Recent Progress and Results from LBTI

Phil Hinz LBTI PI The University of Arizona

> June 06, 2017 230th Meeting of the American Astronomical Society Austin, Texas

> > Artist concept of Kepler-16b Credit: NASA/JPL-Caltech/T. Pyle

- Motivation
- Measurement Technique
- Survey Status
- Preliminary Results

Motivation

Zodiacal Dust in the Solar System

- Scattered light in ecliptic plane
- Infrared emission first seen by IRAS.

THE UNIVERSITY OF ARIZONA®

Zodiacal Dust

Origin of Zodiacal Dust

- Asteroid belt thought to provide much of the dust seen at Earth (Dermott et al. 2002).
- Recent Dynamical models (cf. Nesvorney et al. 2010) suggest Jupiter-family comets provide the majority of the dust for the zodiacal cloud.

from Nesvorney et al. 2010

Exozodi Affects Exoplanet Yield

- Telescope aperture and exozodi level affect exoplanet yield.
- Exozodi is particularly important for small telescopes, especially when confusion taken into account.

Telescope Size (m) for
Given Yield and ExoZodiExoplanet YieldEZ=5EZ=6010 Earths5 m8 m30 Earths9 m13 m

Exozodi Clumps Can Create False Positives

Figure 3. Images produced by the PIAA coronagraph and corresponding result of the PSF fitting for a Sun-Earth system located at 10 pc and surrounded by an exozodiacal cloud of various densities (left column: 1, 5, and 10 zodis; right column: 20, 50, and 10° ...)

HE UNIVERSITY

OF ARIZONA.

If exozodi >20x Solar System level, resonant dust ring structures could be confused for an exo-Earth at 1 AU (Defrere *et al.* 2012)

LBTI Must Determine Exozodi Luminosity Function

To demonstrate that EZ
is manageable part of
noise budget, LBTI must
observe enough stars to
determine exozodi
luminosity function to
~10 Zodi level

 A NASA review concluded that a 35 star survey is the minimum needed to provide the necessary data

State of the Art – Keck Nuller

- Surveyed 20 stars and demonstrated 24 zodi, 1 (uncertainty on median exo-zodi level
 - Mennesson et al. 2014, ApJ, 797, 119

Measurement Technique

LBTI and the HOSTS Survey

- LBTO is located on Mt. Graham in Arizona
- LBTI is a mid-infrared nulling interferometer
- Designed to carry out the Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS)
- Managed by Exoplanet Exploration Office at JPL
- Operated by University of Arizona
- Data archiving at NExScl

How Nulling Interferometry Works

- First proposed by Bracewell (1978) to directly detect "non-Solar" planets;
- Subtracts starlight by destructive interference;

ARIZONA

Nulling Implementation

Survey Status

- A queue observing strategy was implemented starting in fall 2016.
 - Improved ability to obtain useful conditions.
 - Helped minimize impact of technical downtime in Winter 2016.
- Observing now routinely can obtain 3 stars per night.
- We can obtain good data on stars as faint as 1 Jy
 - This was the orignal survey brightness limit.
- Observations of stars at southerly declinations is a problem.

- 13 stars observed in 2017 A
- 11 stars observed in 2016 B
- 2.3 stars previously observed
- Total HOSTS survey = 26.3 stars (75% complete)

A star is considered observed after three calibrated data sets on it.

HOSTS Progress

Care a	Target	UT Date	SpT						<==	before trans	after trans	==>					
	1 Ori	2017-02-09	F6V						HD31421	SCI	SCI	HD31767					
	107 Psc	2016-11-14	K1V							HD7087	SCI						
		2016-11-16							HD7318	SCI	SCI	HD6953					
	23 UMa	2016-11-15	FOIV						HD86378	SCI							
	20 0 1 1 2	2017-02-11				HD73108	SCI	SCI	HD92424								
	40 Leo	2017-02-09	F6IV				HD89024	SCI	SCI	HD93257							
	alf Cen	2016-10-16	A7IV				11000021	00.	00.	11000201		HD198149	SCI	222	Unclear log	one more SCI-CA	
	bet Fri	2017-02-10	A3III							HD36780	SCI	SCI	HD31767	Just one no	d pair on seco	and CAL was set	- ing rapidly
	bet I ma	2017-04-03	AO				HD86378	SCI	SCI	HD94247	SCI	SCI	HD95212			110 07 12, 1100 001	ngrapialy
	del Cry	2017-02-10	A01V				HD114113	SCI	SCI	HD111500		001	11200212				
	del Leo	2017-02-10				HD94336	SCI	SCI		110111000							
		2017-02-10				11234330	001	001	11033302			901	901	HD08262			
	del LIMa	2017-02-09	A3V						HD107465	801	SCI	HD102328	501	11030202			
		2017-02-09	ASV						HD107405	301	UD101673	9CI	801	HD113002			
	com Cor	2017-03-21	EGIV					UD140000	801	801	HD101073	301	301	HD113092			
	gam Ser	2017-04-06	FOIV					HD 149009		801	HD 142574	UD445000					
		2017-05-21	A () (HD141992	501		HD 140092					
	gam Uivia	2017-04-06	AUV						HD94247	501	501	HD95212	001	0.01	110407074		
	01000	2017-05-01	1/01/					11000070	0.01	001	LIDOCOAD	HD102224	SCI	501	HD10/2/4		
	GJ 380	2017-04-06	K8V					HD86378	SCI	SCI	HD95212						
	GJ 105A	2016-11-15	K3V						HD21051	SCI	HD13596	115 40 400					
	ksi Gem	2016-11-14	F5IV				115 50000	0.01	HD49968	SCI	SCI	HD48433	HD 52960				
		2016-11-15					HD52960	SCI									
	ksi Peg A	2016-11-14	F7V							HD218792	SCI						
		2016-11-16							HD209167	SCI	SCI	HD220009					
	lam Aur	2017-01-29	G1V									HD38656	SCI	SCI	HD40441		
	mu Vir	2017-02-10	F2V			HD131477	SCI	SCI	HD133165	SCI	HD130952						
	sig Boo	2017-04-03	F2V						HD133392	SCI							
		2017-04-06					HD126597	SCI	SCI	HD129972							
	tet Boo	2017-02-09	F7V						HD128902	SCI	SCI	HD128000	data quality	to be checke	ed for last CAI	-	
		2017-04-11							HD128902	SCI	SCI	HD138265					
	Vega	2016-04-18	A0V							HD163770	SCI	SCI only one SCI nod pa		aken			
		2017-04-06					HD164646	SCI	SCI	HD163770	only two nod pairs on the last cal						
	110 Her	2017-04-08	F6V				HD170951	SCI	SCI	HD176527							
	chi Her	2017-04-11	F8V								HD137704	SCI	SCI	HD144204	SCI	HD137704	
	lam Ser	2017-05-01	G0IV-V							HD145892	SCI	SCI	HD145085				
	sig Dra	2017-05-01	G9V				HD191277	SCI	SCI	HD170693							
	tau Boo	2017-05-12	F6IV								HD114326	SCI	SCI	HD125560			
	alf Aql	2017-05-12	A7V		HD184406	SCI	SCI	HD189695	HD192107	SCI							
	finished			00													
	decision pending			-79	tota	i stai	IS O	nse	erve	a wi	ith s	som	ne d	ata			
	to be repeated													~.~			
				1 1													
	Sample:			14	earr	ν ινρ	e s	lars		-D1							
	Sun like								\	- /							
7	sensitivity			1 5	colo	r tvn		toro			/ Q\						
<u> </u>	S OF ARI	ZONA®	•	10	2019	ιιyρ	5 2	1013		$\mathbf{J} - \mathbf{I}$	\mathbf{NO}						

Preliminary Results

Caveats:

(Why I shouldn't be showing you these results)

- Only about ¾ of total data has been analyzed todate.
 - Some requires additional pre-conditioning
 - Our last observing block ended May 22 this set is not included.
- Conservatively large aperture was used to measure the null:
 - Increases noise but ensures all flux is measured.
 - More recent pipeline comparisons suggest a significant improvement can be achieved via smaller apertures without losing flux.

Example Results (1)

- Beta UMa warm dust detected.
 - Preliminary indication that more excess is detected along major axis of cold disk seen by Herschel.

ARIZONA

Example Results (2)

 Most measurements are consistent with a nondetection of dust.

ARIZONA

- Excess Flux Signal/Uncertainty level for
 - subset of 22 stars.
 - Preliminary analysis.

Constraint on Exozodi Luminosity Function

Assumed Distribution: Log-Normal

- Median dust level does not appear to be a show stopper for imaging missions.
- Is the median zodi level non-zero?

- The HOSTS survey made good progress in 2016-2017.
 - 26 stars have now been observed.
- The initial look at the data suggest an exozodi luminosity distribution that is not an obvious hindrance to future exo-imaging missions.
- Additional observations and improved data analysis can provide input to mission planning for future exo-Earth imaging missions.

Backup Slides

Modeling other Dust Disks

- Collisional model by A. Gaspar can predict evolution of dust from comets (3-D model in the works).
- Collisional in-situ model from Kennedy and Wyatt provides comparison.

