main conclusion of this
series of pioneering papers is that the probability density
function (PDF) of speckles in raw images does not fol-
low a well-behaved normal (i.e., Gaussian) distribution,
but is better described by a modified Rician (MR) dis-
tribution, which is a function of the local time-averaged
static point-spread function (PSF) intensity Ic and ran-
dom speckle noise intensities Is:
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1
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√
IIc
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where I0 is the modified Bessel function of the first
kind, and where the mean and variance of I are µI =
Ic + Is, and σ2

I = I2s + 2 ∗ IcIs, respectively (Soummer
et al. 2007).
The bulk of past studies related to speckle statistics

focused on the temporal aspects of speckle noise in the
presence of atmospheric turbulence, corrected or not by
adaptive optics systems. In the virtual case of an instru-
ment with perfect optics on a ground-based telescope,
the practical impact of the temporal MR PDF of speck-
les would only have a minor effect on detection limits by
virtue of the central limit theorem (CLT). Indeed, if a
large number of independent and identically distributed
(i.i.d.) speckles are co-added at a specific location in
the image, then the sample means will be normally dis-
tributed (Marois et al. 2008). In other words, the speckle
sampling distribution will be Gaussian.

FPF = 1-specificity
        = 1-CL
        = FP/(FP+TN)

True Positive False Positive
type I error

False Negative
type II error True Negative

H1: signal 
present

H0: signal 
absent

Detection

Null 
result

TPF = sensitivity
        = power
        = TP/(TP+FN)

Fig. 1.— Signal detection theory (SDT) contingency table, or
“confusion matrix”. TP: true positive. FP: false positive. FN:
false negative. TN: true negative. TPF: true positive fraction.
FPF: false positive fraction.

Unfortunately, optics are never perfect nor hold their
imperfect shape constant over time, and so they in-
duce slowly varying wavefront errors, creating quasi-
static speckles. Marois et al. (2008) used a heuristic ar-
gument to show that quasi-static speckle noise inside an-
nuli centered on the PSF core would follow the MR PDF
Eq. 1, because it is basically produced with the same
value of Ic (the unaberrated PSF). The typical lifetime
of quasi-static speckles has been found to range from sev-
eral minutes to hours (Hinkley et al. 2007). Is has thus
a complex spatio-temporal dependence Is(θ, t). Slowly
varying wavefront errors disturb the spatio-temporal au-
tocorrelation of the PSF accordingly, and thus its tempo-
ral and spatial statistical properties: the samples of res-
olution elements used to compute noise properties (and
thus contrast, see Sect. 2) are no longer independent and
identically distributed.
Marois et al. (2008) showed that the net effect of the

MR nature of quasi-static speckle noise is that the con-
fidence level (CL) at a fixed detection threshold τ signif-
icantly deteriorates. Subsequently, in order to preserve
CLs, or equivalently control the likelihood of type I errors
(false alarm probability, or false positive fraction, FPF,
see Fig. 1), the detection thresholds (and thus contrast,
see Sect. 2) need to be increased significantly, e.g. up to
a factor 4 (Marois et al. 2008).
Fortunately, observing strategies such as angular differ-

ential imaging (ADI, Marois et al. 2006), and data reduc-
tion techniques such as the locally optimized combination
of images (LOCI, Lafrenière et al. 2007; Marois et al.
2008) or principal component analysis (PCA, Soummer
et al. 2012; Meshkat et al. 2013) routinely demonstrate
their “whitening” capability, i.e. the efficient removal
of the correlated component of the noise (see Fig. 2).
Whitening yields independent Gaussian noise samples
(i.i.d.) through complementary mechanisms. First, once
the correlated component has been removed (even par-
tially), other noise sources start to dominate. The latter
(background, photon Poisson noise, readout or dark cur-
rent) are independent noise processes and thus Gaussian
by virtue of the CLT. Second, ADI and other differen-
tial imaging techniques enhance the efficiency of the first
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Fig. 3.— β Pictoris contrast curve (top image, continuous curve)
and image (bottom left, North is not up) taken with NACO in
the L-band (Absil et al. 2013), both corrected for the ADI-PCA
data reduction throughput. The small green circle is of radius
r = 1λ/D, while the big orange one is of radius r = 5λ/D. A fake
planet was injected at r = 1.5λ/D (to the right of the green circle)
at the 5σ throughput-corrected contrast level as presented in Absil
et al. (2013). This 5σ fake companion is supposedly yielding a
solid detection, rejecting the null hypothesis at the 1 − 3 × 10−7

CL, assuming normally distributed noise. This is clearly not the
case here because of the effect of small sample statistics at small
angles. The false positive fraction curve (FPF, dashed line) traces
the increase of false alarm probability (or equivalently, the decrease
of CL) towards small angles. Note that the scale of the y axis is
unique, the contrast and FPF curves being dimensionless. Both
quantities are related but have different meanings (see text for
details).

2.1. Signal detection theory

Referring to the SDT, the detection problem consists
in making an informed decision between two hypotheses,
H0, signal absent, and H1, signal present (see Fig. 3).
The application of hypothesis testing for the binary clas-
sification problem of exoplanet imaging was discussed in
details by Kasdin & Braems (2006), using matched fil-
tering and Bayesian techniques, but this study focussed
on background and photon noise only without any con-
siderations for speckle noise or sample sizes.
Because most exoplanet hunters want to minimize the

risk of announcing false detections or waste precious tele-
scope time following up artifacts, high contrast imaging
has mostly been concerned (so far) with choosing a detec-
tion threshold τ , defining the contrast which minimizes
the FPF, defined as

FPF =
FP

TN + FP
=

∫ +∞

τ

pr(x|H0)dx (2)

where x is the intensity of the residual speckles, and
pr(x|H0), the probability density function of x under the
null hypothesis H0. FP is the number of false positives
and TN, the number of true negatives. Under H0, the
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Fig. 4.— The number of resolution elements at a given radius
r, is 2πr (here shown for r ranging from 1 to 3 λ/D). At close
separation, the speckle PDF nature is likely varying drastically as
a function of r, because of the well-known sensitivity of the PSF
to low-order aberrations, especially after a coronagraph.

confidence level CL = 1−FPF is called the “specificity”
in rigorous statistical terms. However, exoplanet hunters
who want to optimize their survey, and derive meaningful
conclusions about null results, also wish to maximize the
so-called “True Positive Fraction” (TPF), or in statistical
terms the “sensitivity” (some authors refer to “complete-
ness”, see, e.g. Wahhaj et al. 2013), which is defined as

TPF =
TP

TP + FN
=

∫ +∞

τ

pr(x|H1)dx (3)

with pr(x|H1), the probability density function of x un-
der the hypothesis H1, and where TP is the number of
true positives and FN, the number of false negatives. For
instance, a 95% sensitivity (or completeness) for a given
signal µc, and detection threshold τ means that 95% of
the objects at the intensity level µc will statistically be
recovered from the data (see Sect. 4.2.2). Ultimately, the
goal of high contrast imaging, as a signal detection ap-
plication, is to maximize the TPF while minimizing the
FPF. Optimizing detection thus consists in maximizing
the so-called AUC, i.e. the area under the “Receiver Op-
erating Characteristics” (ROC) curve. The ROC curve
plots the TPF as a function of the FPF. The optimal
linear observer, or discriminant, maximizing the AUC is
called the Hotelling observer, and can be regarded as a
generalization of the familiar prewhitening matched filter
(see, for instance Caucci et al. (2007), or Lawson et al.
(2012) for a review).

2.2. Small sample statistics

In the close separation regime (down to the diffraction
limit at 1λ/D), speckle noise dominates at all contrast
levels, even after being controlled or nulled by active
speckle correction (Malbet et al. 1995; Bordé & Traub
2006; Give’on et al. 2007) and/or a dedicated low-order
wavefront sensor (see, e.g., Guyon et al. 2009). In the
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Terminology

• Contrast: ratio of physical quantities, planet / starlight brightness  

• Signal: mean intensity of planet signal integrated in defined aperture (~FWHM) 
at the location of the planet, accounts for instrument losses (encircled energy ~ 
Strehl ratio) 

• Noise: 
• Noise sources at the pixel locations of the planet (photon noise from planet 

and residual starlight, background, zodi, readout noise, dark current, …) 
• Speckle noise: 

• Underlying the planet signal => affects characterization 
• Adjacent to the planet => affects detection 

• Adjacent: 
• spatially and temporally (equivalent only if noise is ergodic)  
• annulus or arc at planet radius 
• box centered at the location of the planet



Fundamental SNR equation and implications

• SNR = η P / √( S/c + D) 
• P=planet light 
• η=throughput within aperture 
• c=starlight suppression factor at 

planet location 
• S=stellar noise residual w/o 

coronagraph 
• D=detector, background, zodi noise 

• SNR # η . √c 

• Gaining a factor 10 in contrast is 
useless if throughput is reduced by 
a factor 3

Ruane et al. 2016, in preparation

10-10 planet, 12 m telescope in space

Preliminary



SNR alone has no direct statistical meaning

• SNR of 5 does not automatically imply false positive 
fraction of 3e-7 

• Strongly depends on underlying noise statistics 

• Speckle noise is NOT Gaussian 

• Adjustments can be extreme, and have huge 
consequences on performance metrics



Knowing your underlying speckle noise distribution

The technique is applied to simulated (x 4) and observational (x 5)
data to confirm the theory and to validate the technique. The ef-
fect of averaging a sequence of independent non-Gaussian noise
realizations is discussed in x 6.1. Concluding remarks follow in x 7.

2. SPECKLE NOISE STATISTICS

Following the work of Goodman (1968), Soummer & Aime
(2004), and Fitzgerald & Graham (2006), the speckle intensity
PDF for one location in the image plane and random temporal
phase errors can be shown to be a modified Rician function. At a
specific location in the image plane, theMRPDF pMR(I ) is a func-
tion of the local time-averaged static point-spread function (PSF)
intensity Ic and random speckle noise intensities Is:

pMR(I) ¼
1

Is
exp " I þ Ic

Is

! "
I0

2
ffiffiffiffiffi
IIc

p

Is

! "
; ð1Þ

where I is the PSF intensity (I ¼ Ic þ Is), and I0(x) is the zero-
order modified Bessel function of the first kind. At a specific
point of the PSF, if Ic 3 Is, which is relevant to Airy ring pinned
speckles, the associated PDF is a Gaussian-like function show-
ing a bright positive tail, while if IcTIs, which is relevant to
PSF dark rings or coronagraphic PSFs dominated by second-
order halo speckles, the noise distribution is exponential. The
CL ! for a given detection threshold d is simply obtained by

! (d ) ¼
Z d

"d

p0MR(I ) dI ; ð2Þ

where p0MR is the mean-subtracted PDF. Figure 2 illustrates the
different possible regimes compared to a Gaussian intensity dis-
tribution. For a 5 " detection threshold, where " is the standard
deviation of the noise obtained using the robust_sigma IDL
algorithm,4 a Gaussian distribution shows a 1" 3 ; 10"7 CL,5

while a MR distribution shows a CL of&1" 10"2 to 1" 10"3.
TheMR distribution is thus producingmanymore false positive
events. For example, consider a survey of many stars in which
each observation has a 500 ; 500 k /D field of view (FOV) (e.g.,
the 2000 ; 2000 NIRI /Gemini FOVat H-band). If a 5 " detection
threshold were selected, the Gaussian noise distribution would
lead to 1 false positive detection every 4 stars, while theMR dis-
tribution would lead to between &250 and &2500 false positi-
ves per star. A detection threshold 2Y3 times higher is required
for the MR distribution to show the same CL as a 5 " Gaussian
noise with the same number of false positive events.
In the previous speckle PDF analysis, it was shown that the

atmospheric speckle noise PDF is obtained by analyzing the tem-
poral variation at one location of the PSF. For a quasi-static
speckle noise, this approach is not adequate, since the noise does
not vary significantly with time. The quasi-static noise PDF can
be derived using a very simple argument. If we consider a PSF
produced by a circular aperture, and if the PDF is obtained by an-
alyzing pixels inside a narrow annulus centered on the PSF core,
azimuthal quasi-static speckle noise variations Is are produced

4 The robust_sigma algorithm uses the median absolute deviation as a first
estimate of the standard deviation, and then weight points using Tukey’s biweight;
this algorithm provides another step of robustness to avoid biasing the standard
deviation estimate if bad pixels are present.

5 The expression 1" 3 ; 10"7 denotes a CL of 0.9999997. Similar notation
is used for CLs throughout the paper.

Fig. 1.—Gemini NIRI /Altair quasi-static PSF of the star HD 97334B. A single 30 s exposure is shown (left), as well as the median of 90 30 s exposures (right). The
inner saturated region has beenmasked. A symmetric radial profile has been subtracted to highlight the speckle noise. The FOVis 2000 ; 2000. Both images have the same
intensity range and linear gray scale.

Fig. 2.—Left: PDF for a Gaussian distribution (solid line) andmodified Rician
with Ic/Is ¼ 10 (dashed line), Ic/Is ¼ 1 (dot-dashed line), and Ic/Is ¼ 0:1 (dotted
line). Right: Corresponding CL as a function of detection threshold.
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with the same value of Ic (here, Ic is the unaberrated PSF, and it
is azimuthally symmetric for a circular aperture). The speckle
noise inside a narrow annulus and from a single speckle noise
realization thus shows the same PDF as a temporal speckle noise
variation from random phase screens at any location inside the
annulus.

3. EXPERIMENTAL DERIVATION OF THE PDF
AND CL CURVES

A robust technique to derive sensitivity limits can be deve-
loped using CLs. The pixel PDF inside a specific region of the
image is first obtained, and the CL curve is then derived and
extrapolated to estimate a local detection threshold. To avoid hav-
ing too many false positive detections without missing possible
faint companions, a CL of 1! 3 ; 10!7 (5 ! if Gaussian) is se-
lected here. The basic steps to derive the PDF, to obtain the CL
curves, and to estimate the 1! 3 ; 10!7 CL detection threshold
are summarized as follows.

1. Define an image region.
2. Subtract the mean intensity.
3. Divide the pixel intensities by the noise rms value.
4. Obtain the pixel intensity histogram (PDF).
5. Integrate the PDF between +d and !d to obtain the cor-

responding CL curve.
6. Perform a polynomial fit on the CL curve.
7. Extrapolate the CL curve to derive the 1! 3 ; 10!7 CL

detection threshold.

The local PDF is obtained by producing a histogram of the
pixel intensities inside a specific region of the image after sub-
traction of the mean pixel intensity over the region, and division
by the noise rms of the image region. The CL curve as a function
of detection threshold can be easily estimated by integrating the
PDF inside the interval "d (see eq. [2]). Due to the limited
number of resolution elements (1 k/D for PSFs, or 1 pixel for
simulated noise images) in an image, the PDF and CL curves
will be known up to a certain detection threshold. In theory, for
the 1! 3 ; 10!7 CL detection threshold considered here, each
area where the PDF needs to be estimated should have several
million independent resolution elements. In practice, for im-

ages typically containing up to 500 ; 500 k/D values (250,000
resolution elements), the PDF will be known only up to #1!
10!5 CL for Gaussian noise. A model fit using a "2 analysis or
a polynomial fit is required to extrapolate the CL curve and ob-
tain the detection threshold corresponding to a 1! 3 ; 10!7 CL.
Since the CL curves of various distributions are nearly linear in
a semi-log (1! # ) versus detection threshold plot (see Fig. 2),
we have chosen to use a polynomial fit due to the simplicity of
its implementation, its execution speed, and its accuracy. Due to
nonlinear effects for detection thresholds near 0 !, a linear fit is
first performed for detection thresholds above 1.5 !. If the de-
tection threshold for a 1! 3 ; 10!7 CL is below 9 !, a second-
order polynomial fit is used instead to better approximate the
CL curve for quasi-Gaussian statistics. The CL extrapolation ac-
curacy will be analyzed in the next section.

4. TECHNIQUE VALIDATION WITH SIMULATED DATA

In this section, the PDF, the CL curve, and the 1! 3 ; 10!7

detection threshold of simulated data are obtained.

4.1. Simulated PDFs

Simulated noise images using specific PDFs are used to test
the algorithm’s ability to recover the proper 1! 3 ; 10!7 detec-
tion threshold for known PDFs. To test the effect of the image
area size on the CL extrapolation accuracy, images of various
sizes are produced following MRs with values of Ic/Is equal to
0.1, 1, and 10 (see Fig. 2). For each size, 25 independent realiza-
tions are computed to derive the extrapolation accuracy. Figure 3
and Table 1 show the CL extrapolation accuracy for simulated
statistical distributions. In general, the algorithm slightly under-
estimates the 1! 3 ; 10!7 detection threshold for exponential
statistics by#5%, but usually within the 2 ! error calculated for
each area size. Typically, the bigger the area is, the more accurate
is the detection threshold. To achieve a detection threshold ac-
curacy of 10% for a 1! 3 ; 10!7 CL detection threshold, each
PDF needs to be known up to a 1! 10!4 CL (10,000 resolution

TABLE 1

CL Extrapolation Accuracy for Simulated Statistical Distributions

Statistics

No. Resolution

Elements

Expected d

(!)
dh i
(!)

Standard

Deviation (d )

(!)

Gaussian ............. 103 5.0 5.4 1.1

104 5.33 0.40

105 5.06 0.29

106 5.06 0.11

MR10 ................. 103 7.7 9.3 1.9

104 8.20 0.95

105 8.02 0.59

106 8.02 0.66

MR1 ................... 103 13.5 14.9 2.5

104 13.95 0.98

105 13.44 0.50

106 13.48 0.37

MR01 ................. 103 18.2 18.7 2.6

104 17.2 1.4

105 17.13 0.40

106 17.18 0.41

Notes.—The 1! 3 ; 10!7 CL detection threshold d is derived by extrapolat-
ing different types of MR statistics as a function of the number of resolution
elements. MR01 is a modified Rician distribution with Ic/Is ¼ 0:1, while MR1
and MR10 represent Ic/Is ¼ 1 and Ic/Is ¼ 10, respectively. Both the mean and
standard deviation of the detection threshold are obtained by analyzing 25 in-
dependent noise realizations.

Fig. 3.—PDF (left) and CL curves (right) obtained from a simulated noise
image (106 resolution elements) generated with an MR intensity distribution com-
pared to the analytical PDF and CL curves. In the left panel, the derived PDFs for
Ic/Is ¼ 0:1 (thick solid line), Ic/Is ¼ 1 (thick dot-dashed line), and Ic/Is ¼ 10 (thick
dashed line) are shown. The three thin lines are the expected PDFs for the same
three cases. The lines in the right panel are the same. The three additional thin dot-
ted lines in the right panel are the extrapolated CL curves.
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ever, in order to reach this parameter space, the instru-
ment hosting the coronagraph has to provide exquisite
control over low-order aberrations, pointing jitter be-
ing the first order perturber, and most difficult to con-
trol. This stability requirement puts additional con-
straints on the instrument and facility, requiring ded-
icated low-order wavefront/pointing sensors and corre-
sponding correcting elements (mainly tip-tilt and/or de-
formable mirrors), which often have to be pushed to their
hardware and software limits. For a comprehensive re-
view of low-order wavefront sensor solutions chosen by
second-generation adaptive optics high contrast imagers,
such as GPI (Macintosh et al. 2014), SPHERE (Kasper
et al. 2012), SCExAO (Martinache et al. 2012) and P1640
(Oppenheimer et al. 2013), among others, see Mawet
et al. (2012) for instance. Current first-generation high-
contrast imaging instruments are also encroaching on the
small angle regime with, e.g., L’-band saturated imaging
(Rameau et al. 2013), the Apodizing Phase Plate (APP,
see, e.g., Quanz et al. 2010; Kenworthy et al. 2010, 2013),
the Vector Vortex Coronagraph (VVC, see, e.g., Serabyn
et al. 2010; Mawet et al. 2011b, 2013; Absil et al. 2013),
or the four-quadrant phase-mask coronagraph (FQPM,
Riaud et al. 2006; Serabyn et al. 2009; Boccaletti et al.
2012).

1.1. Past work on speckle statistics

Statistical tools to assess the significance of a point
source detection at large angles are most often based on
the assumption that the underlying noise is Gaussian.
However, it was noticed a decade ago that speckle noise in
raw high contrast images is never Gaussian (Perrin et al.
2003; Aime & Soummer 2004; Bloemhof 2004; Fitzger-
ald & Graham 2006; Soummer et al. 2007; Hinkley et al.
2007; Marois et al. 2008). The main conclusion of this
series of pioneering papers is that the probability density
function (PDF) of speckles in raw images does not fol-
low a well-behaved normal (i.e., Gaussian) distribution,
but is better described by a modified Rician (MR) dis-
tribution, which is a function of the local time-averaged
static point-spread function (PSF) intensity Ic and ran-
dom speckle noise intensities Is:

pMR(I, Ic, Is) =
1

Is
exp

(

−I + Ic
Is

)

Io

(

2
√
IIc
Is

)

(1)

where I0 is the modified Bessel function of the first
kind, and where the mean and variance of I are µI =
Ic + Is, and σ2

I = I2s + 2 ∗ IcIs, respectively (Soummer
et al. 2007).
The bulk of past studies related to speckle statistics

focused on the temporal aspects of speckle noise in the
presence of atmospheric turbulence, corrected or not by
adaptive optics systems. In the virtual case of an instru-
ment with perfect optics on a ground-based telescope,
the practical impact of the temporal MR PDF of speck-
les would only have a minor effect on detection limits by
virtue of the central limit theorem (CLT). Indeed, if a
large number of independent and identically distributed
(i.i.d.) speckles are co-added at a specific location in
the image, then the sample means will be normally dis-
tributed (Marois et al. 2008). In other words, the speckle
sampling distribution will be Gaussian.

FPF = 1-specificity
        = 1-CL
        = FP/(FP+TN)

True Positive False Positive
type I error

False Negative
type II error True Negative

H1: signal 
present

H0: signal 
absent

Detection

Null 
result

TPF = sensitivity
        = power
        = TP/(TP+FN)

Fig. 1.— Signal detection theory (SDT) contingency table, or
“confusion matrix”. TP: true positive. FP: false positive. FN:
false negative. TN: true negative. TPF: true positive fraction.
FPF: false positive fraction.

Unfortunately, optics are never perfect nor hold their
imperfect shape constant over time, and so they in-
duce slowly varying wavefront errors, creating quasi-
static speckles. Marois et al. (2008) used a heuristic ar-
gument to show that quasi-static speckle noise inside an-
nuli centered on the PSF core would follow the MR PDF
Eq. 1, because it is basically produced with the same
value of Ic (the unaberrated PSF). The typical lifetime
of quasi-static speckles has been found to range from sev-
eral minutes to hours (Hinkley et al. 2007). Is has thus
a complex spatio-temporal dependence Is(θ, t). Slowly
varying wavefront errors disturb the spatio-temporal au-
tocorrelation of the PSF accordingly, and thus its tempo-
ral and spatial statistical properties: the samples of res-
olution elements used to compute noise properties (and
thus contrast, see Sect. 2) are no longer independent and
identically distributed.
Marois et al. (2008) showed that the net effect of the

MR nature of quasi-static speckle noise is that the con-
fidence level (CL) at a fixed detection threshold τ signif-
icantly deteriorates. Subsequently, in order to preserve
CLs, or equivalently control the likelihood of type I errors
(false alarm probability, or false positive fraction, FPF,
see Fig. 1), the detection thresholds (and thus contrast,
see Sect. 2) need to be increased significantly, e.g. up to
a factor 4 (Marois et al. 2008).
Fortunately, observing strategies such as angular differ-

ential imaging (ADI, Marois et al. 2006), and data reduc-
tion techniques such as the locally optimized combination
of images (LOCI, Lafrenière et al. 2007; Marois et al.
2008) or principal component analysis (PCA, Soummer
et al. 2012; Meshkat et al. 2013) routinely demonstrate
their “whitening” capability, i.e. the efficient removal
of the correlated component of the noise (see Fig. 2).
Whitening yields independent Gaussian noise samples
(i.i.d.) through complementary mechanisms. First, once
the correlated component has been removed (even par-
tially), other noise sources start to dominate. The latter
(background, photon Poisson noise, readout or dark cur-
rent) are independent noise processes and thus Gaussian
by virtue of the CLT. Second, ADI and other differen-
tial imaging techniques enhance the efficiency of the first

Modified Rician:

Marois et al. 2008
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Fig. 3.— β Pictoris contrast curve (top image, continuous curve)
and image (bottom left, North is not up) taken with NACO in
the L-band (Absil et al. 2013), both corrected for the ADI-PCA
data reduction throughput. The small green circle is of radius
r = 1λ/D, while the big orange one is of radius r = 5λ/D. A fake
planet was injected at r = 1.5λ/D (to the right of the green circle)
at the 5σ throughput-corrected contrast level as presented in Absil
et al. (2013). This 5σ fake companion is supposedly yielding a
solid detection, rejecting the null hypothesis at the 1 − 3 × 10−7

CL, assuming normally distributed noise. This is clearly not the
case here because of the effect of small sample statistics at small
angles. The false positive fraction curve (FPF, dashed line) traces
the increase of false alarm probability (or equivalently, the decrease
of CL) towards small angles. Note that the scale of the y axis is
unique, the contrast and FPF curves being dimensionless. Both
quantities are related but have different meanings (see text for
details).

2.1. Signal detection theory

Referring to the SDT, the detection problem consists
in making an informed decision between two hypotheses,
H0, signal absent, and H1, signal present (see Fig. 3).
The application of hypothesis testing for the binary clas-
sification problem of exoplanet imaging was discussed in
details by Kasdin & Braems (2006), using matched fil-
tering and Bayesian techniques, but this study focussed
on background and photon noise only without any con-
siderations for speckle noise or sample sizes.
Because most exoplanet hunters want to minimize the

risk of announcing false detections or waste precious tele-
scope time following up artifacts, high contrast imaging
has mostly been concerned (so far) with choosing a detec-
tion threshold τ , defining the contrast which minimizes
the FPF, defined as

FPF =
FP

TN + FP
=

∫ +∞

τ

pr(x|H0)dx (2)

where x is the intensity of the residual speckles, and
pr(x|H0), the probability density function of x under the
null hypothesis H0. FP is the number of false positives
and TN, the number of true negatives. Under H0, the

1 λ/D
2 λ/D

3 λ/D

r

Fig. 4.— The number of resolution elements at a given radius
r, is 2πr (here shown for r ranging from 1 to 3 λ/D). At close
separation, the speckle PDF nature is likely varying drastically as
a function of r, because of the well-known sensitivity of the PSF
to low-order aberrations, especially after a coronagraph.

confidence level CL = 1−FPF is called the “specificity”
in rigorous statistical terms. However, exoplanet hunters
who want to optimize their survey, and derive meaningful
conclusions about null results, also wish to maximize the
so-called “True Positive Fraction” (TPF), or in statistical
terms the “sensitivity” (some authors refer to “complete-
ness”, see, e.g. Wahhaj et al. 2013), which is defined as

TPF =
TP

TP + FN
=

∫ +∞

τ

pr(x|H1)dx (3)

with pr(x|H1), the probability density function of x un-
der the hypothesis H1, and where TP is the number of
true positives and FN, the number of false negatives. For
instance, a 95% sensitivity (or completeness) for a given
signal µc, and detection threshold τ means that 95% of
the objects at the intensity level µc will statistically be
recovered from the data (see Sect. 4.2.2). Ultimately, the
goal of high contrast imaging, as a signal detection ap-
plication, is to maximize the TPF while minimizing the
FPF. Optimizing detection thus consists in maximizing
the so-called AUC, i.e. the area under the “Receiver Op-
erating Characteristics” (ROC) curve. The ROC curve
plots the TPF as a function of the FPF. The optimal
linear observer, or discriminant, maximizing the AUC is
called the Hotelling observer, and can be regarded as a
generalization of the familiar prewhitening matched filter
(see, for instance Caucci et al. (2007), or Lawson et al.
(2012) for a review).

2.2. Small sample statistics

In the close separation regime (down to the diffraction
limit at 1λ/D), speckle noise dominates at all contrast
levels, even after being controlled or nulled by active
speckle correction (Malbet et al. 1995; Bordé & Traub
2006; Give’on et al. 2007) and/or a dedicated low-order
wavefront sensor (see, e.g., Guyon et al. 2009). In the

σ, here actually is the empirical 
standard deviation 

The true STD of the underlying  
distribution is unknown!

Mawet et al. 2014



After small sample statistics Student t correction
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Fig. 8.— Same data as in Fig. 3, now corrected for the effect of
small sample statistics. The red contrast curve is showing the true
contrast with 3 × 10−7 FPF (dashed red curve). A penalty factor
of 3.5, following Student’s t-test, has now been applied to the fake
companion in the bottom right image, restoring a 1− 3× 10−7 CL
for rejecting the null hypothesis.

In other words, the Student t-test might be robust
to slightly non-Gaussian underlying population, but this
property cannot be verified or used here because the Stu-
dent t-test is NOT robust to non-i.i.d. samples. This
stems from the fact that the so-called robustness of the
t-test is rooted in the CLT, which requires i.i.d. samples.
Non-Gaussian speckle statistics, hopefully a rare occur-
rence when the data reduction is performed efficiently,
therefore needs its own particular solution: in Sect. 4.1.2,
we briefly introduce and discuss non-parametric tests
such as the Wilcoxon signed-rank and rank-sum tests,
also known as the Mann-Whitney U test (Wilcoxon
1945).

3.4. From t-test to 1D contrast curves

Assuming i.i.d. samples, the two-sample t-test allows
testing the H0 hypothesis one resolution element at a
time in a rigorous statistical framework, accounting for
small sample sizes. However, testing resolution elements
one by one to generate a 2D contrast map can be tedious
and not very relevant in case of non-detection. A com-
mon practice in high-contrast imaging is to generate 1D
contrast curves, and so here we provide a simple recipe
for calculating contrast under the null hypothesis:

1. Choose a maximum FPF or confidence level CL.

2. Compute the mean x and standard deviation s
of resolution elements at radius r, along with the
number of resolution elements n = round(2πr).

3. From Eq. 10, solve

FPF =

∫ +∞

τ

pr(x|H0)dx =

∫ +∞

τ

pt(x, n− 1)dx (11)

for τ .

4. Multiply τ by s
√

1 + 1/n, then add x (usually x ≈
0).

Solving Eq. 11 requires a numerical integration, which
is available as a standalone routine in most languages
(e.g., “t cvf(CL, n − 1)” in IDL, but there are similar
functions in python/numpy, matlab, R, excel, etc.).
The only difference between the t-test conducted one

resolution element at a time and the proposed 1D con-
trast curve recipe, is that the latter loses the azimuthal
spatial information. Subsequently, the localization of the
2D two-sample t-test is traded off with the gain of an ad-
ditional DOF (n−1 instead of n−2), which slightly relax
the contrast penalties.

4. CONSEQUENCES AND MITIGATION
STRATEGIES

In this section, we discuss the consequences of small
sample statistics on contrast limits for single objects, and
surveys. We also provide mitigation strategies to try and
overcome the limitations imposed by small samples, and
to ensure robustness of contrast estimations.

4.1. Single object

When investigating the detection limits for a single ob-
ject or to decide whether or not a candidate shall be fol-
lowed up, one is subject to direct hits from the limited
number of samples available. In the following, we will
distinguish the case where the contrast computation is
done on a single image (e.g. final product of a pipeline),
and the case where it is conducted on parts of, or all of
the individual frames from the observing sequence.

4.1.1. Case of one object with a single image available

The case of one object with a single final image avail-
able for the detection limit analysis is the worst case sce-
nario since the amount of information is extremely lim-
ited. This situation is however unlikely, and would only
occur if one does not have access to, or master the inner
mechanics of a third-party pipeline. It could also occur
in the future for very high contrast imaging coronagraphs
on small space telescopes (1-2.4 meters), where contrast
levels are so high, and telescopes relatively small, that
exposures become long and scarce (they are limited in
time due to cosmic rays though).
In this limiting case, detection limits would directly be

affected by the Student t-distribution, with penalty fac-
tors (with respect to the normal 5σ detection threshold,
i.e. with 3 × 10−7 FPF) as high as ∼ 10 at 1λ/D, but
would decrease to ∼ 2 at 2λ/D, assuming purely gaus-
sian noise (see Fig. 6, left). Fig. 8 showcases a practical
example using the same data as in Fig. 3 but now with
a contrast curve corrected for the effect of small sam-
ple statistics, and a fake companion injected at the level
prescribed by the t-distribution in order to preserve con-
fidence levels. The detection is now much clearer than in
Fig. 3, confidence levels are restored.
In the eventuality of non-i.i.d. samples from a non-

Gaussian underlying population, we have demonstrated
that the significance of the t-test is limited, although
it is nevertheless much more conservative than current

Mawet et al. 2014



Choice of threshold for detection is arbitrary and 
not properly motivated

• What do we want? 

• Minimize FPF? maximize TPF? 

• Both => maximize AUC (e.g. Hotelling observer) 

• False positives: does 3e-7 FPF make sense? How many 
false alarm are we ready to tolerate? 

• True positive fraction (recovery rate, or completeness): 
e.g., at τ = 5, what is the TPF of P = τ σ = 5 σ ? 
Assuming Gaussian noise (which is wrong).



Ideal Gaussian case
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Fig. 9.— Contrast penalty as a function of debinning factor (ζ),
for 3 different radii r. The contrast penalty (τs) combines the effect
of the threshold penalty due to small sample statistics τ , and the
photon noise-induced increase of s in

√
ζ. The major caveat of this

calculation is that we assumed well behaved decorrelated images,
which is dubious especially at small angles.

able, depending on the final application and total infor-
mation available. If spatio-temporal correlations remain
(e.g. MR) despite efforts to whiten the data products, the
Student t-test will not provide correct significance levels.
As mentioned above, the non-parametric Wilcoxon rank
tests or bootstrapping should be considered instead, but
only if there is more than one element in the test sample.

4.2. Many objects, surveys

There are several important factors to consider when
analyzing many objects as part, for instance, of a survey
conducted in order to statistically constraint populations
of low-mass stellar companions, brown dwarfs, planets,
or even circumstellar disks.

4.2.1. More information is good

The amount of information provided by a survey, or
analysis of archival data could in principle alleviate small
sample statistics effects, by two complementary mecha-
nisms. First, if there is indeed residual correlated noise
(super-static speckles), it will be more easily character-
ized because of the large sample available (the empirical
PDF will be better sampled). Second, if correlated noise
is still present in the data, it should also be straightfor-
ward to remove it with methods such as a PCA of the
PSF library provided by the survey targets (Soummer
et al. 2012).

4.2.2. Alternative definition of contrast relevant to surveys

Some authors (e.g., Wahhaj et al. 2013) argue that
the TPF (completeness) is more relevant than the FPF,
especially when using a survey to obtain planet popu-
lation constraints. Indeed, their argument is, since de-
tected companions are observed a second time to check
for common proper motion with the primary, the chance
of a repeated false detection is ∼ FPF2 (assuming both
observations are uncorrelated, which can be the case, see
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τ=5σ

95% TPF

Fig. 10.— Formal SDT definition of completeness (or sensitiv-
ity) for a TPF of 95% with a detection threshold set at τ = 5σ.
The blue curve is the intensity distribution under the signal absent
hypothesis H0, and the red curve is the intensity distribution un-
der the signal present hypothesis H1. The 95% completeness (pink
area) at a 5σ threshold is for signals µc ≃ 5σ + 1.65σ = 6.65σ.

Milli et al. (2014) for instance), and thus the combined
FPF is small. In other words, to derive planet population
constraints, one should mainly be concerned about the
probability of detecting a planetary object with a given
mass, and thus contrast at a given separation, which is
different than what Eq. 9 defines, i.e. the contrast under
which we accept the null hypothesis with a given CL.
The completeness contrast for a desired TPF (e.g. 95%)
and detection threshold τ is defined as µc, obtained from
Eq. 3. So we have,

∫ +∞

µc−τ

pr(x|H1, µc)dx = TPF (12)

Fig. 10 visually illustrates the SDT definition of 95%
completeness (or sensitivity) based on Eq. 12, for a
threshold set at τ = 5σ. According to this definition,
the 95% completeness level µc is always ∼ 1.65 above
the threshold τ . Following the SDT formalism, the ef-
fect of small sample statistics can then easily be calcu-
lated, as one only needs to substitute pr(x|H1, µc) with
the Student t-distribution instead of the normal distri-
bution. The penalties at small angles are significant but
not dramatic (see Table 1).
A low false alarm probability ensures one does not

waste time following false detections. At small IWA, near
typical target stars in exoplanet surveys, the probability
of detecting background stars is very small (this proba-
bility can easily be calculated using population models
for the galaxy such as TRILEGAL, see, e.g. Vanholle-
beke et al. 2009). Thus, setting a 3σ detection threshold
at small IWA yields a negligible number of background
sources to follow up and only ∼ 2% false detections (and
hopefully some real companion detections). Thus waste-
ful follow-up in this case would be minimal. Note that
this argument would only be partially valid for the E-
ELT or a space-based coronagraph, where telescope time
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Fig. 6.— Left: 1− 3× 10−7 CL detection threshold for small sample statistics as a function of angular separation (in λ/D), divided by 5
(yielding the correction to be applied to the usual 5σ Gaussian threshold). The two curves correspond to the full FoV and half FoV cases.
Right: FPF (1−CL) for a 5σ detection threshold as a function of angular separation, using the t-distribution.

ent population of unknown (µ,σ2) by comparing their
empirical sample means x̄1 and x̄2. Verifying the null hy-
pothesis that two sample means are equal is the essence
of Gosset’s “two-sample t-test”.
So far, and except for the work in Marois et al. (2008),

FPF (and thus corresponding contrast) calculations have
always assumed normally distributed speckle statistics
and large sample sizes, and therefore a virtually per-
fect knowledge of the underlying parent population of
speckles (µ,σ2). Within this oversimplified framework,
a speckle population of mean µ, and standard deviation
σ, produces the corresponding FPF simply given by

FPF =

∫ +∞

τ

pr(x|H0)dx =

∫ +∞

τ

N (µ,σ2)dx (5)

where

N (µ,σ2) =
1√
2πσ

e−
1
2 (

x−µ
σ )2 (6)

For instance, as mentioned earlier, with τ = 5σ, we
have the now classically adopted false alarm probability
of ∼ 3 × 10−7. With τ = 3σ, we have a false alarm
probability of ∼ 1.35× 10−3.
Now, when the parent population characteristics

(µ,σ2) are unknown and sample sizes small, one has to
use the corresponding empirical estimators (x̄ and s), and
the t-test for unequal sample sizes, equal variances (thus
assuming homoscedasticity, i.e. homogeneity of variance,
see below)

pt(x, ν) ≡
x̄1 − x̄2

s1,2
√

1
n1

+ 1
n2

, (7)

where x̄1 is the intensity of the single test resolution
element (n1 = 1), and x̄2 is the average intensity over the
remaining n2 = n−1 resolution elements in a 1λ/D-wide
annulus at the radius r, and where

s1,2 =

√

√

√

√

√

(n1 − 1)
n1
∑

i=1

(xi−x̄1)2

n1−1 + (n2 − 1)
n2
∑

i=1

(xi−x̄2)2

n2−1

n1 + n2 − 2
(8)

The pooled standard deviation s1,2 = s2 for n1 = 1. s2
is the empirical standard deviation computed over the re-
maining n2 = n− 1 resolution elements at radius r. Our
initial hypothesis of homoscedasticity is warranted twice.
First, under the null hypothesis, we want to verify that
resolution element samples at a given radius r (measured
in λ/D units) are drawn from a parent population of
speckles, with an unknown but common variance σ2(r).
To comply with this statement, any detection should of
course be excluded from the sample of remaining n − 1
resolution elements to prevent biases. Second, the pres-
ence of a bona fide companion at the location of the test
resolution element x1 will only change the mean but not
the variance of the underlying population.
One might also question the significance of the two-

sample t-test, when one of the test samples only has a
single element (n1 = 1). However, the numerical sim-
ulations presented in Sect. 3.3 empirically demonstrate
its applicability in such a particular configuration. Note
that resolution elements are treated independently of any
pixel sampling considerations, which in practice is equiv-
alent to binning the data by the pixel sampling before
applying the t-test. Substituting Eq. 8 into Eq. 7, we
have the formal t-test for high contrast imaging at small
angles

pt(x, n2 − 1) ≡ x̄1 − x̄2

s2
√

1 + 1
n2

, (9)

yielding the FPF or false alarm probability, now de-
pending on ν = 2πr − 2 DOF (indeed, n2 − 1 = n − 2,

10 Mawet et al.

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Debinning factor

C
on

tra
st

 p
en

al
ty

 

 

r = 1λ/D
r = 2λ/D
r = 3λ/D

Fig. 9.— Contrast penalty as a function of debinning factor (ζ),
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of the threshold penalty due to small sample statistics τ , and the
photon noise-induced increase of s in
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ζ. The major caveat of this

calculation is that we assumed well behaved decorrelated images,
which is dubious especially at small angles.

able, depending on the final application and total infor-
mation available. If spatio-temporal correlations remain
(e.g. MR) despite efforts to whiten the data products, the
Student t-test will not provide correct significance levels.
As mentioned above, the non-parametric Wilcoxon rank
tests or bootstrapping should be considered instead, but
only if there is more than one element in the test sample.

4.2. Many objects, surveys

There are several important factors to consider when
analyzing many objects as part, for instance, of a survey
conducted in order to statistically constraint populations
of low-mass stellar companions, brown dwarfs, planets,
or even circumstellar disks.

4.2.1. More information is good

The amount of information provided by a survey, or
analysis of archival data could in principle alleviate small
sample statistics effects, by two complementary mecha-
nisms. First, if there is indeed residual correlated noise
(super-static speckles), it will be more easily character-
ized because of the large sample available (the empirical
PDF will be better sampled). Second, if correlated noise
is still present in the data, it should also be straightfor-
ward to remove it with methods such as a PCA of the
PSF library provided by the survey targets (Soummer
et al. 2012).

4.2.2. Alternative definition of contrast relevant to surveys

Some authors (e.g., Wahhaj et al. 2013) argue that
the TPF (completeness) is more relevant than the FPF,
especially when using a survey to obtain planet popu-
lation constraints. Indeed, their argument is, since de-
tected companions are observed a second time to check
for common proper motion with the primary, the chance
of a repeated false detection is ∼ FPF2 (assuming both
observations are uncorrelated, which can be the case, see
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Fig. 10.— Formal SDT definition of completeness (or sensitiv-
ity) for a TPF of 95% with a detection threshold set at τ = 5σ.
The blue curve is the intensity distribution under the signal absent
hypothesis H0, and the red curve is the intensity distribution un-
der the signal present hypothesis H1. The 95% completeness (pink
area) at a 5σ threshold is for signals µc ≃ 5σ + 1.65σ = 6.65σ.

Milli et al. (2014) for instance), and thus the combined
FPF is small. In other words, to derive planet population
constraints, one should mainly be concerned about the
probability of detecting a planetary object with a given
mass, and thus contrast at a given separation, which is
different than what Eq. 9 defines, i.e. the contrast under
which we accept the null hypothesis with a given CL.
The completeness contrast for a desired TPF (e.g. 95%)
and detection threshold τ is defined as µc, obtained from
Eq. 3. So we have,

∫ +∞

µc−τ

pr(x|H1, µc)dx = TPF (12)

Fig. 10 visually illustrates the SDT definition of 95%
completeness (or sensitivity) based on Eq. 12, for a
threshold set at τ = 5σ. According to this definition,
the 95% completeness level µc is always ∼ 1.65 above
the threshold τ . Following the SDT formalism, the ef-
fect of small sample statistics can then easily be calcu-
lated, as one only needs to substitute pr(x|H1, µc) with
the Student t-distribution instead of the normal distri-
bution. The penalties at small angles are significant but
not dramatic (see Table 1).
A low false alarm probability ensures one does not

waste time following false detections. At small IWA, near
typical target stars in exoplanet surveys, the probability
of detecting background stars is very small (this proba-
bility can easily be calculated using population models
for the galaxy such as TRILEGAL, see, e.g. Vanholle-
beke et al. 2009). Thus, setting a 3σ detection threshold
at small IWA yields a negligible number of background
sources to follow up and only ∼ 2% false detections (and
hopefully some real companion detections). Thus waste-
ful follow-up in this case would be minimal. Note that
this argument would only be partially valid for the E-
ELT or a space-based coronagraph, where telescope time



Null results and detection limits

• Coronagraph and WFC impact planet throughput ( SNR # η . √c ) 

• Post-processing too!!! And in major ways (sometimes >>10x) 

• Requires injecting fake planets in raw data  
(standard procedure in Kepler, see Petigura et al. 2013) 

• Adopted by the ground-based high contrast imaging community for at 
least half a decade  

• Scanning location required to sample recovery rate as a function of 
location in the image 

• Injected fake planets need to account for encircled energy variations 
as a function of location



Detection: confidence level, characterization, 
astrometric and photometric error bars

• Detection above threshold? What is the likelihood of false 
positive? The need for follow-up? 

• Characterization using forward modeling: 

• Fake companion (gold standard), and MCMC 
exploration over x,y,f => error bars 

• Perturbation based technique. Proper to PCA post-
processing. Similar results as the fake companion 
technique but faster. See Pueyo 2016.



Coronagraph design metrics

• Starlight suppression (mean intensity): 
• Integrated in the pupil 
• Integrated in the focal plane from rmin to rmax 
• At a specific location in the image plane (box of arbitrary shape) 
• fraught with potential interpretation errors, and cannot be used across different 

instrument 
• Inner working angles (IWA): 

• 50% off-axis throughput (which throughput?) 
• Outer working angle (OWA): 

• Field of view? Edge of the control area? 
• Throughput:  

• Telescope + instrument (optics) 
• Coronagraph throughput: integrated over aperture 
• End-to-end integrated over aperture is only what matters 

• Bandwidth and spectral resolution 
• So far not concerned at all by speckle statistics 

• speckle control affects speckle statistics, so does post-processing



Plan for SAG19

• Seek community volunteers and co-chair: on-going 

• setup website, sharing tools 

• Draft detection metrics charter with subset of volunteers  

• Broadcast it widely and seek feedback from community 

• Initiate data challenge based on real data from ground-based 
telescopes, and space-based one (HST + WFIRST 
simulations/lab data?, interface to WFIRST SITs) 

• Write final report and recommendations to, in particular, TDEM
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case of very high contrast images (109 : 1 and higher),
other sources of noise such as photon Poisson noise, read-
out or dark current might become dominant, especially
at larger separations (see, e.g., Brown (2005), and Kasdin
& Braems (2006) for thorough treatments of the uniform
background case). At small separations, these factors are
presumably less important compared to the speckle vari-
ability induced by residual low-order aberrations. The
detailed error budget largely depends on the hardware
available though, and must therefore be studied on a
case-by-case basis, which is beyond the scope of this pa-
per.
Quasi-static speckles at a given radius r are all drawn

from the same parent population of mean µ and stan-
dard deviation σ (Marois et al. 2008). Assuming the
detection is performed on individual resolution elements
λ/D, we must treat speckle noise on this characteris-
tic spatial scale as well. We also note that the size of
residual speckles is always ∼ λ/D, even after coherent
(interference) or incoherent (intensity image) linear com-
binations. At the radius r (in resolution element units
λ/D), there are 2πr resolution elements and thus possi-
ble non-overlapping speckles, i.e. about 6 at 1λ/D, 12 at
2λ/D, 18 at 3λ/D, and 100 at 16λ/D (see Fig. 4). The
empirical estimators of the mean and standard deviation,
x̄ and s, are thus calculated from a sample with a limited
number of elements (DOF) shrinking with r. For sam-
ples containing less than ∼ 100 elements (this number
is somewhat arbitrary and varies according to practices
and applications), we are in the regime of small sample
statistics, which significantly affects the calculation of
Eq. 2 and Eq. 3. In this paper, we thus seek to quantify
the effect of small sample statistics on the computation
of the pr(x|H0) (and pr(x|H1)), and its impact on the
choice of the detection threshold τ , and thus contrast.
In the following, as already discussed, we assume that

images have been post-processed by one of the meth-
ods presented in Sect. 1.1. These techniques have been
empirically shown to be the most efficient and practi-
cal way to use prior information in order to whiten the
data. Our working hypothesis in the following is thus
that of i.i.d. samples, so we can focus primarily on the
effect of small sample sizes. In Sect. 3.3, we nevertheless
use Monte-Carlo numerical simulations to explore and
discuss the consequences of non-i.i.d. noise (MR distri-
bution) and small sample sizes altogether.

3. STUDENT’S T-TESTS

The t-statistics was introduced in 1908 by William
S. Gosset, a chemist working for the Guinness brewery
(Student 1908). William S. Gosset was concerned about
comparing different batches of the stout, and developed
the t-test, and the t-distribution for that purpose. How-
ever, his company forbade him from publishing his find-
ings, so Gosset published his mathematical work under
the pseudonym “Student”.

3.1. One-sample t-test

In essence, the one-sample t-test enables us to test
whether the mean of a normal parent population has a
specific value µ under a null hypothesis. Gosset showed
that the quantity (x̄−µ)/(s/

√
n), where x̄ and s are the

empirical mean and standard deviation respectively, and
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Fig. 5.— Student’s t-distribution PDF (DOF=11,5,3) compared
to the normal Gaussian distribution and a few representative
MR distributions (MR10: Ic = 10 Is, MR1: Ic = Is, MR01:
Ic = 0.1 Is). It illustrates the PDF tail broadening as the num-
ber of DOF (sample size minus 1) decreases. Note that no specific
normalization was applied to these PDF.

n is the sample size, follows a distribution that he called
the “Student distribution”, or “t-distribution”, with n−1
DOF:

pt(x, ν) =
Γ
(

ν+1
2

)

√
νπΓ

(

ν
2

)

(

1 +
x2

ν

)−
ν+1
2

, (4)

where Γ is the Gamma function, and where the pa-
rameter ν is the number of DOF (here ν = n− 1). The
one-sample t-test allows accepting or rejecting the null
hypothesis once a CL has been set. As a corollary, if
one accepts the null hypothesis, a confidence interval
on the mean of the parent population can be derived:
µ ∈ [x̄− pts/

√
n; x̄+ pts/

√
n].

The t-distribution pt is symmetric and bell-shaped, like
the normal distribution, but has broader tails, meaning
that it is more prone to producing values that fall far
from its mean. When ν is large, Student’s t-distribution
converges towards the normal distribution (see Fig. 5).
The t-test is said to be robust to moderate violations
of the normality assumption for the underlying popula-
tion (Student 1908; Lange et al. 1989). Indeed, the par-
ent population does not need to be normally distributed,
but the population of empirical sample means x̄ (i.e. the
sampling distribution), is assumed to be normal by the
CLT, therefore valid for reasonably large samples. This
particularly interesting property will be put to the test
in Sect. 3.3.

3.2. Two-sample t-test

The detection process can be viewed as a test compar-
ing one resolution element at a time (sample #1) against
all the remaining n−1 ones (sample #2) at the same ra-
dius r (again, r is measured in resolution element units
λ/D). Under the null hypothesis, one can verify that
these two samples are indeed drawn from a common par-
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Fig. 3.— β Pictoris contrast curve (top image, continuous curve)
and image (bottom left, North is not up) taken with NACO in
the L-band (Absil et al. 2013), both corrected for the ADI-PCA
data reduction throughput. The small green circle is of radius
r = 1λ/D, while the big orange one is of radius r = 5λ/D. A fake
planet was injected at r = 1.5λ/D (to the right of the green circle)
at the 5σ throughput-corrected contrast level as presented in Absil
et al. (2013). This 5σ fake companion is supposedly yielding a
solid detection, rejecting the null hypothesis at the 1 − 3 × 10−7

CL, assuming normally distributed noise. This is clearly not the
case here because of the effect of small sample statistics at small
angles. The false positive fraction curve (FPF, dashed line) traces
the increase of false alarm probability (or equivalently, the decrease
of CL) towards small angles. Note that the scale of the y axis is
unique, the contrast and FPF curves being dimensionless. Both
quantities are related but have different meanings (see text for
details).

2.1. Signal detection theory

Referring to the SDT, the detection problem consists
in making an informed decision between two hypotheses,
H0, signal absent, and H1, signal present (see Fig. 3).
The application of hypothesis testing for the binary clas-
sification problem of exoplanet imaging was discussed in
details by Kasdin & Braems (2006), using matched fil-
tering and Bayesian techniques, but this study focussed
on background and photon noise only without any con-
siderations for speckle noise or sample sizes.
Because most exoplanet hunters want to minimize the

risk of announcing false detections or waste precious tele-
scope time following up artifacts, high contrast imaging
has mostly been concerned (so far) with choosing a detec-
tion threshold τ , defining the contrast which minimizes
the FPF, defined as

FPF =
FP

TN + FP
=

∫ +∞

τ

pr(x|H0)dx (2)

where x is the intensity of the residual speckles, and
pr(x|H0), the probability density function of x under the
null hypothesis H0. FP is the number of false positives
and TN, the number of true negatives. Under H0, the

1 λ/D
2 λ/D

3 λ/D

r

Fig. 4.— The number of resolution elements at a given radius
r, is 2πr (here shown for r ranging from 1 to 3 λ/D). At close
separation, the speckle PDF nature is likely varying drastically as
a function of r, because of the well-known sensitivity of the PSF
to low-order aberrations, especially after a coronagraph.

confidence level CL = 1−FPF is called the “specificity”
in rigorous statistical terms. However, exoplanet hunters
who want to optimize their survey, and derive meaningful
conclusions about null results, also wish to maximize the
so-called “True Positive Fraction” (TPF), or in statistical
terms the “sensitivity” (some authors refer to “complete-
ness”, see, e.g. Wahhaj et al. 2013), which is defined as

TPF =
TP

TP + FN
=

∫ +∞

τ

pr(x|H1)dx (3)

with pr(x|H1), the probability density function of x un-
der the hypothesis H1, and where TP is the number of
true positives and FN, the number of false negatives. For
instance, a 95% sensitivity (or completeness) for a given
signal µc, and detection threshold τ means that 95% of
the objects at the intensity level µc will statistically be
recovered from the data (see Sect. 4.2.2). Ultimately, the
goal of high contrast imaging, as a signal detection ap-
plication, is to maximize the TPF while minimizing the
FPF. Optimizing detection thus consists in maximizing
the so-called AUC, i.e. the area under the “Receiver Op-
erating Characteristics” (ROC) curve. The ROC curve
plots the TPF as a function of the FPF. The optimal
linear observer, or discriminant, maximizing the AUC is
called the Hotelling observer, and can be regarded as a
generalization of the familiar prewhitening matched filter
(see, for instance Caucci et al. (2007), or Lawson et al.
(2012) for a review).

2.2. Small sample statistics

In the close separation regime (down to the diffraction
limit at 1λ/D), speckle noise dominates at all contrast
levels, even after being controlled or nulled by active
speckle correction (Malbet et al. 1995; Bordé & Traub
2006; Give’on et al. 2007) and/or a dedicated low-order
wavefront sensor (see, e.g., Guyon et al. 2009). In the

# DOF getting smaller and smaller
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case of very high contrast images (109 : 1 and higher),
other sources of noise such as photon Poisson noise, read-
out or dark current might become dominant, especially
at larger separations (see, e.g., Brown (2005), and Kasdin
& Braems (2006) for thorough treatments of the uniform
background case). At small separations, these factors are
presumably less important compared to the speckle vari-
ability induced by residual low-order aberrations. The
detailed error budget largely depends on the hardware
available though, and must therefore be studied on a
case-by-case basis, which is beyond the scope of this pa-
per.
Quasi-static speckles at a given radius r are all drawn

from the same parent population of mean µ and stan-
dard deviation σ (Marois et al. 2008). Assuming the
detection is performed on individual resolution elements
λ/D, we must treat speckle noise on this characteris-
tic spatial scale as well. We also note that the size of
residual speckles is always ∼ λ/D, even after coherent
(interference) or incoherent (intensity image) linear com-
binations. At the radius r (in resolution element units
λ/D), there are 2πr resolution elements and thus possi-
ble non-overlapping speckles, i.e. about 6 at 1λ/D, 12 at
2λ/D, 18 at 3λ/D, and 100 at 16λ/D (see Fig. 4). The
empirical estimators of the mean and standard deviation,
x̄ and s, are thus calculated from a sample with a limited
number of elements (DOF) shrinking with r. For sam-
ples containing less than ∼ 100 elements (this number
is somewhat arbitrary and varies according to practices
and applications), we are in the regime of small sample
statistics, which significantly affects the calculation of
Eq. 2 and Eq. 3. In this paper, we thus seek to quantify
the effect of small sample statistics on the computation
of the pr(x|H0) (and pr(x|H1)), and its impact on the
choice of the detection threshold τ , and thus contrast.
In the following, as already discussed, we assume that

images have been post-processed by one of the meth-
ods presented in Sect. 1.1. These techniques have been
empirically shown to be the most efficient and practi-
cal way to use prior information in order to whiten the
data. Our working hypothesis in the following is thus
that of i.i.d. samples, so we can focus primarily on the
effect of small sample sizes. In Sect. 3.3, we nevertheless
use Monte-Carlo numerical simulations to explore and
discuss the consequences of non-i.i.d. noise (MR distri-
bution) and small sample sizes altogether.

3. STUDENT’S T-TESTS

The t-statistics was introduced in 1908 by William
S. Gosset, a chemist working for the Guinness brewery
(Student 1908). William S. Gosset was concerned about
comparing different batches of the stout, and developed
the t-test, and the t-distribution for that purpose. How-
ever, his company forbade him from publishing his find-
ings, so Gosset published his mathematical work under
the pseudonym “Student”.

3.1. One-sample t-test

In essence, the one-sample t-test enables us to test
whether the mean of a normal parent population has a
specific value µ under a null hypothesis. Gosset showed
that the quantity (x̄−µ)/(s/

√
n), where x̄ and s are the

empirical mean and standard deviation respectively, and
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Fig. 5.— Student’s t-distribution PDF (DOF=11,5,3) compared
to the normal Gaussian distribution and a few representative
MR distributions (MR10: Ic = 10 Is, MR1: Ic = Is, MR01:
Ic = 0.1 Is). It illustrates the PDF tail broadening as the num-
ber of DOF (sample size minus 1) decreases. Note that no specific
normalization was applied to these PDF.

n is the sample size, follows a distribution that he called
the “Student distribution”, or “t-distribution”, with n−1
DOF:

pt(x, ν) =
Γ
(

ν+1
2

)

√
νπΓ

(

ν
2

)

(

1 +
x2

ν

)−
ν+1
2

, (4)

where Γ is the Gamma function, and where the pa-
rameter ν is the number of DOF (here ν = n− 1). The
one-sample t-test allows accepting or rejecting the null
hypothesis once a CL has been set. As a corollary, if
one accepts the null hypothesis, a confidence interval
on the mean of the parent population can be derived:
µ ∈ [x̄− pts/

√
n; x̄+ pts/

√
n].

The t-distribution pt is symmetric and bell-shaped, like
the normal distribution, but has broader tails, meaning
that it is more prone to producing values that fall far
from its mean. When ν is large, Student’s t-distribution
converges towards the normal distribution (see Fig. 5).
The t-test is said to be robust to moderate violations
of the normality assumption for the underlying popula-
tion (Student 1908; Lange et al. 1989). Indeed, the par-
ent population does not need to be normally distributed,
but the population of empirical sample means x̄ (i.e. the
sampling distribution), is assumed to be normal by the
CLT, therefore valid for reasonably large samples. This
particularly interesting property will be put to the test
in Sect. 3.3.

3.2. Two-sample t-test

The detection process can be viewed as a test compar-
ing one resolution element at a time (sample #1) against
all the remaining n−1 ones (sample #2) at the same ra-
dius r (again, r is measured in resolution element units
λ/D). Under the null hypothesis, one can verify that
these two samples are indeed drawn from a common par-
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Fig. 6.— Left: 1− 3× 10−7 CL detection threshold for small sample statistics as a function of angular separation (in λ/D), divided by 5
(yielding the correction to be applied to the usual 5σ Gaussian threshold). The two curves correspond to the full FoV and half FoV cases.
Right: FPF (1−CL) for a 5σ detection threshold as a function of angular separation, using the t-distribution.

ent population of unknown (µ,σ2) by comparing their
empirical sample means x̄1 and x̄2. Verifying the null hy-
pothesis that two sample means are equal is the essence
of Gosset’s “two-sample t-test”.
So far, and except for the work in Marois et al. (2008),

FPF (and thus corresponding contrast) calculations have
always assumed normally distributed speckle statistics
and large sample sizes, and therefore a virtually per-
fect knowledge of the underlying parent population of
speckles (µ,σ2). Within this oversimplified framework,
a speckle population of mean µ, and standard deviation
σ, produces the corresponding FPF simply given by

FPF =

∫ +∞

τ

pr(x|H0)dx =

∫ +∞

τ

N (µ,σ2)dx (5)

where

N (µ,σ2) =
1√
2πσ

e−
1
2 (

x−µ
σ )2 (6)

For instance, as mentioned earlier, with τ = 5σ, we
have the now classically adopted false alarm probability
of ∼ 3 × 10−7. With τ = 3σ, we have a false alarm
probability of ∼ 1.35× 10−3.
Now, when the parent population characteristics

(µ,σ2) are unknown and sample sizes small, one has to
use the corresponding empirical estimators (x̄ and s), and
the t-test for unequal sample sizes, equal variances (thus
assuming homoscedasticity, i.e. homogeneity of variance,
see below)

pt(x, ν) ≡
x̄1 − x̄2

s1,2
√

1
n1

+ 1
n2

, (7)

where x̄1 is the intensity of the single test resolution
element (n1 = 1), and x̄2 is the average intensity over the
remaining n2 = n−1 resolution elements in a 1λ/D-wide
annulus at the radius r, and where

s1,2 =

√

√

√

√

√

(n1 − 1)
n1
∑

i=1

(xi−x̄1)2

n1−1 + (n2 − 1)
n2
∑

i=1

(xi−x̄2)2

n2−1

n1 + n2 − 2
(8)

The pooled standard deviation s1,2 = s2 for n1 = 1. s2
is the empirical standard deviation computed over the re-
maining n2 = n− 1 resolution elements at radius r. Our
initial hypothesis of homoscedasticity is warranted twice.
First, under the null hypothesis, we want to verify that
resolution element samples at a given radius r (measured
in λ/D units) are drawn from a parent population of
speckles, with an unknown but common variance σ2(r).
To comply with this statement, any detection should of
course be excluded from the sample of remaining n − 1
resolution elements to prevent biases. Second, the pres-
ence of a bona fide companion at the location of the test
resolution element x1 will only change the mean but not
the variance of the underlying population.
One might also question the significance of the two-

sample t-test, when one of the test samples only has a
single element (n1 = 1). However, the numerical sim-
ulations presented in Sect. 3.3 empirically demonstrate
its applicability in such a particular configuration. Note
that resolution elements are treated independently of any
pixel sampling considerations, which in practice is equiv-
alent to binning the data by the pixel sampling before
applying the t-test. Substituting Eq. 8 into Eq. 7, we
have the formal t-test for high contrast imaging at small
angles

pt(x, n2 − 1) ≡ x̄1 − x̄2

s2
√

1 + 1
n2

, (9)

yielding the FPF or false alarm probability, now de-
pending on ν = 2πr − 2 DOF (indeed, n2 − 1 = n − 2,
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with n = round(2πr), and r measured in λ/D units),

FPF =

∫ +∞

τ

pr(x|H0)dx =

∫ +∞

τ

pt(x, n2 − 1)dx (10)

We note the similarity of Eq. 9 to the standard signal-
to-noise ratio (SNR) definition in high contrast imaging
(see, e.g., Rameau et al. 2013), except for the

√

1 + 1/n2
correction factor to the empirical standard deviation s2,
and of course the equality to the Student t-distribution
with n2 − 1 = n− 2 DOF instead of the normal distribu-
tion.
We argue that Eq. 9 is the true definition of SNR,

which can be rigorously linked to CLs through pt(x, n2−
1), and recommend its use from now on. It is also worth
emphasizing that Eq. 9 converges to the standard defi-
nition of SNR for large sample sizes since the correction
factor

√

1 + 1/n2 converges to 1 for n2 >> 1, and the
t-distribution converges to the normal distribution for
DOF >> 1. Of course, this convergence does not imply
that the underlying noise in the images becomes gaus-
sian.
The effect of small sample statistics, rigorously de-

scribed by the t-distribution, is to broaden the tails of
the effective speckle PDF, raising the fixed-CL detec-
tion thresholds, and thus contrast accordingly. It is im-
portant to note that, contrary to the MR distribution
which describes the true nature of speckle noise, the t-
distribution only describes our fundamental incapacity
to characterize it, due to the lack of information. This
effect can be significant, and yields a factor 10 penalty
for the classically calculated1 5σ (FPF ≃ 3× 10−7) con-
trast limit at 1λ/D, and factor of 2 degradation at 2λ/D
(see Fig. 6, left). Penalty factors are significantly reduced
if one adopts a less stringent threshold, for instance 3σ
(see Fig. 6, left). Note that in some cases, only half of
the field of view (FoV) is accessible, as with, e.g., the
APP (Quanz et al. 2010; Kenworthy et al. 2010, 2013)
or half dark holes (Malbet et al. 1995; Bordé & Traub
2006; Give’on et al. 2007), reducing the number of DOF
by another factor of two, penalizing contrast thresholds
and FPF/CLs even more (see Fig. 6, left, dashed curves).
However, one can argue that a 3 × 10−7 false alarm

probability might not really be required at small IWA.
Indeed, since the statistical tests and corresponding re-
sults discussed here are done resolution element by reso-
lution element, the total number of potential false alarms
at a given radius r is proportional to FPF(r) × 2πr. It
is therefore interesting to fix the detection threshold to
5σ or 3σ (whatever the PDF) and derive how the CL
evolves in the small sample statistics case, described by
the t-distribution (see Fig. 6, right). At r = 1λ/D, a 5σ
detection threshold still yields ∼ 0.004 false alarm prob-
ability, which is fairly close to (but still a factor 3 above)
the nominal 3σ Gaussian false alarm probability.

3.3. Monte-Carlo simulations

We proceeded with Monte-Carlo numerical simulations
for two reasons:

1 Note that, in the case of small samples, the standard deviation
of the parent population σ (the noise) is unknown, so we should
use the empirical standard deviation s. However, for the sake of
simplicity, we will use the conventional notation σ in the following
when actually referring to the empirical standard deviation s.
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Fig. 7.— False positive fractions (false alarm probabilities) for
the canonical t-distribution and Monte-Carlo numerical simula-
tions, demonstrating the validity of the t-distribution at small an-
gles in the normal case. For MR speckle statistics however, the
t-distribution is still underestimating the FPF, despite the very
broad tails of its PDF.

1. Verify that the two-sample t-test is indeed valid if
one of the two samples only has a single element.

2. Test the robustness of the t-test when the residual
speckle noise follows a MR distribution.

We generated various random samples of size n = 2πr is-
sued from normal and MR PDFs, effectively simulating
random speckle samples as a function of the radius r (in
λ/D units). We then used the two-sample t-test (Eq. 9)
and tested each simulated resolution element x̄1 against
the mean x̄2 and standard deviation s2 of the remain-
ing ones (excluding the resolution element under test),
repeated this test many times, and counted the number
of false positives, i.e. with

(x̄1 − x̄2) > 3× s2

√

1 +
1

n2

We chose to use a “τ = 3σ threshold” here to avoid
prohibitive computation times.
The results of these simulations are summarized in

Fig. 7. It shows the perfect agreement between the t-
distribution and the measured false alarm probability
for a normally distributed parent population of speck-
les. The simulations thus demonstrate the applicability
of Student’s two-sample t-test when one of the samples
only has one element. For the MR cases however, the t-
distribution underestimates the false positive fraction by
a significant factor, both at small and large angles. This
empirical result, reminiscent of the results presented in
Marois et al. (2008) for large samples and using a com-
plementary methodology, is not surprising, as the MR
PDF statistically describes the spatio-temporal autocor-
relation of the PSF. The PSF autocorrelation invalidates
our working hypothesis of i.i.d. samples, which is also
an important pre-condition for the applicability of the
Student t-test.

x1 = test speckle intensity 
x2 = average of remaining n2 speckle intensities at r 

s2 = pooled standard deviation over n2 remaining speckles at r

SNR is meaningless without corresponding FPF (1-CL)
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Fig. 6.— Left: 1− 3× 10−7 CL detection threshold for small sample statistics as a function of angular separation (in λ/D), divided by 5
(yielding the correction to be applied to the usual 5σ Gaussian threshold). The two curves correspond to the full FoV and half FoV cases.
Right: FPF (1−CL) for a 5σ detection threshold as a function of angular separation, using the t-distribution.

ent population of unknown (µ,σ2) by comparing their
empirical sample means x̄1 and x̄2. Verifying the null hy-
pothesis that two sample means are equal is the essence
of Gosset’s “two-sample t-test”.
So far, and except for the work in Marois et al. (2008),

FPF (and thus corresponding contrast) calculations have
always assumed normally distributed speckle statistics
and large sample sizes, and therefore a virtually per-
fect knowledge of the underlying parent population of
speckles (µ,σ2). Within this oversimplified framework,
a speckle population of mean µ, and standard deviation
σ, produces the corresponding FPF simply given by

FPF =

∫ +∞

τ

pr(x|H0)dx =

∫ +∞

τ

N (µ,σ2)dx (5)

where

N (µ,σ2) =
1√
2πσ

e−
1
2 (

x−µ
σ )2 (6)

For instance, as mentioned earlier, with τ = 5σ, we
have the now classically adopted false alarm probability
of ∼ 3 × 10−7. With τ = 3σ, we have a false alarm
probability of ∼ 1.35× 10−3.
Now, when the parent population characteristics

(µ,σ2) are unknown and sample sizes small, one has to
use the corresponding empirical estimators (x̄ and s), and
the t-test for unequal sample sizes, equal variances (thus
assuming homoscedasticity, i.e. homogeneity of variance,
see below)

pt(x, ν) ≡
x̄1 − x̄2

s1,2
√

1
n1

+ 1
n2

, (7)

where x̄1 is the intensity of the single test resolution
element (n1 = 1), and x̄2 is the average intensity over the
remaining n2 = n−1 resolution elements in a 1λ/D-wide
annulus at the radius r, and where

s1,2 =

√

√

√

√

√

(n1 − 1)
n1
∑

i=1

(xi−x̄1)2

n1−1 + (n2 − 1)
n2
∑

i=1

(xi−x̄2)2

n2−1

n1 + n2 − 2
(8)

The pooled standard deviation s1,2 = s2 for n1 = 1. s2
is the empirical standard deviation computed over the re-
maining n2 = n− 1 resolution elements at radius r. Our
initial hypothesis of homoscedasticity is warranted twice.
First, under the null hypothesis, we want to verify that
resolution element samples at a given radius r (measured
in λ/D units) are drawn from a parent population of
speckles, with an unknown but common variance σ2(r).
To comply with this statement, any detection should of
course be excluded from the sample of remaining n − 1
resolution elements to prevent biases. Second, the pres-
ence of a bona fide companion at the location of the test
resolution element x1 will only change the mean but not
the variance of the underlying population.
One might also question the significance of the two-

sample t-test, when one of the test samples only has a
single element (n1 = 1). However, the numerical sim-
ulations presented in Sect. 3.3 empirically demonstrate
its applicability in such a particular configuration. Note
that resolution elements are treated independently of any
pixel sampling considerations, which in practice is equiv-
alent to binning the data by the pixel sampling before
applying the t-test. Substituting Eq. 8 into Eq. 7, we
have the formal t-test for high contrast imaging at small
angles

pt(x, n2 − 1) ≡ x̄1 − x̄2

s2
√

1 + 1
n2

, (9)

yielding the FPF or false alarm probability, now de-
pending on ν = 2πr − 2 DOF (indeed, n2 − 1 = n − 2,
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Fig. 6.— Left: 1− 3× 10−7 CL detection threshold for small sample statistics as a function of angular separation (in λ/D), divided by 5
(yielding the correction to be applied to the usual 5σ Gaussian threshold). The two curves correspond to the full FoV and half FoV cases.
Right: FPF (1−CL) for a 5σ detection threshold as a function of angular separation, using the t-distribution.

ent population of unknown (µ,σ2) by comparing their
empirical sample means x̄1 and x̄2. Verifying the null hy-
pothesis that two sample means are equal is the essence
of Gosset’s “two-sample t-test”.
So far, and except for the work in Marois et al. (2008),

FPF (and thus corresponding contrast) calculations have
always assumed normally distributed speckle statistics
and large sample sizes, and therefore a virtually per-
fect knowledge of the underlying parent population of
speckles (µ,σ2). Within this oversimplified framework,
a speckle population of mean µ, and standard deviation
σ, produces the corresponding FPF simply given by

FPF =

∫ +∞

τ

pr(x|H0)dx =

∫ +∞

τ

N (µ,σ2)dx (5)

where

N (µ,σ2) =
1√
2πσ

e−
1
2 (

x−µ
σ )2 (6)

For instance, as mentioned earlier, with τ = 5σ, we
have the now classically adopted false alarm probability
of ∼ 3 × 10−7. With τ = 3σ, we have a false alarm
probability of ∼ 1.35× 10−3.
Now, when the parent population characteristics

(µ,σ2) are unknown and sample sizes small, one has to
use the corresponding empirical estimators (x̄ and s), and
the t-test for unequal sample sizes, equal variances (thus
assuming homoscedasticity, i.e. homogeneity of variance,
see below)

pt(x, ν) ≡
x̄1 − x̄2

s1,2
√

1
n1

+ 1
n2

, (7)

where x̄1 is the intensity of the single test resolution
element (n1 = 1), and x̄2 is the average intensity over the
remaining n2 = n−1 resolution elements in a 1λ/D-wide
annulus at the radius r, and where

s1,2 =

√
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√
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n1 + n2 − 2
(8)

The pooled standard deviation s1,2 = s2 for n1 = 1. s2
is the empirical standard deviation computed over the re-
maining n2 = n− 1 resolution elements at radius r. Our
initial hypothesis of homoscedasticity is warranted twice.
First, under the null hypothesis, we want to verify that
resolution element samples at a given radius r (measured
in λ/D units) are drawn from a parent population of
speckles, with an unknown but common variance σ2(r).
To comply with this statement, any detection should of
course be excluded from the sample of remaining n − 1
resolution elements to prevent biases. Second, the pres-
ence of a bona fide companion at the location of the test
resolution element x1 will only change the mean but not
the variance of the underlying population.
One might also question the significance of the two-

sample t-test, when one of the test samples only has a
single element (n1 = 1). However, the numerical sim-
ulations presented in Sect. 3.3 empirically demonstrate
its applicability in such a particular configuration. Note
that resolution elements are treated independently of any
pixel sampling considerations, which in practice is equiv-
alent to binning the data by the pixel sampling before
applying the t-test. Substituting Eq. 8 into Eq. 7, we
have the formal t-test for high contrast imaging at small
angles

pt(x, n2 − 1) ≡ x̄1 − x̄2

s2
√

1 + 1
n2

, (9)

yielding the FPF or false alarm probability, now de-
pending on ν = 2πr − 2 DOF (indeed, n2 − 1 = n − 2,
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with n = round(2πr), and r measured in λ/D units),

FPF =

∫ +∞

τ

pr(x|H0)dx =

∫ +∞

τ

pt(x, n2 − 1)dx (10)

We note the similarity of Eq. 9 to the standard signal-
to-noise ratio (SNR) definition in high contrast imaging
(see, e.g., Rameau et al. 2013), except for the

√

1 + 1/n2
correction factor to the empirical standard deviation s2,
and of course the equality to the Student t-distribution
with n2 − 1 = n− 2 DOF instead of the normal distribu-
tion.
We argue that Eq. 9 is the true definition of SNR,

which can be rigorously linked to CLs through pt(x, n2−
1), and recommend its use from now on. It is also worth
emphasizing that Eq. 9 converges to the standard defi-
nition of SNR for large sample sizes since the correction
factor

√

1 + 1/n2 converges to 1 for n2 >> 1, and the
t-distribution converges to the normal distribution for
DOF >> 1. Of course, this convergence does not imply
that the underlying noise in the images becomes gaus-
sian.
The effect of small sample statistics, rigorously de-

scribed by the t-distribution, is to broaden the tails of
the effective speckle PDF, raising the fixed-CL detec-
tion thresholds, and thus contrast accordingly. It is im-
portant to note that, contrary to the MR distribution
which describes the true nature of speckle noise, the t-
distribution only describes our fundamental incapacity
to characterize it, due to the lack of information. This
effect can be significant, and yields a factor 10 penalty
for the classically calculated1 5σ (FPF ≃ 3× 10−7) con-
trast limit at 1λ/D, and factor of 2 degradation at 2λ/D
(see Fig. 6, left). Penalty factors are significantly reduced
if one adopts a less stringent threshold, for instance 3σ
(see Fig. 6, left). Note that in some cases, only half of
the field of view (FoV) is accessible, as with, e.g., the
APP (Quanz et al. 2010; Kenworthy et al. 2010, 2013)
or half dark holes (Malbet et al. 1995; Bordé & Traub
2006; Give’on et al. 2007), reducing the number of DOF
by another factor of two, penalizing contrast thresholds
and FPF/CLs even more (see Fig. 6, left, dashed curves).
However, one can argue that a 3 × 10−7 false alarm

probability might not really be required at small IWA.
Indeed, since the statistical tests and corresponding re-
sults discussed here are done resolution element by reso-
lution element, the total number of potential false alarms
at a given radius r is proportional to FPF(r) × 2πr. It
is therefore interesting to fix the detection threshold to
5σ or 3σ (whatever the PDF) and derive how the CL
evolves in the small sample statistics case, described by
the t-distribution (see Fig. 6, right). At r = 1λ/D, a 5σ
detection threshold still yields ∼ 0.004 false alarm prob-
ability, which is fairly close to (but still a factor 3 above)
the nominal 3σ Gaussian false alarm probability.

3.3. Monte-Carlo simulations

We proceeded with Monte-Carlo numerical simulations
for two reasons:

1 Note that, in the case of small samples, the standard deviation
of the parent population σ (the noise) is unknown, so we should
use the empirical standard deviation s. However, for the sake of
simplicity, we will use the conventional notation σ in the following
when actually referring to the empirical standard deviation s.
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Fig. 7.— False positive fractions (false alarm probabilities) for
the canonical t-distribution and Monte-Carlo numerical simula-
tions, demonstrating the validity of the t-distribution at small an-
gles in the normal case. For MR speckle statistics however, the
t-distribution is still underestimating the FPF, despite the very
broad tails of its PDF.

1. Verify that the two-sample t-test is indeed valid if
one of the two samples only has a single element.

2. Test the robustness of the t-test when the residual
speckle noise follows a MR distribution.

We generated various random samples of size n = 2πr is-
sued from normal and MR PDFs, effectively simulating
random speckle samples as a function of the radius r (in
λ/D units). We then used the two-sample t-test (Eq. 9)
and tested each simulated resolution element x̄1 against
the mean x̄2 and standard deviation s2 of the remain-
ing ones (excluding the resolution element under test),
repeated this test many times, and counted the number
of false positives, i.e. with

(x̄1 − x̄2) > 3× s2

√

1 +
1

n2

We chose to use a “τ = 3σ threshold” here to avoid
prohibitive computation times.
The results of these simulations are summarized in

Fig. 7. It shows the perfect agreement between the t-
distribution and the measured false alarm probability
for a normally distributed parent population of speck-
les. The simulations thus demonstrate the applicability
of Student’s two-sample t-test when one of the samples
only has one element. For the MR cases however, the t-
distribution underestimates the false positive fraction by
a significant factor, both at small and large angles. This
empirical result, reminiscent of the results presented in
Marois et al. (2008) for large samples and using a com-
plementary methodology, is not surprising, as the MR
PDF statistically describes the spatio-temporal autocor-
relation of the PSF. The PSF autocorrelation invalidates
our working hypothesis of i.i.d. samples, which is also
an important pre-condition for the applicability of the
Student t-test.


