Exoplanet Science with a Starshade: Exo-S, WFIRST, and Hab-Ex

Starshade Basics

Inner Working Angle (IWA)

25 to 50 Mm separation

30 m or 34 m diameter starshade

Telescope aperture diameter 1.1 m or 2.4 m

- PRO: Contrast and IWA decoupled from telescope aperture size
- PRO: No outer working angle
- PRO: Few reflections = high throughput, broad wavelength bandpass
- PRO: Starlight does NOT enter telescope
 - High quality telescope not required, wavefront correction unnecessary
- CON? Retargeting requires long starshade slews (days to weeks)

Are We Really Alone?

What We Can Learn from a Dot?

Maggie's Dream

The Many Faces of Earth: continents, oceans, weather, seasons

2005-08-02T22:31:51.787612

Maggie's Nightmare

Observing Sequence

- 1. Schedule known giant planet observations
- 2. Fill in gaps on sky with highest priority blind search target
- 3. Repeat with lower priority targets until fuel or time limit reached
- 4. Reserve 3rd year for follow-up / additional characterization revisits

Rendezvous mission, 2-year sequence, 55 stars visited, $\Delta v = 1266$ m/s

12 known giant planets. Blind search targets: 28 Earths, 7 sub-Neptunes, 8 Jupiters

Exo-S Final Report to NASA APS - March 18, 2015

Yield By Planet Type & Temperature

Exo-S Final Report to NASA APS - March 18, 2015

WFIRST and a Starshade

NIDE-FIELD INFRARED SURVEY TELESCORT

ASTROPHYSICS . DARK ENERGY

EXOPLANETS

0

WFIRST Starshade Accommodation Study

\rightarrow The Mission is in Phase A

- \rightarrow exoplanets imaging: "tech demo"
- → this could be our only chance to prove the concept
- → formulation of science and engineering requirements
- \rightarrow validation of technological milestones
- \rightarrow starshade off ramp
- → Phase B due to begin in one year → Launch in 2024/25

WFIRST Starshade Accommodation Study

→ 10-50x Faster Exposure times
→ Smaller inner working angle (70 mas)
→ Deeper contrast (1e-10)

→ No outer working angle
 → Can point off axis while in shadow for mosaics

DISKS AND WHOLE SYSTEMS.

Discovery Targets

Starshade Lab at JPL

NASA Habitable Exoplanets Imaging Mission

Jet Propulsion Laboratory California Institute of Technology

- → <u>http://www.jpl.nasa.gov/habex/</u>
- → One of four mission concepts under study for 2020 Decadal Survey
- \rightarrow Four concepts under study, reports due 2019
- \rightarrow Hab-Ex focus is on habitable worlds
- → Chairs Sara Seager, Scott Gaudi, managed by JPL
- \rightarrow 4-6.5 m telescope, coronagraph, starshade
- → Studies began in Spring 2016, currently investigating high readiness technologies, tall poles, and formulating the science "story"

Habitable Exoplanet Imaging Mission (HabEx)

Creating the Hab-Ex "Story":

Hopefully Detecting/Characterizing Some Planets

Exploring Our Unique and Amazing Neighboring Planetary Systems

VS.

Dr. Margaret Turnbull SETI Institute Carl Sagan Center for the Study of Life in the Universe