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The TRAPPIST-1 System is Observationally Favorable 
and a High Priority Target for JWST

• Seven known Earth-sized planets (Gillon et al. 2016; 2017; Luger et al. 
2017)

• Transiting a small (0.12 R⦿) and cool (2500 K) late M dwarf (Van 
Grootel et al. 2018)

• Only 12.2 pc away
• Planets unlikely to have low mean molecular weight atmospheres (de 

Wit et al. 2016; 2018; Moran et al. 2018)
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Observational tools for detecting and characterizing 
exoplanet atmospheres with JWST

• Transmission spectroscopy/photometry
• Eclipse spectroscopy/photometry
• {Thermal Phase curves, eclipse mapping, MIRI direct imaging, planet-

planet occultations}
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Posit a variety of evolved environments for 
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Can JWST tell if the TRAPPIST-1 
planets have atmospheres?
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• Atmospheric detectability 
is driven by common CO2
absorption

• NIRSpec Prism with partial 
saturation (Batalha et al. 
2018) is optimal 

• Nominal NIRSpec Prism 
sub512s and NIRSpec
G395 are comparable 

Lustig-Yaeger et al. (2019)
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Sulfuric acid clouds 
are less of a concern 

for the colder planets
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Detecting water in a habitable atmosphere

1300(!) transits 
needed to 
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Detecting Modern Earth levels of O2
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Detecting Modern Earth levels of O2
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300 transits are 
needed to 
reveal 20% O2 in 
a 1 bar N2-
dominated 
atmosphere 

Detecting Modern Earth levels of O2
may be infeasible

Lustig-Yaeger et al. (2019)



Conclusions

• JWST should be able to detect different plausible terrestrial 
atmospheres for all of the TRAPPIST-1 planets in about 10 transits, 
but up to 30 transits may be required if clouds are present

• CO2 is a strong spectroscopic indicator of a terrestrial atmosphere, 
but a weak discriminator between atmospheric compositions

• H2O as a weak indicator of habitability may be detectable for 
TRAPPIST-1e if the terminator has << 100% cloud coverage

• O2 as a biosignature is unlikely to be detectable with JWST, but O4 (O2-
O2 CIA) may be detectable and would indicate an O2-dominated post-
ocean-loss atmosphere
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Detecting Atmospheres: Photometry vs. Spectroscopy
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Do airless planets have featureless secondary 
eclipse spectra?
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Approach: Transmission vs Emission for JWST 
observations of the TRAPPIST-1 planets 

TRAPPIST-1b – Transmission – NIRSpec Prism TRAPPIST-1b – Emission– MIRI LRS
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