Exoplanet Exploration Program Update

Dr. Gary H. Blackwood, Program Manager NASA Exoplanet Exploration Program Jet Propulsion Laboratory California Institute of Technology CL#17-2593

June 06, 2017 230th Meeting of the American Astronomical Society Austin, Texas

> Artist concept of Kepler-16b Credit: NASA/JPL-Caltech/T. Pyle

Program Overview

Program Purpose

Discover / Characterize

Identify Habitable Worlds

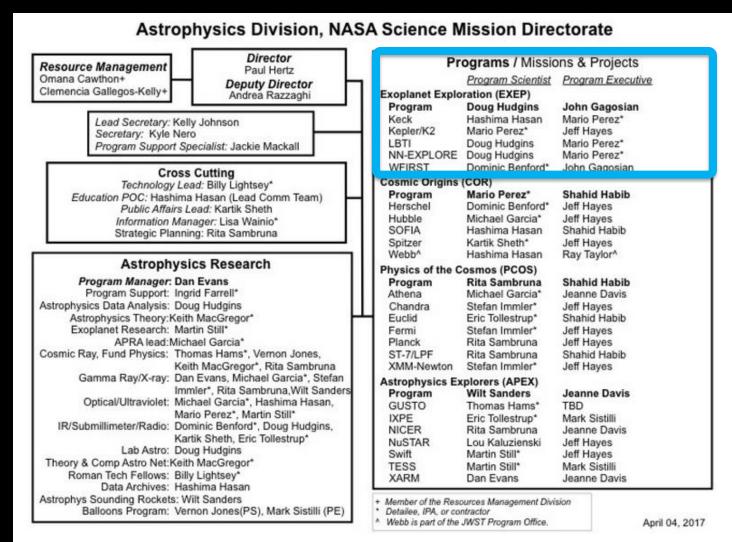
Serving the Community

ExoComm

NASA Exoplanet Exploration Program

Astrophysics Division, NASA Science Mission Directorate

NASA's search for habitable planets and life beyond our solar system

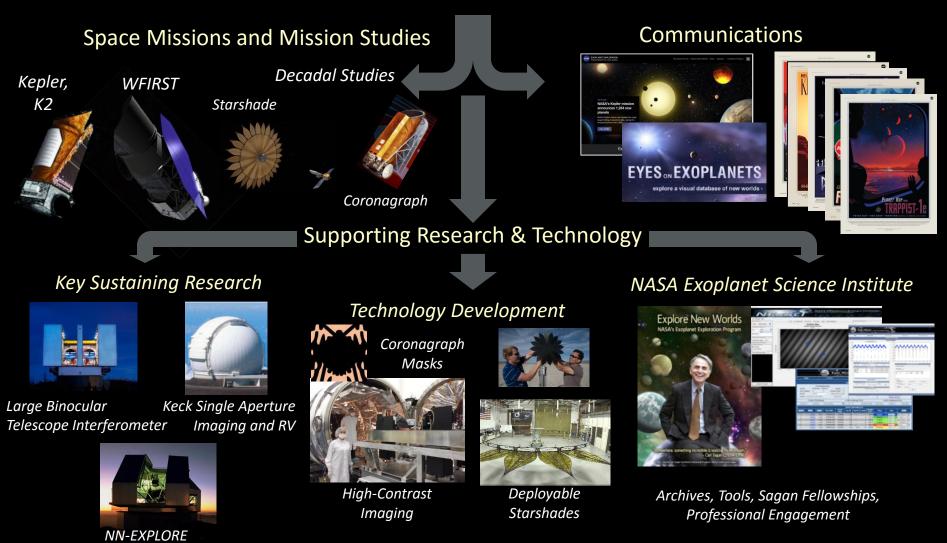


Program purpose described in 2014 NASA Science Plan

- 1. Discover planets around other stars
- 2. Characterize their properties
- 3. Identify candidates that could harbor life

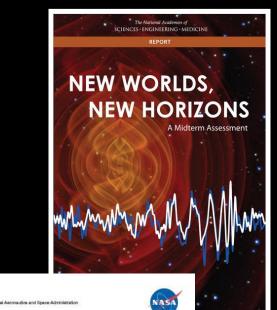
ExEP serves the science community and NASA by implementing NASA's space science vision for exoplanets

ExEP is a Program Office within the NASA Astrophysics Division



³ CNES/ESA

NASA Exoplanet Exploration Program



https://exoplanets.nasa.gov

Astrophysics Division: Driving Documents

Astrophysics Implementation Plan: 2016 Update

> This Update provides a summary since the publication of the Astrophysics implementation Plan: 2014 Update In December 2014, of events and developments that affect NASA's strategy for implementing the 2010 Astrophysics Decadal Survey, New Works, New Horizons in Astronomy and Astrophysics.

This Update is a supplement to the Astrophysics Implementation Plan 2014 Update, which will not be revised.

Astrophysics Division ce Mission Directorate

December 15, 2016

http://science.nasa.gov/astrophysics/documents

Exoplanet Exploration Program

Astrophysics Division, Science Mission Directorate

Exoplanet Exploration Program

Serving the exoplanet science community by implementing NASA's space science vision for exoplanets

	Today	Enabled Science	Future	Enabled Science
Discover	Show	v Me th	e Planet	s
Characterize				
Identify Worlds that Could Harbor Life				
Community Support				

Purposes: Discover and Characterize

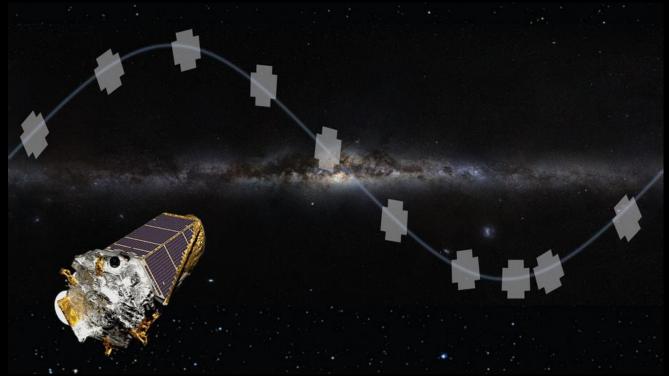
Enabling Science Today

	Today	Enabled Science
Discover	• Kepler	 Occurrence rates for science and design of future missions
	• K2	 Discoveries via photometry and microlensing, potential JWST Targets
Characterize	NASA Keck time	 SMD Science, Exoplanet follow up and precursor science
	NNEXPLORE GO, including NESSI	Exoplanet Science
	NASA Exoplanet Archive	 Orbit prediction and observability for space missions for all exoplanets and user targets. Table of transmission spectroscopy data including from HST and Spitzer.
Space Missions Not in the ExEP	-	 Atmospheres, microlensing discoveries

Kepler Close-Out

Delivering Kepler's Legacy

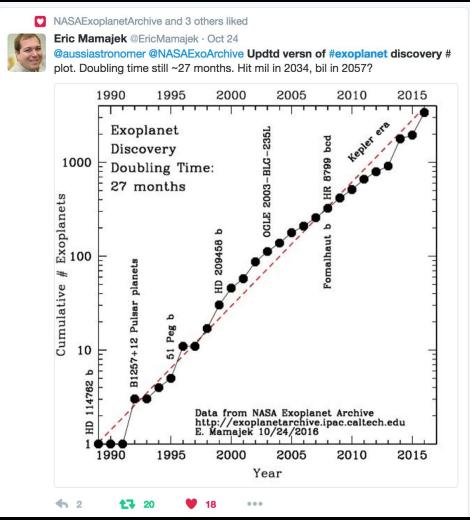
- Kepler closeout and final data processing continues steadily within overall schedule margin
- SOC 9.3 Final Occurrence Rate
 Products planned for June 2017



10

Kepler K2

Extending the Power of Kepler to the Ecliptic



Recently completed Campaign 13 (Taurus); now in Campaign 14 (Leo) Upcoming:

 Changed the position of the field for Campaign 16 – Kepler will observe in the forward-facing direction; emphasis on supernova science

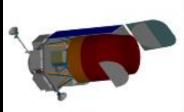
https://exoplanets.nasa.gov/k2

"Mamajek's Law" Exoplanet Discovery Doubling Time

Credit: J. Christenson

Exoplanet Exploration Program

Serving the exoplanet science community by implementing NASA's space science vision for exoplanets

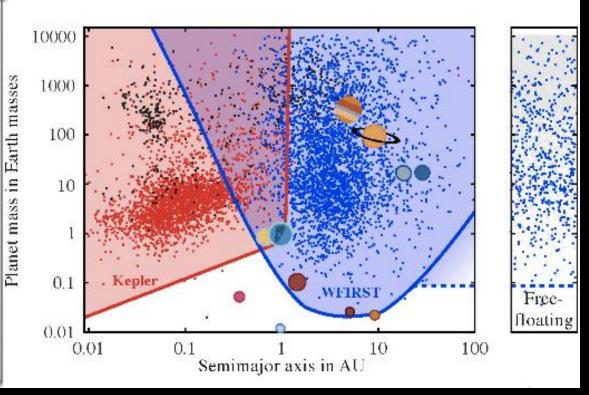

	Today	Enabled Science	Future	Enabled Science
Discover	Shov	v Me the	Plane	ts!
Characterize				
Identify Worlds that Could Harbor Life				
Community Support				

Purposes: Discover and Characterize

Enabling Science in the Future

	Future	Enabled Science
Discover	 WFIRST Microlensing Survey 	 Census for long period planets
Characterize	NEID GO	 Exoplanet Mass
	WFIRST Coronagraph	 Reflected Light Spectroscopy
	 Original Probe Studies (Coronagraph, Starshade) 	 Reflected Light Spectroscopy
	• OST	 Reflected Light Spectroscopy
Space Missions Not in the ExEP	 TESS, JWST 	 Discoveries via photometry, atmospheres via transmission spectroscopy

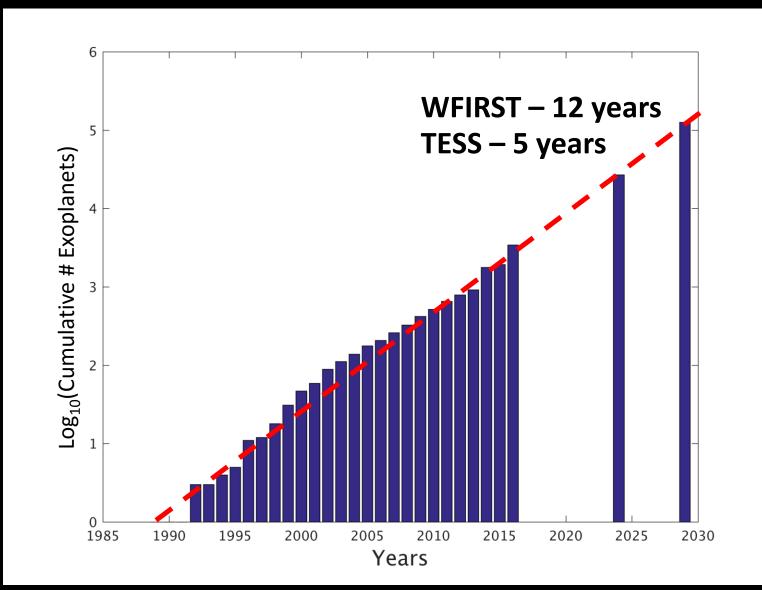
WFIRST Microlensing Census for Exoplanets



Together, Kepler and WFIRST-AFTA complete the statistical census of planetary systems in the Galaxy.

WFIRST-AFTA will:

- Detect 2800 planets, with orbits from the habitable zone outward, and masses down to a few times the mass of the Moon.
- Be sensitive to analogs of all the solar system's planets except Mercury.
- Measure the abundance of free-floating planets in the Galaxy with masses down to the mass of Mars


Credit: D. Bennett, M. Penny

Wide Field Infrared Survey Telescope (WFIRST)

Dark Energy, Infrared Survey... and Alien Worlds

- WFIRST in Phase A
- All technology milestones were met on time
 - Five for IR Detector, now at TRL 6
 - Nine for Coronagraph, now at TRL 5
- Actively studying making WFIRST starshade-ready.
- Reviews for SRR/MDR: delayed to allow independent external review
- <u>https://www.nasa.gov/feature/nasa-taking-</u> <u>a-fresh-look-at-next-generation-space-</u> <u>telescope-plans</u>

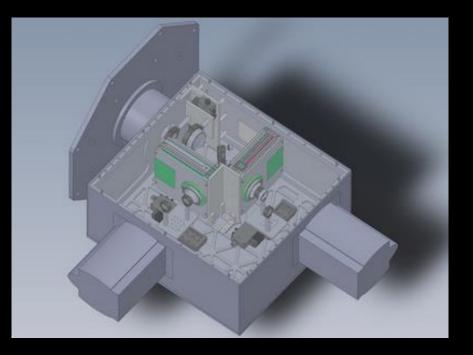
How Much Longer Can Mamajek's Law Last?

Credit: J. Christiansen

- Extreme precision radial velocity spectrometer (<0.5 m/s) for WIYN telescope
- Laser frequency comb reference
- Plan for instrument commissioning: August 2019
- Ongoing Guest Observer program using NOAO share of telescope time for exoplanet research
- Please propose!

NN-Explore Exoplanet Investigations with Doppler Spectroscopy

PI: S. Mahadevan



NOAO 3.5-m WIYN Telescope, Kitt Peak National Observatory, Arizona

NESSI on WIYN 3.5m Observatory, Kitt Peak

The NASA Exoplanet Star (and) Speckle Imager

- Speckle images in two simultaneous colors
- Resolution at or near diffraction limit
- Companion detection and characterization to delta magnitudes of ~5
- PI: Steve Howell, NASAARC

http://www.wiyn.org/Instruments/

A Familiar Habitable Zone

Credit: Luc Forsyth

Exoplanet Exploration Program

Serving the exoplanet science community by implementing NASA's space science vision for exoplanets

	Today	Enabled Science	Future	Enabled Science
Discover				
Characterize				
Identify Worlds that Could Harbor Life	You H	ad Me a	t Habita	able
Community Support				

Purpose: Identify Habitable Worlds

Enabling Science Today

	Today	Enabled Science
ldentify Worlds that Could Harbor	Large Binocular Telescope Interferometer	 Exozodiacal Dust survey
Life	 Technology - Competed 	 Increasing TRL feasibility
	 Starshade Technology Development 	 Decreasing inner working angle
	Starshade Readiness Working	 Increasing outer working angle
		 Increasing starshade suppression
	 Segmented Coronagraph Design and Analysis 	 Minimizing segmented mirror edge diffraction
	 Telescope Stability Workshop 	 Increasing coronagraph contrast

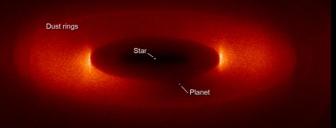
Ground-Based Support for Space Missions

Partnering to Enable Key Projects for Strategic Reasons

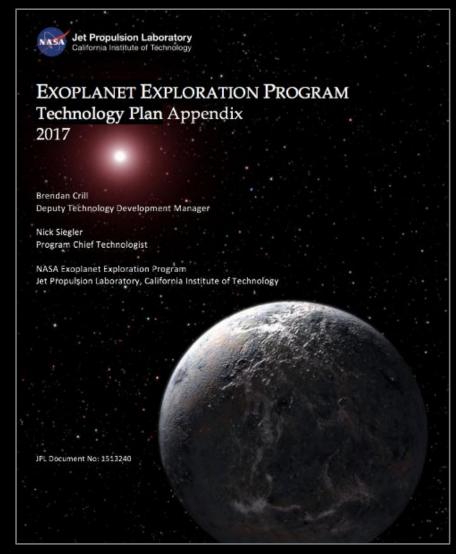
Keck Observatory: (1/6 partner) Key SMD Project and GO Investigations

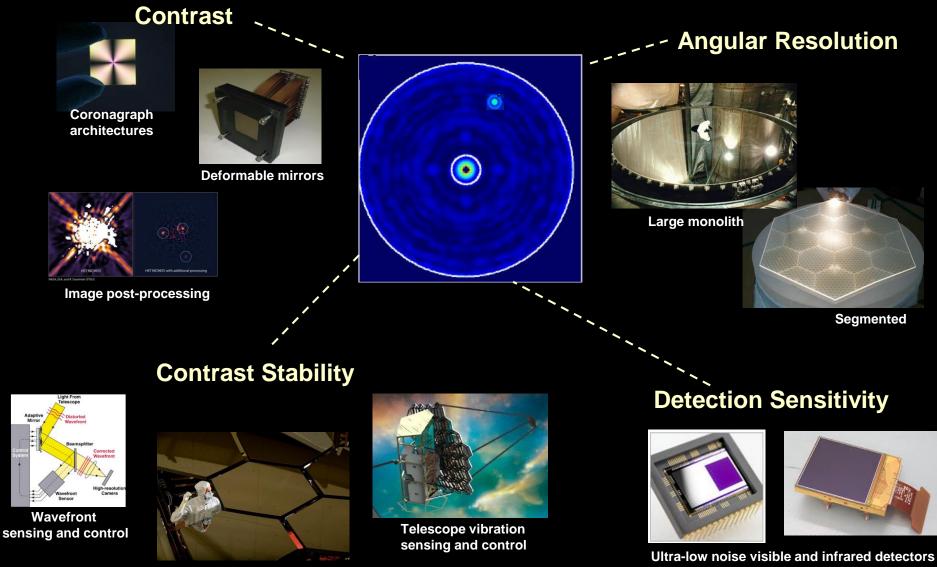
NN-EXPLORE using WIYN Telescope NEID Precision Radial Velocity Instrument

Large Binocular Telescope Interferometer


Measuring HZ Exozodiacal Dust to Inform Designs of Future Missions

- 35-star survey, September 2018
- Progress: 26 stars observed
 - Measurement Precision: ~12 zodi, one star one sigma




Strategic Astrophysics Technology – TDEM

Advancing Technology Readiness towards next Decadal Survey

Appendix revision published January 2017

Coronagraph/Telescope Technology Needs

Segment phasing and rigid body sensing and control

Starshade Technology Needs

Starlight Suppression

Suppressing scattered light off petal edges from off-axis Sunlight (S-2)

Suppressing diffracted light from on-axis starlight (S-1)

S-# corresponds to ExEP Starshade Technology Gap number http://exoplanets.nasa.gov/exep/ technology/gap-lists

Shape Stability

Deployment Accuracy and

Positioning the petals to high accuracy, blocking on-axis starlight, maintaining overall shape on a highly stable structure (S-5)

Formation Sensing _ and Control

Maintaining lateral offset requirement between the spacecrafts (S-3)

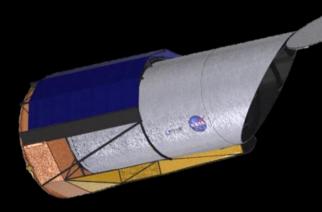
Fabricating the petals to high accuracy (S-4)

Early Inner Disk Deployment Trials at JPL

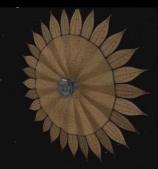
Starshade Optical Shield

Exoplanet Exploration Program

Serving the exoplanet science community by implementing NASA's space science vision for exoplanets

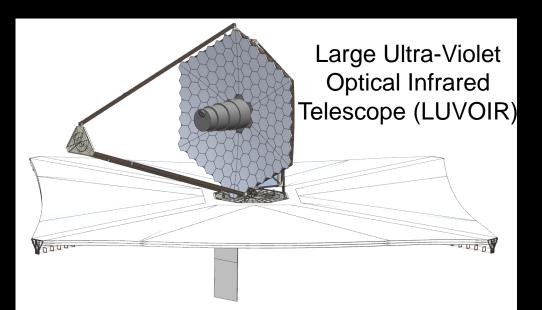

	Today	Enabled Science	Future	Enabled Science
Discover				
Characterize				
Identify Worlds that Could Harbor Life	You H	ad Me a	t Habita	able
Community Support				

Purpose: Identify Habitable Worlds


Enabling Science in Future

	Future	Enabled Science
Identify Worlds that Could Harbor Life	 Current Probe Starshade - WFIRST Rendezvous (Seager, Kasdin) 	 Reflected Light Spectroscopy
Line	LUVOIR	 Reflected Light Spectroscopy
	• HabEx	 Reflected Light Spectroscopy
	• OST	 Reflected Light, Transmission Spectroscopy
	 Current Probe Precision RV in Space (Plavchan) 	 Mass Measurements
	 Standard Definitions and Evaluation Team 	

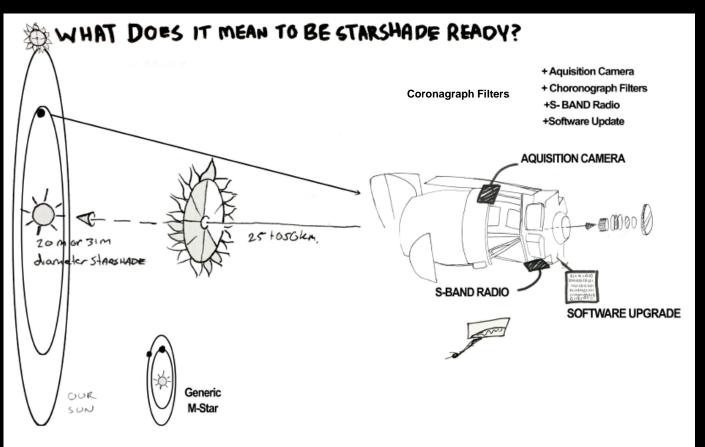
Possible New Worlds Exoplanet Telescopes (mid 2030s)



Habitable Exoplanet Imaging Mission (HabEx)

Origins Space Telescope (OST)

Medium-Scale Space Mission Concepts


Announced by NASA March 20

PI	Affiliation	Title	
Camp, J.	NASA's Goddard Space Flight Center	Transient Astrophysics Probe Concept Study	
Cooray, A.	Univ. California, Irvine	Cosmic Dawn Intensity Mapper	
Danchi, W.	NASA's Goddard Space Flight Center	Cosmic Evolution through UV spectroscopy (CETUS)	
Glenn, J.	Univ. of Colorado	Galaxy Evolution Probe	
Hanany, S.	Univ. of Minnesota	Inflation Probe Mission Concept Study	
Mushotzky, R.	Univ. of Maryland	AXIS: A High Spatial Resolution X-ray Probe Satellite	
Olinto, A.	Univ. of Chicago	Concept Study of the Probe Of Extreme Multi Messenger Astrophysics (POEMMA)	
Plavchan, P.	Missouri State Univ.	EarthFinder: A Diffraction-Limited Precise Radial Velocity Observatory in Space (Partial selection)	
Ray, P.	Naval Research Laboratory	STROBE-X: X-ray Timing and Spectroscopy on Dynamical Timescales from Microseconds to Years	
Seager, S.	Massachusetts Institute of Technology	Starshade Rendezvous (Partial selection)	

WFIRST Starshade-Ready

Accommodation Study to Enable a Rendezvous at L2

• WFIRST Starshade could directly image habitable-zone exo-earths in late 2020s

Exoplanet Exploration Program

Serving the exoplanet science community by implementing NASA's space science vision for exoplanets

	Today	Enabled Science	Future	Enabled Science
Discover				
Characterize				
Identify Worlds that Could Harbor Life				
Community Support	Sei	rving th Comm		ce

Serving the Exoplanet Science Community

Community Support

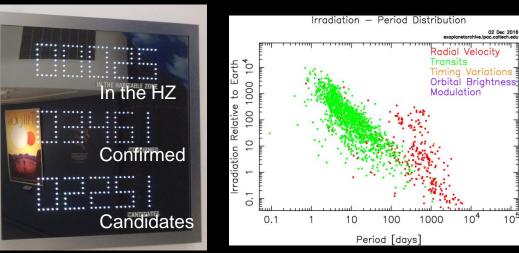
NExScl:

- NASA Exoplanet Archive
- Exoplanet Follow-up Observing Program -Kepler/K2/TESS
- NASA Keck Time GO
- NN-EXPLORE GO
- Sagan Summer Workshop
- Sagan Fellowships
- Community support (workshops, conferences)
- Support to ExoPAG and SAGs
- Communication Products
- Education Products
- People Resources: Program Scientists, Technologists, Managers, Communications, Education

- Archive provides the ability to do orbit prediction and observability for space missions on all of the confirmed planets and candidates as well as the users own targets.
- ExoFOP supports Kepler, K2, TESS
- GO serves current observers
- Sagan trains next generation of scientists
- Scientific Community support

 SOC members, workshop members, review boards, technology strategy, engineering troubleshooters, Invited speakers, communication and education resources

NASA Exoplanet Science Institute



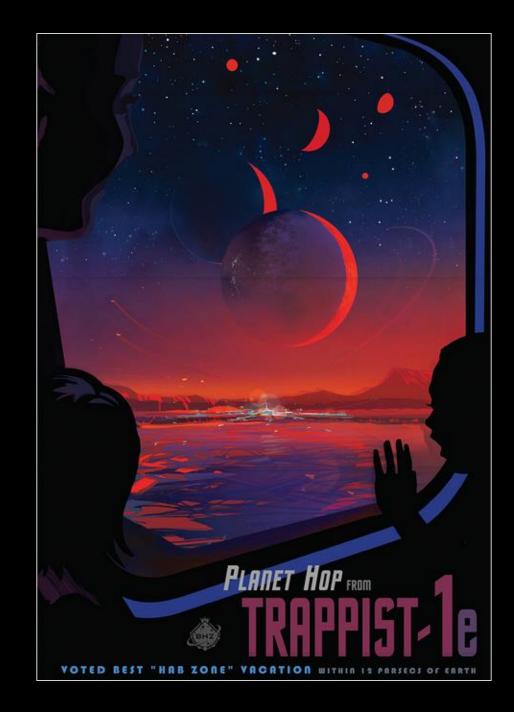
NASA Exoplanet Science Institute California Institute of Technology

- Sagan Summer School, August 2017
 "Microlensing in the Era of WFIRST"
- NASA/Keck time (90 nights/yr) supports Exoplanets, Cosmic Origins, Physics of the Cosmos and Solar System Science

- Exoplanet Archive tracks exoplanet population and Kepler pipeline products
- Exoplanet Follow-up Observing Program supports Kepler & K2 sources follow-up

Exoplanet Communications

Data Visualization Tools and New Thematic Exoplanet Hub


exoplanets.nasa.gov

Replaced exoplanets.jpl.nasa.gov Exoplanet-thematic content featuring content across NASA. 3D, interactive planet renderings Custom planet textures can be created for press releases. (contact the Comm team in advance)

Serving the Community

The Exoplanet Travel Bureau

The Exoplanet Exploration Program

Summary

Delivering upon these Purposes:

- Show Me the Planets!
- You Had Me at Habitable
- Serving the Science Community

Stay connected with us through newsletter and website: exoplanets.nasa.gov

Contacts:

Program Manager Chief Scientist Chief Technologist Chief Engineer ExoCommunications NExScl Exec Director Gary.Blackwood@jpl.nasa.gov Karl.Stapelfeldt@jpl.nasa.gov Nick.Siegler@jpl.nasa.gov Keith.Warfield@jpl.nasa.gov Anya.Biferno@jpl.nasa.gov Chas.Beichman@jpl.nasa.gov

Jet Propulsion Laboratory

California Institute of Technology

jpl.nasa.gov

Acknowledgements

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. © 2017 All rights reserved.

- Work was also carried out at NASA's
 - Goddard Space Flight Center
 - Ames Research Center
- Work was carried out as well under contracts with the National Aeronautics and Space Administration and
 - Princeton University
 - University of Arizona
 - Northrop Grumman Aerospace Systems
 - National Optical Astronomy Observatory (NOAO)
 - Massachusetts Institute of Technology
 - Pennsylvania State University
- Contributions from ExEP program leadership and staff gratefully acknowledged