The Future of NASA’s Exoplanet Exploration Program

Stephen Unwin
Exoplanet Exploration Deputy Program Scientist
Jet Propulsion Laboratory, California Institute of Technology

29 April, 2014
The Exoplanet Exploration Program: Exploring New Worlds

Exploring How the Universe Works
Discovering and Characterizing Exoplanets
Searching for Signs of Life in the Galaxy

Space Missions and Mission Studies

- **Kepler**
- **AFTA**
- **Probe-Scale:** External Occulter (Starshade)

Public Engagement

- **Kepler Probe-Scale:**
- **Archives, Tools & Professional Education**

Supporting Research & Technology

- **Key Sustaining Research**
 - Keck Single Aperture Imaging and RV
 - Large Binocular Telescope Interferometer

Technology Development

- **Technology Development**
 - High Contrast Imaging
 - Deployable Star Shades
 - NASA Exoplanet Science Institute
Exoplanet Missions

- JWST
- TESS
- Kepler
- Spitzer
- Hubble
- Ground-based Observatories

Books:
- 2001 Decadal Survey
- New Worlds, New Horizons in Astronomy and Astrophysics
- 2010 Decadal Survey
The Search for Life in the Universe Requires η_{Earth}

Complete the census
- Kepler (warm planets)
- WFIRST microlensing (cool planets)

Find nearby transiting planets
- TESS

Characterize super-earth/mini-Neptunes
- JWST

Imaging and Spectroscopy of planets
- WFIRST-AFTA coronagraph
 - Jupiters, Neptunes, Super-Earths
- New Worlds Mission (‘Earth 2.0’)

η Earth
Kepler Mission

- Kepler Mission ended in May 2013 after a second reaction wheel failed
- Analysis of Kepler data continue
- Data from Quarter 0-17 (May 2009 – May 2013) are archived

April 17: Kepler team announced discovery of Kepler-186f, the first nearly Earth-sized planet located in the habitable zone of an M1 dwarf

February 26: announced Kepler confirms the existence of 715 new exoplanets using “verification by multiplicity”
Kepler’s ‘Second Light’ – the Proposed K-2 Mission

- A series of engineering demonstrations of 2-wheel performance on the spacecraft were performed in 2013
- With only two reaction wheels, operations are possible only in certain orientations (balancing solar pressure)
- Photometry possible at reduced precision (~60 ppm in 6 hours on V-12 G-star)
- In Feb 2104 a second detector module failed (40 of the original 44 operational)
- A Call for White Papers resulted in 42 submitted papers covering exoplanets, asteroseismology, open cluster studies, NEOs, and more.
- Kepler Project received permission in Dec 2013 to submit a proposal to the 2014 Astrophysics Senior Review of Operating Missions
 - Under review: Hubble, Chandra, Fermi, NuSTAR, Spitzer, Suzaku, Swift, XMM-Newton, and WISE
- If approved, K-2 will observe a series of ecliptic plane fields
Mission PI: George Ricker, MIT

Selection occurred April 5, 2013

SRR held February 2014

Development progressing on plan

Tentative launch date August 2017

Mission: All-Sky, two-year photometric exoplanet mapping mission.

Instruments: Four WFOV CCD cameras with overlapping FOV of 23x90deg. Passively-cooled 600-1000nm 4096x4096 pixel FPA

Science goal: Identify transiting planets around the brightest stars in the sky

- Planets with periods up to 1 month in the ecliptic (~HZ for M stars)
- Can find up to 1 year orbits in continuous viewing zones at ecliptic poles

A subset of the resulting planets will have their atmospheres characterized by:

- JWST
- Extremely Large Telescopes (ELTs)
- Future Exoplanet Explorers, Probes, and Large Missions
Large Binocular Telescope Interferometer (LBTI)
University of Arizona

Commissioning Status:
• All subsystems finalized and demonstrated on-sky
• Achieved closed-loop nulls on the sky (in Dec 2013)

Science Capabilities:
• LBTI will enable characterization of exo-solar planetary systems
• Survey 50 nearby stars for exozodiacal dust, at levels of 3-6 times (1σ) the dust in our own planetary system
2.4m aperture on-axis obscured telescope, 270K
28.5 degree inclination geosynchronous orbit, Atlas V 541 launch vehicle
Two-channel widefield instrument with IFU channel 0.6 to 2.0 µm for Dark Energy, NIR Surveys, and Exoplanet Microlensing
FPA: 6x3 4k x 4k HgCdTe detectors, 0.76 to 2.0 µm
Coronagraph instrument for Exoplanet Direct Imaging and Characterization
Mission life 6 years with coronagraph

Science Definition Team (SDT):
- SDT Interim Report due in May 2014
- SDT Final Report due in Jan 2015

WFIRST final report May 23, 2013
http://wfirst.gsfc.nasa.gov/
Exoplanet detection by AFTA Microlensing

- Search field towards galactic bulge
- Sensitive to ~3000 bound planets
- Sensitive to hundreds of unbound, free-floating planets to ~Mars mass
- Complements the census begun by Kepler
Sensitivity of AFTA Coronagraph for Imaging Exoplanets

- Model planets are shown:
 - Gas giants: red, yellow
 - Ice giants: blue-green
 - Terrestrial: blue

- Measurement goal is to measure the brightness of reflected light of each planet, across the spectrum.

- Science goal is to determine atmospheric gases, clouds, clues regarding origin & evolution of planet, and history of planet system.

- Debris Disks (exozodiacal dust)
- Characterize the spectra of over a dozen radial velocity planets
- Discover and characterize up to a dozen more ice and gas giants
- Provide crucial information on the physics of planetary atmospheres and clues to planet formation
- Respond to Decadal Survey to mature coronagraph technologies, leading to first images of a nearby Earth
Several Potential Technologies for High-Contrast Imaging

Primary Approach
(combined on filter wheel)

- Hybrid Lyot Coronagraph
- Shaped Pupil

Back-up approach

- PIAA-CMC (Phase-Induced Amplitude Apodization Complex Mask Coronagraph)

Downselection in Jan 2014

- TRL-5 at start of Phase A (Oct 2016)
- TRL-6 at PDR (Oct 2018)
Exoplanet Probe Studies

• In 2013 NASA began studies for two ‘probe-scale’ exoplanet missions
 – For consideration by 2020 Decadal Survey
 – To guide technology investment for remainder of decade
 – Candidate for 2017 new start if AFTA cannot be started this decade
• Two Science and Technology Definition Teams (STDTs) selected
 – Exo-C: Probe coronagraph
 – Exo-S: Probe starshade (external occulter)
• Success criteria include:
 – Compelling science, viable technology, $1B life cycle cost
• Both teams have written Interim Reports (May 2014)
• Final Mission Concept Reports due in January 2015
• Independent cost estimates due in February 2015
STDT Membership

<table>
<thead>
<tr>
<th>Last</th>
<th>First</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Stapelfeldt</td>
<td>Karl</td>
<td>NASA Goddard Space Flight Center</td>
</tr>
<tr>
<td>Belikov</td>
<td>Rus</td>
<td>NASA Ames Research Center</td>
</tr>
<tr>
<td>Bryden</td>
<td>Geoff</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>Cahoy</td>
<td>Kerri</td>
<td>Massachusetts Inst. of Technology</td>
</tr>
<tr>
<td>Chakrabarti</td>
<td>Supriya</td>
<td>Univ. of Massachusetts, Lowell</td>
</tr>
<tr>
<td>Marley</td>
<td>Mark</td>
<td>NASA Ames Research Center</td>
</tr>
<tr>
<td>McElwain</td>
<td>Michael</td>
<td>NASA Goddard Space Flight Center</td>
</tr>
<tr>
<td>Meadows</td>
<td>Vikki</td>
<td>Univ. of Washington</td>
</tr>
<tr>
<td>Serabyn</td>
<td>Gene</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>Trauger</td>
<td>John</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>* Chair</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Last</th>
<th>First</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Seager</td>
<td>Sara</td>
<td>Massachusetts Inst. of Technology</td>
</tr>
<tr>
<td>Cash</td>
<td>Webster</td>
<td>Univ. of Colorado</td>
</tr>
<tr>
<td>Domagal-Goldman</td>
<td>Shawn</td>
<td>NASA Goddard Space Flight Center</td>
</tr>
<tr>
<td>Kasdin</td>
<td>Jeremy</td>
<td>Princeton Univ.</td>
</tr>
<tr>
<td>Kuchner</td>
<td>Marc</td>
<td>NASA Goddard Space Flight Center</td>
</tr>
<tr>
<td>Roberge</td>
<td>Aki</td>
<td>NASA Goddard Space Flight Center</td>
</tr>
<tr>
<td>Shaklan</td>
<td>Stuart</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>Sparks</td>
<td>William</td>
<td>Space Telescope Science Institute</td>
</tr>
<tr>
<td>Thomson</td>
<td>Mark</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>Turnbull</td>
<td>Margaret</td>
<td>Global Science Institute</td>
</tr>
<tr>
<td>* Chair</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Starshade Deployment

at Northrop Grumman's Goleta Facility
Program objective: three compelling and viable mission concept reports by Jan 2015 with independent cost estimates by Feb 2015
ExEP: Recent Progress and a Look Ahead

Great Progress!

- Significant recent scientific discoveries:
 - Kepler current totals: confirmed (964), candidates (3845)
 - Kepler-186f: rocky planet in Habitable Zone of an M star
- Kepler demonstrated two-wheel science observations
- LBTI: reached sensitivity of 36x Solar System zodi level
- Downselected coronagraph technologies for AFTA
- Delivered 3 interim reports: AFTA and two Probes
- Technology: steady progress in high-contrast imaging, starshade deployment demonstrations

Looking Ahead:

- LBTI: final steps to commissioning
- WFIRST-AFTA: technology progress, final report and costs
- Probe studies: final reports and independent costs
- Sagan Summer Workshop “Imaging Planets & Disks”
- Exoplanet Program Analysis Group very active
‘Eyes on Exoplanets’: Interactive Tour

- All 3,600 candidate systems shown in FOV
- Each confirmed planet can be visited
- Continuously updated as planets are confirmed

http://eyes.jpl.nasa.gov/exoplanets
For more information on NASA exoplanet missions:

http://exep.jpl.nasa.gov

(c) 2014 California Institute of Technology. Government sponsorship acknowledged.