Starshade Readiness Working Group
Recommendation to
Astrophysics Division Director

Dr. Gary Blackwood, Exoplanet Exploration Program Manager
NASA Jet Propulsion Laboratory

Dr. Sara Seager, Professor of Planetary Science and Physics
Massachusetts Institute of Technology

Dr. Nick Siegler, Dr. Charley Noecker, NASA Jet Propulsion Laboratory

Dr. Tupper Hyde, NASA Goddard Spaceflight Center

November 9, 2016
Logistical Information

• NASA HQ Room 1Q39 (Glennan Conference Room)
• 12-2pm(PT)=3-5pm(ET)
• Webex screen share: https://jplwebex.jpl.nasa.gov
 – Meeting ID: 993979091
• Dial in: 844-575-9329 Meeting ID: 993979091
Outline and Agenda

- Introduction
 - Purpose, Executive Summary, Trade Criteria
 - Sara Seager and Gary Blackwood
- Option Descriptions
 - Assumptions
 - Charley Noecker
- Evaluation by Chief Technologist Team
 - Nick Siegler
- Evaluation by Technology Management Team
 - Tupper Hyde
- Trade Process
 - Musts, Wants, Risks, Opportunities
 - Gary Blackwood
- Summary of Recommended Option
 - Why ground validation is sufficient
 - Charley Noecker
- Dissent Discussion
 - Gary Blackwood
- ExoTAC Assessment
 - Alan Boss
- Closing Remarks/Next Steps
 - Sara Seager
- Discussion
 - All
Purpose of the Starshade Readiness Working Group (SSWG)

- The SSWG product (per charter) is to recommend a plan to validate starshade technology to the Astrophysics Division Director
- The SSWG answers these questions:
 1. How do we go from TRL5 to TRL 6?
 2. Imagine ourselves at KDP-C for a possible starshade science mission. Looking back, how did we convince all stakeholders to approve the mission?
 3. Put another way: Is a flight tech demo required to prove TRL6, and if so, what is it?
- SSWG workshop guideline we adopt the following (to make our work well-posed, without prescribing the future):
 - Rendezvous-CS (Concept Study\(^1\)) as setting the “threshold science” of the “enabled starshade science mission”
 - The purpose of the recommended technology validation strategy is to enable a starshade science mission

\(^1\) Exo-S final report: http://exoplanets.nasa.gov/stdt/
Executive Summary

• The SSWG conducted an open, technical evaluation using public evaluation criteria in a series of workshops and telecons
• The SSWG reached a broad consensus on the basis for the recommendation, on all points and for all findings, with all but one member
• The independent Technical Analysis Committee (TAC) fully concurs with the conclusions of this study, including the assumptions made, the process of evaluating the options, and the findings presented

SSWG Findings:

1. A ground-only development strategy exists to enable a starshade science flight mission such as WFIRST Starshade Rendezvous
2. A prior flight technology demonstration is not required prior to KDP-C of WFIRST Rendezvous
3. Development solutions exist that support a WFIRST Starshade Rendezvous by LRD FY26-28
4. Technology development for a Starshade Rendezvous mission is likely to provide significant technology benefits to both the HabEx and LUVOIR large mission studies
5. Two optional enhancements to the SSWG-recommended development approach recognized:
 a. A flight technology demonstration (mDOT) would enhance the ground development strategy for formation flying sensing and control and optical performance with additional cost and technical risk
 b. Long baseline ground demonstrations in air may provide some additional benefit for optical verification but at medium-to-high risk for interpretation of results
Current Starshade Context: Developments since 2015

• 3/2015: Final report from Exo-S Probe-Scale Study. Developed concept for (34m) starshade standalone mission and introduced concept for WFIRST Starshade Rendezvous (34m)

Membership
- Sara Seager, Chair (MIT)
- W. Cash (U. Colorado)
- S. Domagal-Goldman (NASA-GSFC)
- N. J. Kasdin (Princeton U.)
- M. Kuchner (NASA-GSFC)
- A. Roberge (NASA-GSFC)
- S. Shaklan (NASA-JPL)
- W. Sparks (STSci)
- M. Thomson (NASA-JPL)
- M. Turnbull (GSI)

JPL Design Team
- K. Warfield, Lead
- D. Lisman
- R. Baran
- R. Bauman
- E. Cady
- C. Heneghan
- S. Martin
- D. Scharf
- R. Trabert
- D. Webb
- P. Zarifian

• 1/2016: Signed charter of the Starshade Readiness Working Group (SSWG)
• 2/2016: Final Report of the Exo-S Extended Study. Explored Rendezvous variants: larger (40m) and smaller (26m) starshade sizes
• 3/2016: Starshade Technology Project created to achieve TRL5. Community workshop planned for Dec 1 2016
• 4/2016: Decadal large studies chartered, both HabEx and LUVOIR considering starshades for exoplanet direct imaging
• 6/2016: APD directs WFIRST to be designed to accommodate a starshade, under study by project, ExEP and SITs. Interim assessment to be delivered November 30 2016, final decision prior to KDP-B
SSWG Charter: Working Group creates the Roadmap following TRL5

SSWG chartered by NASA APD
January 15, 2016

TRL5
Roadmap
Implementation
KDP-C for a Starshade Science Mission

(Declared by Nick, fy19)

https://exoplanets.nasa.gov/exep/studies/sswg/

Adopted from Exo-S Probe Study Report
SSWG Chartered Membership

Working Group Membership

• Co-Chairs:
 – Sara Seager MIT
 – Gary Blackwood NASA ExEP / JPL

• Steering Committee
 – Nick Siegler NASA ExEP / JPL
 – Karl Stapelfeldt NASA ExEP / JPL
 – Tupper Hyde NASA / GSFC
 – Remi Soummer STScI
 – Tom Greene NASA / ARC
 – Charley Noecker NASA / JPL
 – Mark Melton NASA / GSFC WFIRST
 – Neil Gehrels NASA / GSFC WFIRST

• Members
 (aim to reach to consensus, including Steering Committee)
 – Web Cash U. of Colorado Exo-S STDT
 – Jeremy Kasdin Princeton U. Exo-S STDT
 – Maggie Turnbull SETI Exo-S STDT
 – Stuart Shaklan NASA / JPL Exo-S STDT
 – Mark Thomson NASA / JPL Exo-S STDT
 – Doug Lisman NASA / JPL Exo-S STDT
 – Aki Roberge NASA / GSFC Exo-S STDT
 – Kerri Cahoy MIT
 – Matt Greenhouse NASA / GSFC
 – Brent Knight NASA / MSFC
 – Denise Podolski NASA HQ / STMD
 – Steve Battel Battel Engineering
 – Keith Warfield NASA ExEP / JPL
 – Lee Feinberg NASA / GSFC JWST
 – Geoff Andersen US Air Force Academy
 – Joe Pelliciotti NASA / GSFC JWST

• Subject Matter Experts and Guests:

Analysts for Science and Technical figures of merit:
 – Dan Scharf NASA / JPL
 – Robert Laskin NASA / JPL
 – Peg Frerking NASA / JPL
 – Simone D’Amico Stanford
 – Neerav Shah NASA / GSFC
 – Mark Clampin NASA / GSFC
 – Bruce Macintosh Stanford
 – Ann Shipley U. of Colorado

SMD representative
 – Douglas Hudgins NASA APD

STMD representative
 – Jeff Sheehy NASA HQ / STMD
 – Keith Belvin LaRC / STMD

Industry
 – Chip Barnes Ball Aerospace
 – Alison Nordt Lockheed Martin
 – Jeff Hunt Boeing
 – Kurt Klaus Boeing
 – Steve Warwick Northrop Grumman
 – Jon Arenberg Northrop Grumman

WFIRST:
 – David Content NASA / GSFC – WFIRST

ExoTAC
 – Alan Boss Carnegie Institution DTM
 – Joe Pitman Exploration Sciences
 – Lisa Poyneer LLNL
 – Steve Ridgway NOAO
 – Rebecca Oppenheimer AMNH
Working Group Membership

- **Co-Chairs:**
 - Sara Seager, MIT
 - Gary Blackwood, NASA ExEP/JPL

- **Steering Committee:**
 - Nick Siegler, NASA ExEP/JPL
 - Karl Stapelfeldt, NASA ExEP/JPL
 - Tupper Hyde, NASA/GSFC
 - Tom Greene, NASA/ARC
 - Charley Noecker, NASA/JPL
 - Neil Gehrels, NASA/GSFC WFIRST

- **Members** (aim to reach to consensus, including Steering Committee)
 - Web Cash, U. of Colorado, Exo-S STDT
 - Jeremy Kasdin, Princeton U., Exo-S STDT
 - Maggie Turnbull, SETI, Exo-S STDT
 - Stuart Shaklan, NASA/JPL, Exo-S STDT
 - Mark Thomson, NASA/JPL, Exo-S STDT
 - Doug Lisman, NASA/JPL, Exo-S STDT
 - Aki Roberge, NASA/GSFC, Exo-S STDT
 - Matt Greenhouse, NASA/GSFC
 - Brent Knight, NASA/MSFC
 - Denise Podolski, NASA HQ/STMD
 - Keith Warfield, NASA ExEP/JPL
 - Lee Feinberg, NASA/GSFC JWST
 - Geoff Andersen, US Air Force Academy

- **Subject Matter Experts and Guests:**

 Analysts for Science and Technical figures of merit:
 - Dan Scharf, NASA/JPL
 - Robert Laskin, NASA/JPL
 - Jeff Booth, NASA/JPL
 - Simone D’Amico, Stanford
 - Neerav Shah, NASA/GSFC
 - Ann Shipley, U. of Colorado

 STMD representative
 - Keith Belvin, LaRC/STMD

 Industry
 - Chip Barnes, Ball Aerospace
 - Alison Nordt, Lockheed Martin
 - Stuart Wiens, Lockheed Martin
 - Jeff Hunt, Boeing
 - Steve Warwick, Northrop Grumman
 - Jon Arenberg, Northrop Grumman
 - Tiffany Glassman, Northrop Grumman

 ExoTAC
 - Alan Boss, Carnegie Institution DTM
 - Joe Pitman, Exploration Sciences
The Three Key Technology Areas for a Starshade
(mapped to 5 gaps S1-S5)

(1) Starlight Suppression

Suppressing diffracted light from on-axis starlight (S-1)
Suppressing scattered light off petal edges from off-axis Sunlight (S-2)

(2) Deployment Accuracy and Shape Stability

Positioning the petals to high accuracy, blocking on-axis starlight, maintaining overall shape on a highly stable structure (S-5)

(3) Formation Sensing and Control

Maintaining lateral offset requirement between the spacecrafts (S-3)
Fabricating the petals to high accuracy (S-4)

S-# corresponds to ExEP Starshade Technology Gap number (http://exoplanets.nasa.gov/exep/technology/gap-lists)
Trade Approach for SSWG

- Adapted from Kepner-Tregoe methods. *The Rational Manager*, Kepner and Tregoe, 1965
- A systematic approach for creating options and decision making

<table>
<thead>
<tr>
<th>Decision Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature 1</td>
</tr>
<tr>
<td>Feature 2</td>
</tr>
<tr>
<td>Feature 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Musts</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
</tr>
<tr>
<td>M2</td>
</tr>
<tr>
<td>M3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wants</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>w1%</td>
</tr>
<tr>
<td>W2</td>
<td>w2%</td>
</tr>
<tr>
<td>W3</td>
<td>w3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risks</th>
<th>C</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk 1</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>Risk 2</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score 1</td>
<td>Score 2</td>
<td></td>
</tr>
</tbody>
</table>

SSWG trade used qualitative not quantitative weights
Consider opportunities in addition to risks

C = Consequence, L = Likelihood
Trade Criteria (1 of 2): Defining a Successful Outcome (created and adopted at the first face-to-face meeting)

TRADE STATEMENT: Recommend a development strategy to enable a starshade science flight mission.

MUSTS (Requirements): Go/No Go

<table>
<thead>
<tr>
<th>MUSTS</th>
<th>Technical</th>
<th>Programmatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Achieves TRL-6 by starshade KDP-C for the N=3 critical technologies</td>
<td>Compatibility with Rendezvous-CS technical needs</td>
</tr>
<tr>
<td>M2</td>
<td>Compatible with Rendezvous-CS technical needs</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>Forward traceable to expected HabEx and LUVOIR technical needs</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>Likely to convince responsible critics at KDP-C to proceed with a starshade flight mission</td>
<td></td>
</tr>
</tbody>
</table>

WANTS (Goals): Relative to each other, for those that pass the Musts:

1. Technical: Relative technical criteria
2. Programmatic: Relative cost, schedule, other

See details to follow.

RISKS and OPPORTUNITIES – scored as H,M,L

Schedule

- M7: Schedule-compatible with Rendezvous-CS launch within WFIRST prime mission (assume: LRD of Starshade Rendezvous by late fy28)
- M8: SSWG completes recommendation by November

Cost

- M9: Total cost of technology development strategy < 10% of LCC (~$100M)
Trade Criteria (2 of 2): Defining a Successful Outcome (created and adopted at the first face-to-face meeting)

<table>
<thead>
<tr>
<th>WANTS (DISCRIMINATORS)</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical</td>
<td></td>
</tr>
<tr>
<td>W1</td>
<td>Relative degree to which the strategy exceeds TRL6 at KDP-C for N=3 critical technologies</td>
</tr>
<tr>
<td>W2</td>
<td>Admits enhancing Starshade technologies</td>
</tr>
<tr>
<td>W3</td>
<td>Minimize the number N of critical enabling technologies</td>
</tr>
<tr>
<td>Schedule</td>
<td>Med+</td>
</tr>
<tr>
<td>W4</td>
<td>Enables Earliest launch within WFIRST prime mission</td>
</tr>
<tr>
<td>W5</td>
<td>Exceed TRL gates at key intermediate milestones (2020 DS, KDP-A, KDP-B, KDP-C)</td>
</tr>
<tr>
<td>Cost</td>
<td>Med</td>
</tr>
<tr>
<td>W6</td>
<td>Lowest cost of tech development strategy</td>
</tr>
<tr>
<td>W7</td>
<td>Relative leverage of other programs outside of SMD/STMD</td>
</tr>
<tr>
<td>Other / Programmatic</td>
<td>Med</td>
</tr>
<tr>
<td>W8</td>
<td>Closest alignment to something in which STMD would invest</td>
</tr>
<tr>
<td>W9</td>
<td>Maximizes even playing field for industry in potential prime contract for science mission</td>
</tr>
</tbody>
</table>
Trade Evaluation: Scoring Method

MUSTS (Critical)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>Achieves TRL-6 by starshade KDP-C for the N=3 critical technologies</td>
</tr>
<tr>
<td>M2</td>
<td>Compatible with Rendezvous-CS technical needs</td>
</tr>
<tr>
<td>M3</td>
<td>Forward traceable to expected HabEx and LUVOIR technical needs</td>
</tr>
<tr>
<td>M4</td>
<td>Likely to convince responsible critics at KDP-C to proceed with a starshade flight mission</td>
</tr>
<tr>
<td>Schedule</td>
<td></td>
</tr>
<tr>
<td>M7</td>
<td>Schedule-compatible with Rendezvous-CS launch within WFIRST prime mission (assume: LRD of Starshade Rendezvous by late fy28)</td>
</tr>
<tr>
<td>M8</td>
<td>SSWG completes recommendation by November 2016</td>
</tr>
<tr>
<td>Cost</td>
<td></td>
</tr>
<tr>
<td>M9</td>
<td>Total cost of technology development strategy < 10% of LCC (~$100M)</td>
</tr>
</tbody>
</table>

WANTS (Discriminators)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weight</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>W1</td>
<td>Relative degree to which the strategy exceeds TRL6 at KDP-C for N=3 critical technologies</td>
<td></td>
</tr>
<tr>
<td>W2</td>
<td>Admits enhancing Starshade technologies</td>
<td></td>
</tr>
<tr>
<td>W3</td>
<td>Minimize the number N of critical enabling technologies</td>
<td></td>
</tr>
<tr>
<td>Schedule</td>
<td>Med+</td>
<td></td>
</tr>
<tr>
<td>W4</td>
<td>Enables earliest launch within WFIRST prime mission</td>
<td></td>
</tr>
<tr>
<td>W5</td>
<td>Exceed TRL gates at key intermediate milestones (2020 DS, KDP-A, KDP-B, KDP-C)</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>Med</td>
<td></td>
</tr>
<tr>
<td>W6</td>
<td>Lowest cost of tech development strategy</td>
<td></td>
</tr>
<tr>
<td>W7</td>
<td>Relative leverage of other programs outside of SMD/STMD</td>
<td></td>
</tr>
<tr>
<td>Other / Programmatic</td>
<td>Med</td>
<td></td>
</tr>
<tr>
<td>W8</td>
<td>Closest alignment to something in which STMD would invest</td>
<td></td>
</tr>
<tr>
<td>W9</td>
<td>Maximizes even playing field for industry in potential prime contract for science mission</td>
<td></td>
</tr>
</tbody>
</table>

RISKS

- Yes, Yes, or expected likely
- Unknown
- No, No, or expected showstopper
- Point not yet in consensus

Identify "Best" and others are:
- Wash
- Small Difference
- Significant Difference
- Very Large Difference

These Criteria and Risks Emerged as Significant Discriminators
SSWG Work Flow
Each team performed a detailed evaluation

Chief Technologist Team:
Siegler, Noecker, Pitman, Barnes Lisman, Greenhouse, Anderson, Knight

Technology Management Team:
Hyde, Laskin, Warfield, Feinberg, Anderson

Science Team: Stapelfeldt, Turnbull, Seager, Lisman, Warwick, Noecker, Boss
Exoplanet Exploration Program

Schedule

SSWG Top Level Schedule

<table>
<thead>
<tr>
<th>Events</th>
<th>FY16</th>
<th>FY17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telecons Workshops</td>
<td>2/11</td>
<td>1/12</td>
</tr>
<tr>
<td>Kickoff #1</td>
<td>2/25-26</td>
<td>10/13</td>
</tr>
<tr>
<td>#1</td>
<td>3/10</td>
<td>6/16</td>
</tr>
<tr>
<td>#2</td>
<td>5/5</td>
<td>7/14</td>
</tr>
<tr>
<td></td>
<td>5/26</td>
<td>8/11</td>
</tr>
<tr>
<td></td>
<td>4/7</td>
<td>9/6-9</td>
</tr>
</tbody>
</table>

Advocates

[1] STDT
- Science & Tech. Goals
 - Concept Goals Delivered ▼ 1/15

[2] TRL Definitions
- TRL 5.6.7 ▼ Delivered

[3] Validation Concepts
- Technology Plans
- TRL Assessments
 - Options ▼ PFOM ▼

- TFOΜ ▼

[5] TRL Assessment
- Deliver Assessment ▼ 8/18

[6] Technology Management Team
- Deliver Analysis ▼ 8/18

[7] Brief ExoTAC
- Brief TAC ▼ 10/17
- Deliver Validation Plan to HQ ▼ 11/9

[8] Recommendation to APD

SSWG Glossary
- APD: Astrophysics Directorate
- PFOM: Programmatic Figure of Merit
- SSWG: Starshade Readiness Working Group
- STDT: Science & Technology Definition Team
- TAC: Technology Analysis Committee
- TFOМ: Technical Figure of Merit
- TRL: Technology Readiness Level

Scheduler: G. Luzwick
OPTION DESCRIPTIONS
Overview of the Options Table (Descriptive)

<table>
<thead>
<tr>
<th>Basic Ground</th>
<th>Extended Ground</th>
<th>Space Demo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deployment</td>
<td>Formation Control</td>
<td>Optical Diffraction</td>
</tr>
<tr>
<td>Full-scale high-fidelity deployment prototype components & systems</td>
<td>- Full-scale high-fidelity deployable prototype starshade</td>
<td>- Optical Diffraction Demo at ISS</td>
</tr>
<tr>
<td>- Off-loaded unassisted operation</td>
<td>- Off-loaded deployment using WFIRST LOMPS engineering model sensor in diffraction testbed</td>
<td>- Virtual Space Telescope Development Program</td>
</tr>
<tr>
<td>Improved Thermal and Dynamics model fidelity</td>
<td>- Improved thermal and dynamics testing and control via the WFIRST rendezvous approach</td>
<td>- ExoPlanet Exploration Program</td>
</tr>
<tr>
<td>- Starshade deployment is unlike WFIRST rendezvous</td>
<td>- Validation and prototyping of alignment sensing & control of the WFIRST rendezvous</td>
<td>- ExoPlanet Exploration Program</td>
</tr>
<tr>
<td>Structural Stability</td>
<td>Steward</td>
<td>Satellite Mission</td>
</tr>
<tr>
<td>Validate diffraction models for out-of-band (low suppression)</td>
<td>- Validate diffraction models for out-of-band (low suppression)</td>
<td>- Launch & Operations office of the ISS Program</td>
</tr>
<tr>
<td>- Alignment sensing using WFIRST LOMPS engineering model sensor in diffraction testbed</td>
<td>- Alignment sensing using WFIRST LOMPS engineering model sensor in diffraction testbed</td>
<td>- Launch & Operations office of the ISS Program</td>
</tr>
<tr>
<td>Refine control system algorithm/models and incorporate sensor data from the WFIRST LOMPS DM</td>
<td>- Refine control system algorithm/models and incorporate sensor data from the WFIRST LOMPS DM</td>
<td>- Launch & Operations office of the ISS Program</td>
</tr>
<tr>
<td>Simulate sensing and control scenarios</td>
<td>- Simulate sensing and control scenarios</td>
<td>- Launch & Operations office of the ISS Program</td>
</tr>
<tr>
<td>Optical Diffraction</td>
<td>Formation Control</td>
<td>Space Demo</td>
</tr>
<tr>
<td>25mm starshades tested at Princeton with form of flight</td>
<td>- 25mm starshades tested at Princeton with form of flight</td>
<td>- Deploying & Operations office of the ISS Program</td>
</tr>
<tr>
<td>110mm starshades tested indoors (XRCF) at contrast of 1E-6</td>
<td>- 110mm starshades tested indoors (XRCF) at contrast of 1E-6</td>
<td>- Deploying & Operations office of the ISS Program</td>
</tr>
<tr>
<td>- Validation and prototyping of alignment sensing & control at the WFIRST rendezvous</td>
<td>- Validation and prototyping of alignment sensing & control at the WFIRST rendezvous</td>
<td>- Deploying & Operations office of the ISS Program</td>
</tr>
<tr>
<td>2D experiments with 1-octave and 2-octave</td>
<td>- 2D experiments with 1-octave and 2-octave</td>
<td>- Deploying & Operations office of the ISS Program</td>
</tr>
<tr>
<td>- Testing of optical diffraction at petal "valleys"</td>
<td>- Testing of optical diffraction at petal "valleys"</td>
<td>- Deploying & Operations office of the ISS Program</td>
</tr>
<tr>
<td>Verify manufacturability of edges and coatings for lengths of many meters</td>
<td>- Verify manufacturability of edges and coatings for lengths of many meters</td>
<td>- Deploying & Operations office of the ISS Program</td>
</tr>
<tr>
<td>- Verify methods of scatter measurement for 1-m sections over long distances (indoors, in air)</td>
<td>- Verify methods of scatter measurement for 1-m sections over long distances (indoors, in air)</td>
<td>- Deploying & Operations office of the ISS Program</td>
</tr>
<tr>
<td>- Develop statistical understanding of scatter and variations to scatter at that scale</td>
<td>- Develop statistical understanding of scatter and variations to scatter at that scale</td>
<td>- Deploying & Operations office of the ISS Program</td>
</tr>
</tbody>
</table>

Additional Notes:

- Four “Basic Ground” options and six piggy-backers (Extended Ground & Space)
- Basic Ground options are supposedly sufficient for TRL-6
- Piggyback options add value to a Basic Ground to fill a perceived gap
- Brief descriptions
- Summaries for the 3 technology areas comprising 5 technology gaps
Option Comparison (1/2)

• Basic Ground Options
 – Full suite of laboratory tests to cover all three critical technologies
 – Option 1a: for Rendezvous-CS (science focused 3 year)
 – Option 1b: for Rendezvous-CS recast as HabEx-LUVOIR technology mission, 3 year – same design and performance as 1a
 – Option 4a: for Rendezvous-ES (science focused 3yr)
 – Option 4b: for Rendezvous-ES (science focused 1yr)
 – Main differences between 1* and 4*:
 • Size of Rendezvous starshade
 • Size & fidelity of TRL 6 test article
 → Implications for cost, schedule, and risk getting to Rendezvous mission

SSWG created and analyzed a rich option space
Option Comparison (2/2)

- **Extended Ground Options (piggybacking on a Basic Ground option)**
 - Option 2c: Adds testing in an outdoor range with artificial source or with siderostat and starlight
 - Option 2d: Adds testing in an outdoor range with artificial source and siderostat
 - Minor differences between 2c and 2d, amenable to merging
 - Option 2c emphasizes a science goal: survey of exoplanet stars to detect exozodi

- **Space Options (piggybacking on a Basic Ground option)**
 - Option 2a: Adds a small-sat starshade optical and formation flying demonstration in high Earth orbit, with science observation of one or two stars (such as Canopus or Beta Pictoris) and WFIRST-like sensors and algorithms
 - Option 2b: Adds a small-sat starshade formation flying demonstration in high Earth orbit, with a non-science starshade and WFIRST-like sensors and algorithms
 - Option 6a: Adds a zero-g ISS-based demonstration of deployment accuracy and structural stability with an 8m scale model starshade
 - Option 6b: Adds an ISS-based optical and formation flying demonstration

Sharing the best features among the options improved them all
Basic Ground Options 1a, 1b, 4a, 4b

- These 4 are stand-alone ground-based options, aiming to satisfy TRL 6 for all technology areas AND
- These are the basis for completeness of all the other options (piggybacking)
- We must scrutinize these closely because of their greater importance
- Stewards focused on two familiar structural concepts to frame the tech development plans; but the plans are architecture-independent

<table>
<thead>
<tr>
<th>Presented on</th>
<th>Option 1a Focused ground TRL6 to flight</th>
<th>Option 1b Starshade rendezvous as tech demo</th>
<th>Option 4a Rendezvous Extended Study</th>
<th>Option 4b Rendezvous Extended Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jon Arenberg (NGAS)</td>
<td>Jon Arenberg (NGAS)</td>
<td>Doug Lisman (JPL)</td>
<td>Doug Lisman (JPL)</td>
<td></td>
</tr>
</tbody>
</table>

Brief Description
- Presented on
- Steward
- Basic Ground

Focused ground demonstrations in all 3 technology areas. Prototype sub-assemblies at TRL-6 are the same size as the starshade for rendezvous with WFIRST for a science mission

Identical to Option 1a but recast as preparation for a tech demo starshade mission, rendezvousing with WFIRST, serving HabEx & LUVOIR.

Focused ground demonstrations in all 3 technology areas. A starshade prototype for TRL-6 is the same size (26 m) as the starshade for rendezvous with WFIRST for a science mission.

Same as Option 4a except:
- Starshade diameter is 22 m
- 2 yr Class D science mission
Options 1a, 1b

- Based on Rendezvous-CS concept, JWST, Non-NASA experience
- **Structural demos** are kept size-agnostic as long as possible
- **Formation sensing & control** in lab and in simulation
- **High accuracy diffraction** tests, in vacuum if needed
- **Solar edge scatter** manufacturing and testing extended to large samples

<table>
<thead>
<tr>
<th>Option 1a</th>
<th>Option 1b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deployment Accuracy (S-4)</td>
<td>Starshade rendezvous as tech demo</td>
</tr>
<tr>
<td>• Full-scale high-fidelity deployment prototype components & systems</td>
<td></td>
</tr>
<tr>
<td>• Off-loaded unassisted operation</td>
<td></td>
</tr>
<tr>
<td>• Extensive analysis relates performance to flight requirements</td>
<td></td>
</tr>
<tr>
<td>Structural Stability (S-5)</td>
<td></td>
</tr>
<tr>
<td>• Improved Thermal and Dynamics model fidelity</td>
<td></td>
</tr>
<tr>
<td>• Edge distortions from thermal and dynamics used as input to the optical models to understand stray light effects</td>
<td></td>
</tr>
<tr>
<td>Formation Sensing & Control (S-3)</td>
<td></td>
</tr>
<tr>
<td>• Validate diffraction models for out-of-band (low suppression) alignment sensing using WFIRST LOWFS engineering model sensor in diffraction testbed</td>
<td></td>
</tr>
<tr>
<td>• Refine control system algorithm/models and incorporate sensor test data from the WFIRST LOWFSC EM</td>
<td></td>
</tr>
<tr>
<td>• Simulate sensing and control scenarios</td>
<td></td>
</tr>
<tr>
<td>Optical Diffraction Modeling (S-1)</td>
<td></td>
</tr>
<tr>
<td>• 25mm starshades tested at Princeton with form of flight designs</td>
<td></td>
</tr>
<tr>
<td>• 100mm starshades tested indoors (XRCF?) at contrast of 1E-9, with measurement uncertainty <10% and agreement with models within uncertainties</td>
<td></td>
</tr>
<tr>
<td>• Tests explore dependence on wavelength, starshade diam, and separation distance in the neighborhood of flight-like Fresnel number</td>
<td></td>
</tr>
<tr>
<td>Solar Edge Scatter (S-2)</td>
<td></td>
</tr>
<tr>
<td>• Verify manufacturability of edges and coatings for lengths of many meters</td>
<td></td>
</tr>
<tr>
<td>• Verify methods of scatter measurement for ~1m sections over long distances (indoors, in air)</td>
<td></td>
</tr>
<tr>
<td>• Develop statistical understanding of scatter and variations to scatter at that scale</td>
<td></td>
</tr>
<tr>
<td>• Verify edge performance after environment tests of samples</td>
<td></td>
</tr>
</tbody>
</table>
Options 4a, 4b

- Tech development based on Rendezvous-ES
- **Structure demos** use TRL5 hardware in TRL6 development, same size as Rendezvous-ES
- Formation sensing & control in lab and in simulation
- High accuracy diffraction tests, in vacuum if needed
- Solar edge scatter manufacturing and testing extended to large samples

Option 4a: Rendezvous Extended Study

- **Deployment Accuracy (S-4)**
 - Full-scale high-fidelity deployable prototype starshade
 - Off-loaded unassisted operation
 - Extensive analysis relates performance to flight requirements

- **Formation Sensing & Control (S-3)**
 - Validate diffraction models for out-of-band (low suppression) alignment sensing using WFIRST LOWFS engineering model sensor in diffraction testbed
 - Refine control system algorithm/models and incorporate sensor test data from the WFIRST LOWFSC EM
 - Simulate sensing and control scenarios

- **Optical Diffraction Modeling (S-1)**
 - 25mm starshades tested at Princeton with form of flight designs
 - 100mm starshades tested indoors (XRCF?) at contrast of 1E-9, with measurement uncertainty <10% and agreement with models within uncertainties
 - Tests explore dependence on wavelength, starshade diam, and separation distance in the neighborhood of flight-like Fresnel number

- **Solar Edge Scatter (S-2)**
 - Verify manufacturability of edges and coatings at lengths ~1-2m
 - Verify methods of scatter measurement for ~1m sections over long distances (indoors, in air)
 - Statistical understanding of scatter and its variations at that scale
 - Verify edge performance after environment tests of samples

Identical to Option 4a except petals are 6 m

- **Structural Stability (S-5)**
 - Thermal and dynamic testing
 - Revise and validate STOP analyses
 - 8m petal test article, 10m central disk

ExoPlanet Exploration Program
Extended Ground Options 2c, 2d

- Two augmentations of Basic Ground
- Adding long-baseline starshade tests in atmosphere, outdoors
 - Test optical diffraction models at intermediate size and distance
 - Conduct starshade science observations
- Options evolved to be very similar, leaning toward merger

<table>
<thead>
<tr>
<th></th>
<th>Extended Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 2c</td>
<td>Long Baseline Facility</td>
</tr>
<tr>
<td>Option 2d</td>
<td>Extended Desert Testing</td>
</tr>
<tr>
<td>Presented on</td>
<td>7/26/2016</td>
</tr>
<tr>
<td>Steward</td>
<td>Web Cash (Colorado)</td>
</tr>
<tr>
<td>Brief Description</td>
<td>Long baseline (up to 30 km) tests at outdoor ground facilities, using stars or artificial light sources, to verify optical performance models and tracking/ formation flying technologies</td>
</tr>
<tr>
<td></td>
<td>3/24/2016</td>
</tr>
<tr>
<td></td>
<td>6/20/2016</td>
</tr>
<tr>
<td></td>
<td>Steve Warwick (NGAS)</td>
</tr>
<tr>
<td></td>
<td>Long baseline (10-20 km) tests in the Atacama Desert using a siderostat with stars, to verify optical scaling relations</td>
</tr>
</tbody>
</table>
Extended Ground: 2c, 2d

- **Piggybacking to Basic Ground; augments Option 1a,b or 4a,b**
- **Long baseline tests outdoors to look for any deviations from diffraction “standard model”**
- **Alignment control also needed, opportunity for demos**
- **Minor differences, possible merger**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Option 2c: Long Baseline Facility</th>
<th>Option 2d: Extended Desert Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deployment Accuracy (S-4)</td>
<td>Includes all of "Deployment Accuracy" from Option 1a or 4a.</td>
<td>Includes all of "Deployment Accuracy" from Option 1a or 4a.</td>
</tr>
<tr>
<td></td>
<td>• Non-deployed starshades, unlike WFIRST rendezvous</td>
<td>Non-deployed starshades, unlike WFIRST rendezvous</td>
</tr>
<tr>
<td>Structural Stability (S-5)</td>
<td>Includes all of "Structural Stability" from Option 1a or 4a.</td>
<td>Includes all of "Structural Stability" from Option 1a or 4a.</td>
</tr>
<tr>
<td></td>
<td>• Starshade metering structure is unlike WFIRST rendezvous</td>
<td>Starshade metering structure is unlike WFIRST rendezvous</td>
</tr>
<tr>
<td>Formation Sensing & Control (S-3)</td>
<td>Includes all of "Formation Sensing & Control" from Option 1a or 4a.</td>
<td>Includes all of "Formation Sensing & Control" from Option 4a.</td>
</tr>
<tr>
<td></td>
<td>• Adds demonstration of alignment sensing and control via the siderostat following the WFIRST</td>
<td>Could include formation flying activities from Option 2c.</td>
</tr>
<tr>
<td></td>
<td>rendezvous approach</td>
<td></td>
</tr>
<tr>
<td>Optical Diffraction Modeling (S-1)</td>
<td>Includes all of "Optical Diffraction" from Option 1a or 4a.</td>
<td>Includes all of "Optical Diffraction" from Option 1a or 4a.</td>
</tr>
<tr>
<td></td>
<td>• Adds a quantitative model validation for a 0.5-0.9 m diam starshade operated at flight-like</td>
<td>Adds a quantitative model validation for a 0.3-0.7 m diam starshade operated at flight-like Fresnel</td>
</tr>
<tr>
<td></td>
<td>Fresnel number for 10-30 km distance in outdoor atmosphere with starlight or artificial light.</td>
<td>Fresnel number for 10-20 km distance in outdoor atmosphere with starlight.</td>
</tr>
<tr>
<td>Solar Edge Scatter (S-2)</td>
<td>Includes all of "Solar Edge Scatter" from Option 1a or 4a.</td>
<td>Includes all of "Solar Edge Scatter" from Option 1a or 4a.</td>
</tr>
<tr>
<td></td>
<td>• Adds testing of solar diffraction at petal "valleys"</td>
<td>Adds testing of solar diffraction at petal "valleys"</td>
</tr>
</tbody>
</table>
Option 2a: mDOT

- Miniaturized Distributed Occulter & Telescope
- Flight mission concept with the possibility of a scientific result
- Formation flying & control with representative disturbances
- Optical diffraction demo at 3m size
- Align to and image one/two exoplanet systems
Option 2b: Virtual Space Telescope

- Pure formation flying demo
- Starshade to diffract light for an alignment signal, not to suppress starlight
- Use WFIRST-relevant sensors and avionics subsystems

<table>
<thead>
<tr>
<th>Option 2b Virtual Space Telescope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deployment Accuracy</td>
</tr>
<tr>
<td>Includes all of "Deployment Accuracy" from Option 1a or 4a</td>
</tr>
<tr>
<td>Structural Stability</td>
</tr>
<tr>
<td>Includes all of "Structural Stability" from Option 1a or 4a</td>
</tr>
<tr>
<td>Formation Sensing & Control</td>
</tr>
<tr>
<td>Includes all of "Formation Sensing & Control" from Option 1a or 4a</td>
</tr>
<tr>
<td>Adds a small-satellite mission demonstrating formation acquisition and mode transitions, formation alignment control in HEO</td>
</tr>
<tr>
<td>Optical Diffraction Modeling</td>
</tr>
<tr>
<td>Includes all of "Optical Diffraction" from Option 1a or 4a</td>
</tr>
<tr>
<td>Solar Edge Scatter</td>
</tr>
<tr>
<td>Includes all of "Solar Edge Scatter" from Option 1a or 4a</td>
</tr>
</tbody>
</table>
Option 6a: ISS deployment demo

- Deployment test article at 8m size, operated at ISS
- Photogrammetry to verify accurate deployment
- Accelerometers to study dynamics

Option 6a Deployment Demo at ISS

- **Deployment Accuracy**
 Includes all of "Deployment Accuracy" from Option 1a or 4a
 Adds 8 m prototype starshade on ISS; deployment approach similar to the WFIRST rendezvous mission Verification via photogrammetry.

- **Structural Stability**
 Includes all of "Structural Stability" from Option 1a or 4a
 Can test thermal stability and dynamics of the starshade in a space environment.

- **Formation Sensing & Control**
 Includes all of "Formation Sensing & Control" from Option 4a

- **Optical Diffraction Modeling**
 Includes all of "Optical Diffraction" from Option 1a or 4a

- **Solar Edge Scatter**
 Includes all of "Solar Edge Scatter" from Option 1a or 4a
Option 6b: ISS-based Diffraction demo

- Starshade flying on halo orbits near ISS
- Telescope on ISS
- Demonstrate alignment acquisition and control on a star
- Demonstrate deep suppression

Option 6b

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Diffraction Demo at ISS</td>
<td>Includes all of "Deployment Accuracy" from Option 1a or 4a</td>
</tr>
<tr>
<td>Deployment Accuracy</td>
<td>Starshade deployment is unlike WFIRST rendezvous</td>
</tr>
<tr>
<td>Structural Stability</td>
<td>Includes all of "Structural Stability" from Option 1a or 4a</td>
</tr>
<tr>
<td>Starshade metering structure is unlike WFIRST rendezvous</td>
<td></td>
</tr>
<tr>
<td>Formation Sensing & Control</td>
<td>Includes all of "Formation Sensing & Control" from Option 4a, with minor exceptions</td>
</tr>
<tr>
<td>Adds a small-satellite mission demonstrating formation acquisition and mode transitions, formation alignment control, in challenging LEO timeline</td>
<td></td>
</tr>
<tr>
<td>Optical Diffraction Modeling</td>
<td>Includes all of "Optical Diffraction" from Option 1a or 4a, perhaps omitting XRCF tests.</td>
</tr>
<tr>
<td>Adds a high-fidelity flight demo of optical diffraction at intermediate size & separation (extended range of model validation)</td>
<td></td>
</tr>
<tr>
<td>Solar Edge Scatter</td>
<td>Includes all of "Solar Edge Scatter" from Option 1a or 4a</td>
</tr>
</tbody>
</table>
ExoPlanet Exploration Program

Additional Key Assumptions for Purpose of this Trade and Resulting Risk Evaluations

• Assume that the Starshade Technology Project delivers TRL5 by 2019 for purposes of programmatic evaluation (cost and schedule)

• A new mission start in FY22 for WFIRST Starshade Rendezvous

• A mission new start in FY22 requires:
 – Additional parallel and adequate mission concept development (pre-project)
 – WFIRST retains starshade accommodation features
 – WFIRST mission concept maturation is sufficient and parallel

• Testbed availability:
 – XRCF is available for technology testing

Modest variations in dates for TRL5 or new start do not affect the conclusion of this trade study
CHIEF TECHNOLOGIST TEAM EVALUATION
Technology Readiness Level Definitions

NASA NPR 7123.1B

TRL-5
Component and/or breadboard validation in relevant environment.

A medium fidelity system/component brassboard is built and operated to demonstrate overall performance in a simulated operational environment with realistic support elements that demonstrate overall performance in critical areas.

Performance predictions are made for subsequent development phases.

TRL-6
System/subsystem model or prototype demonstration in a relevant environment.

A high fidelity system/component prototype that adequately addresses all critical scaling issues is built and operated in a relevant environment to demonstrate operations under critical environmental conditions.

TRL-7
System prototype demonstration in an operational environment.

A high fidelity engineering unit/prototype that adequately addresses all critical scaling issues is built and operated in a relevant environment to demonstrate performance in the actual operational environment and platform (ground, airborne, or space).

- **TRL-5** is the assumed initial condition of the SSWG by FY19
- **TRL-6** is the necessary state at a potential starshade mission KDP-C.
- **The question for the SSWG is to determine if TRL-6 is sufficient? Or is a furthering of technology needed in some areas approaching TRL-7 (e.g. a flight demo) to sufficiently mitigate risk?**
Assumed TRL-5 Starting Point for SSWG Options:
Technically-quantified performance needs tied to Error Budgets, Vetted Gap Lists

<table>
<thead>
<tr>
<th>Technology Area</th>
<th>Key Performance Tolerances (3σ)</th>
<th>Proposed End-State Fidelity (TRL-5+)</th>
<th>Tested in Relevant Environment; Designed to Meet Life Rqmt</th>
<th>Performance Verification</th>
<th>Model Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petal Shape and Stability</td>
<td>In-plane envelope: ± 100 µm</td>
<td>High fidelity, full-scale</td>
<td>Required performance demonstrated</td>
<td>Deploy and thermal cycles</td>
<td>CTE, CME, creep</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High-fidelity prototype</td>
<td></td>
<td>Temperature and humidity</td>
<td>Shape vs. applied loads</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stowed strain</td>
<td>Shape vs. temperature</td>
</tr>
<tr>
<td>Petal Deployment Accuracy</td>
<td>In-plane envelope: ± 1 mm</td>
<td>High fidelity, half-scale inner disk; scaling issues understood</td>
<td>Required performance demonstrated with critical interfaces</td>
<td>0-gravity and vacuum</td>
<td>CTE, CME, creep</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High-fidelity prototype</td>
<td></td>
<td>Temperature and humidity</td>
<td>Shape vs. applied loads</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stowed strain</td>
<td>Analyze on-orbit petal shape with all errors</td>
</tr>
<tr>
<td>Bearing Angle Sensing and Control</td>
<td>Sensing: ± 1 mas</td>
<td>Medium fidelity, using small-scale starshade; scaling issues</td>
<td>Medium-fidelity prototype</td>
<td>Basic functionality demonstrated</td>
<td>Large separation distance</td>
</tr>
<tr>
<td></td>
<td>Control (modeling): ± 1 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scattered Sunlight</td>
<td>Edge radius x reflectivity: ≤ 10 µm-%</td>
<td>High fidelity, full-scale petal with full-scale optical edges</td>
<td>High-fidelity prototype</td>
<td>Required performance demonstrated with critical interfaces</td>
<td>Same as for petal shape</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scatter vs. dust</td>
</tr>
<tr>
<td>Starlight Suppression</td>
<td>Test at a flight-like Fresnel: Contrast (test) < 10⁻⁹ (traceable to 10⁻¹⁰ system performance with validated model)</td>
<td>Medium fidelity, small-scale starshade; scaling issues understood</td>
<td>Medium-fidelity prototype</td>
<td>Basic functionality demonstrated</td>
<td>Space</td>
</tr>
</tbody>
</table>

(to be concurred by a TAC at the end of Starshade Technology Project Formulation)
The TRL6 Criteria that SSWG Options Need to Meet

Column 1 (Performance) identical to TRL5 chart. TRL6 addressing critical scaling, interfaces

<table>
<thead>
<tr>
<th>Technology Area</th>
<th>Key Performance Tolerances (3σ)</th>
<th>TRL-6 End-State Fidelity (Prototype)</th>
<th>Tested in Relevant Environment; Life Testing</th>
<th>Performance Verification</th>
<th>Model Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fit</td>
<td>Form</td>
<td>Function</td>
<td></td>
</tr>
<tr>
<td>Petal Shape and Stability</td>
<td>In-plane envelope: ± 100 μm</td>
<td>High fidelity with scaling issues understood</td>
<td>High-fidelity prototype</td>
<td>Deploy and thermal cycles</td>
<td>Measure shape after deployment and thermal cycles; long-term stowed bending strain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Temperature and humidity</td>
<td>Measure shape with optical shield at temp; moisture absorption and loss (de-gassing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stowed strain</td>
<td>Test on-orbit petal shape with all errors</td>
</tr>
<tr>
<td>Deployed Petal Position</td>
<td>In-plane envelope: ± 1 mm</td>
<td>High fidelity with scaling issues understood</td>
<td>High-fidelity prototype</td>
<td>0-gravity and vacuum</td>
<td>Measure position after deployment cycles in air with negligible air drag and imperfect gravity comp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Temperature and humidity</td>
<td>Measure position with optical shield at temp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stowed strain</td>
<td>Test on-orbit petal shape with all errors</td>
</tr>
<tr>
<td>Formation Sensing and Control</td>
<td>Sensing: ±1 mas</td>
<td>High fidelity with scaling issues understood</td>
<td>High-fidelity prototype</td>
<td>Required performance demonstrated with critical interfaces</td>
<td>Measure angular offsets with brassboard guide camera (coronagraph instrument) that simulates PSFs and fluxes from beacon and star</td>
</tr>
<tr>
<td></td>
<td>Control (modeling): ±1 m</td>
<td></td>
<td></td>
<td>Large separation distance</td>
<td>Measure angular offsets with brassboard guide camera (coronagraph instrument) that simulates PSFs and fluxes from beacon and star</td>
</tr>
<tr>
<td>Sunlight Suppression</td>
<td>Edge radius x reflectivity: ≤ 10 μm-%</td>
<td>High fidelity with scaling issues understood</td>
<td>High-fidelity prototype</td>
<td>Same as for petal shape and stability</td>
<td>Measure petal level scatter after environment tests at discrete angles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sun angle</td>
<td>Measure coupon level scatter after environment tests at all sun angles</td>
</tr>
<tr>
<td>Starlight Suppression</td>
<td>Test at a flight-like Fresnel: Contrast (test) < 10^{-9} (traceable to 10^{-10} system performance with validated model)</td>
<td>High fidelity with scaling issues understood</td>
<td>High-fidelity prototype</td>
<td>Space</td>
<td>Measure image plane suppression between 500-850 nm</td>
</tr>
</tbody>
</table>

All critical scaling and interface issues addressed
CTT Assessment Process

- Each Steward presented their Option to the CTT
 - 6 virtual “face-to-face” telecons (12 work hours)

- CTT convened 12 times to assess all the Options (26 work hours)
 - Assessed 2 Musts and 3 Wants relative to technology
 - Two new Risks and two new Opportunities were captured and proposed
 - Consensus achieved on all

- Piggybacking (SSWG): to leverage off someone else’s technology development approach
 - **Benefit:**
 - enabled some Stewards to focus only on specific space or ground techniques while gaining all the achievements of the pig-ee in reaching TRL-6
 - Pig-ee: Pure ground demonstration approaches: Options 1a/b and 4a/b
 - **Consequences:**
 - All Options that piggyback might succeed or fail with the assessment of the pig-ee
 - Potentially reduced the distinguishing value of the technology Musts
 - Placed more emphasis on the other criteria – Wants and Risks
TECHNOLOGY MANAGEMENT TEAM EVALUATION
Programmatic Figures of Merit
Evaluated by Technology Management Team

- Evaluated Differences in Cost and Schedule
- Base of the 1ab/4ab costs, plus, additional impacts or benefits in red

<table>
<thead>
<tr>
<th></th>
<th>Basic Ground</th>
<th>Extended Ground</th>
<th>Space Demo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1ab</td>
<td>4ab</td>
<td></td>
</tr>
<tr>
<td>TRL6 on ground, 3 tracks</td>
<td>Arenberg</td>
<td>Lisman</td>
<td></td>
</tr>
<tr>
<td>Ground test only, 3 tracks</td>
<td></td>
<td>Cash</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warwick</td>
<td>Damico</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shah</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warwick</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noecker</td>
<td></td>
</tr>
<tr>
<td>Optical test (<1km)-XRCF</td>
<td>$10M</td>
<td>$10M</td>
<td>$10M</td>
</tr>
<tr>
<td>plus Optical test (<30km)-Atacama,US,H</td>
<td>.</td>
<td>.</td>
<td>$10-20M</td>
</tr>
<tr>
<td>plus Optical test (>100km in space)</td>
<td>.</td>
<td>.</td>
<td>$10-20M</td>
</tr>
<tr>
<td>Edge scattering</td>
<td>$10M</td>
<td>$10M</td>
<td>$10M</td>
</tr>
<tr>
<td>plus in space edge scatter demo subscale</td>
<td>.</td>
<td>.</td>
<td>$10M</td>
</tr>
<tr>
<td>Deployed shape and stability, full scale</td>
<td>$15M</td>
<td>$15M</td>
<td>$15M</td>
</tr>
<tr>
<td>plus in-space deployment demo subscale</td>
<td>.</td>
<td>.</td>
<td>$15M</td>
</tr>
<tr>
<td>FF sensing and FF ops simulations</td>
<td>$2M</td>
<td>$2M</td>
<td>$2M</td>
</tr>
<tr>
<td>plus in-space FF demo subscale</td>
<td>.</td>
<td>.</td>
<td>yes $50M</td>
</tr>
<tr>
<td>TOTAL COST:</td>
<td>$37M</td>
<td>$37M</td>
<td>$47-57M</td>
</tr>
<tr>
<td>SCHEDULE:</td>
<td>2.5</td>
<td>2.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Cost and schedule data from Tech Management Team used by entire group to score the trade matrix
TRADE EVALUATION
Results: Full Trade Matrix

TRADE STATEMENT: Recommend a development strategy to enable a starshade science flight mission

<table>
<thead>
<tr>
<th>Basic Ground</th>
<th>Extended Ground</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Group</td>
<td>Ground validation at half scale</td>
</tr>
<tr>
<td>Abenberg</td>
<td>Abenberg</td>
<td>L</td>
</tr>
<tr>
<td>Lisman</td>
<td>L/M/</td>
<td>L/M</td>
</tr>
</tbody>
</table>

MUSTS

<table>
<thead>
<tr>
<th>Technical</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>1</td>
</tr>
<tr>
<td>M2</td>
<td>1</td>
</tr>
<tr>
<td>M3</td>
<td>1</td>
</tr>
<tr>
<td>M4</td>
<td>1</td>
</tr>
</tbody>
</table>

- **M1**: Achieves TRL-6 by starshade KDP-C for the N=3 critical technologies
- **M2**: Compatible with Rendezvous-CS technical needs
- **M3**: Forward traceable to expected HEDC and LUVOR technical needs
- **M4**: Likely to convince responsible critics at KDP-C to proceed with a starshade flight mission

WANTS (DISCRIMINATORS)

<table>
<thead>
<tr>
<th>Technical</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>High</td>
</tr>
<tr>
<td>W2</td>
<td>High</td>
</tr>
<tr>
<td>W3</td>
<td>High</td>
</tr>
</tbody>
</table>

- **W1**: Relative degree to which the strategy exceeds TRL6 at KDP-C for N=3 critical technologies
- **W2**: Admits enhancing Starshade technologies
- **W3**: Minimizes the number N of critical enabling technologies

Schedule

<table>
<thead>
<tr>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>M9</td>
</tr>
</tbody>
</table>

- **M9**: Total cost of technology development strategy < 10% of LCC (< $100M)

Risk Evaluation

- **R1**: Risk that proposed demonstration will not function as planned
- **R2**: Risk that the results from the proposed demonstration may have high uncertainty or ambiguity
- **R3**: Risk that the option is dependent on the launch of another mission we risk a schedule delay from that LRD
- **R4**: Risk that the cost impact is between LRD and starshade flight mission size (75mm to 250mm) as it relates to optical performance verification
- **R5**: Human safety risk
- **R6**: Risk of early commitment to a particular design
- **R7**: Risk that the responsible critics will not be technically convinced of KDP-C on account that there is a large gap between Generic and Starshade flight mission size (75mm to 250mm) as it relates to optical performance verification

Opportunities

- **O1**: Enables the technology more than starshade science flight missions
- **O2**: Programmatic and technical benefit of committing to a design before start of Phase A

- Scores entered as group
- Consensus sought but not required
- Consensus of those in room and telecon reached after ~16 hours of group discussion on all points
- Dissent from one member not participating in group discussion

These Criteria and Risks Emerged as Significant Discriminators
Results: Musts

The MUSTS did not reveal a showstopper that eliminated an option – rather, the MUSTS strengthened all options.
M3 Evaluation

• MUST M3: Forward traceable to expected HabEx and LUVOIR technical needs
• Interpreted as “All options are applicable as technology development for HabEx and LUVOIR decadal large mission studies”
• The "U" reflects uncertainty in the strategic application requirements. Final evaluation pending flagship mission requirements

Conclusion: no showstopper, insufficient data on HabEx/LUVOIR to evaluate at this time
M7 Evaluation: Compatible with WFIRST prime mission operations

The MUST M7: Schedule-compatible with Rendezvous-CS launch within WFIRST prime mission
Implies: Launch Readiness Date (LRD) of Starshade Rendezvous no later than late FY28.
• All options passed M7

Basis for this MUST: to take advantage of the WFIRST opportunity for a starshade rendezvous
• A Rendezvous-CS launch no-later-than late FY28 permits a 3 year overlap with the Guest Observer Program. The WFIRST Formulation Science Working Group prefers an earlier (FY27) LRD,

Analysis:
• Given PPBE planning baseline of WFIRST LRD late FY25 (6 year mission); and
• Given Probe CATE of 7.8 yr from Phase A to LRD; and
• Assuming NAS Decadal Survey release Feb 2020; and
• Assuming a Starshade Rendezvous Phase A start in Oct 2022;
• Then LRD will be met by late FY28: Aug 2028 = FY22 (start)+ 6.8 yr
• Working Group Observation: probe study lifecycle estimate preceded the Starshade Technology Project formation. Effective STP will have the effect of shortening the lifecycle by 1 year to 6.8 yr.

A Starshade LRD in late FY28 is compatible with WFIRST prime mission and can be met by a 6.8-year development preceded by STP and FY22 new start
Results: WANTS

TRADE STATEMENT: Recommend a development strategy to enable a starshade science flight mission

<table>
<thead>
<tr>
<th>Description</th>
<th>1a</th>
<th>1b</th>
<th>4a</th>
<th>2c</th>
<th>2d</th>
<th>2a</th>
<th>2b</th>
<th>6a</th>
<th>6b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground validation at half scale</td>
<td>Ground validation at full scale</td>
<td>Long Baseline Facility</td>
<td>Extended Desert Testing</td>
<td>mDOT</td>
<td>Virtual Space Telescope</td>
<td>ISS Deployement demo</td>
<td>ISS Diffraction Demo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arenberg</td>
<td>Arenberg</td>
<td>Lisman</td>
<td>Cash/ Harness</td>
<td>Warwick</td>
<td>D'Amico</td>
<td>Shah</td>
<td>Warwick</td>
<td>Noecker</td>
<td></td>
</tr>
</tbody>
</table>

WANTS (DISCRIMINATORS)

<table>
<thead>
<tr>
<th>WANTS</th>
<th>Technical</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>Relative degree to which the strategy exceeds TRL6 at KDP-C for N=3 critical technologies</td>
<td>sig sig sig sm/sig sm/sig best sm/sig small small</td>
</tr>
<tr>
<td>W2</td>
<td>Admits enhancing Starshade technologies</td>
<td>wash wash wash wash wash wash wash wash</td>
</tr>
<tr>
<td>W3</td>
<td>Minimize the number N of critical enabling technologies</td>
<td>wash wash wash wash wash wash wash wash</td>
</tr>
<tr>
<td>Schedule</td>
<td>Med+</td>
<td></td>
</tr>
<tr>
<td>W4</td>
<td>Enables Earliest launch within WFIRST prime mission</td>
<td>small small best small small sig sig sig sig</td>
</tr>
<tr>
<td>W5</td>
<td>Exceed TRL gates at key intermediate milestones (2020 GS, KDP-A, KDP-B, KDP-C)</td>
<td>sm/sig small best U U U U U U</td>
</tr>
<tr>
<td>Cost</td>
<td>Med</td>
<td></td>
</tr>
<tr>
<td>W6</td>
<td>Lowest cost of tech development strategy</td>
<td>best best best sm/sig sm/sig sig sig sig sig</td>
</tr>
<tr>
<td>W7</td>
<td>Relative leverage of other programs outside of SMDXSTMD</td>
<td>small small small small small small best best</td>
</tr>
<tr>
<td>Other / Programmatic</td>
<td>Med</td>
<td></td>
</tr>
<tr>
<td>W8</td>
<td>Closest alignment to strategy in which STMD would invest</td>
<td>small small small small small best best small</td>
</tr>
<tr>
<td>W9</td>
<td>Maximizes even playing field for industry in potential prime contract for science mission</td>
<td>best best small U U U U U U</td>
</tr>
</tbody>
</table>

These Criteria Emerged as Significant Discriminators

Note: 4b was not scored by the group since it was a small variant to 4a

The WANTS revealed the key trade between: degree of technical validation, vs the cost and schedule
Results: Risks and Opportunities

TRADE STATEMENT: Recommend a development strategy to enable a starshade science flight mission

<table>
<thead>
<tr>
<th>Description</th>
<th>Basic Ground</th>
<th>Extended Ground</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground validation at half scale</td>
<td>Same as 1a. Read your recast as tech demo</td>
<td>Ground validation at full scale</td>
<td>Long Baseline Facility</td>
</tr>
</tbody>
</table>

1b - 1a except for a semantic difference. For 1a, Enabled flight is a class C science mission. For 1b, Enabled flight is a Class C tech demo.

There are subvariants of 4a that remain options for future programmatic and technical consideration.

Risks

<table>
<thead>
<tr>
<th>Risk</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L/M</td>
<td>L/M</td>
<td>L/M</td>
</tr>
</tbody>
</table>

Opportunities

<table>
<thead>
<tr>
<th>Opportunity</th>
<th>O1</th>
<th>O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating</td>
<td>L</td>
<td>M</td>
</tr>
</tbody>
</table>

Note: 4b was not scored by the group since it was a small variant to 4a.

These Risks and Opportunities Emerged as Significant Discriminators.

Note: Risks and Opportunities revealed the largest difference between the Options.
Final Trade Evaluation and Findings
Options 1a,b,4a are the best options overall, accounting for risks and opportunities

Findings:

1. **A ground-only development strategy** exists to enable a starshade science flight mission such as WFIRST Starshade Rendezvous.
2. **A prior flight technology demonstration is not required** prior to KDP-C of WFIRST Rendezvous.
4. Technology development for a Starshade Rendezvous mission likely to provide significant technology benefits to both HabEx and LUVOIR large mission studies.
5. **Two optional enhancements** to the SSWG-recommended development approach were recognized:
 - **A flight technology demonstration (mDOT)** would enhance the ground development strategy for formation flying sensing and control and optical performance with additional cost and technical risk.
 - **Long baseline ground demonstrations in air** may provide some additional benefit for optical verification but at medium-to-high risk for interpretation of results.

Differences among 1a,1b,4a,4b were design-dependent; will become future design trades in STP. Distinctions not pursued further in SSWG.
SUMMARY OF RECOMMENDED OPTION: WHY GROUND VALIDATION IS SUFFICIENT
Why is Ground Based Verification Good Enough for Structural Stability and Deployed Shape?

- Ground tests of high-fidelity full-scale prototypes can fully verify deployment
 - Ambient deployment tests with negligible air drag and imperfect gravity compensation conservatively envelope the space vacuum and 0-g environments
 - High deployed stiffness enables gravity compensation of manageable complexity
 - Thermo-vac tests of high-fidelity full-scale assemblies (e.g. petals & inner disk truss) fully validate thermal models
 - Vibration tests of a full-scale stowed system fully validate structural models

- Laser metrology and precision photogrammetry can fully verify deployed shape
 - Tolerances are 100 µm on petal shape and 1 mm on petal position.

- Structural Thermal Optical Performance analysis with validated models can verify on-orbit stability

- Ground based verification is standard practice for large deployable structures within the aerospace industry (e.g. communication antennas, JWST)

Ground verification of full-scale prototypes will reduce residual risks in stability and deployment sufficiently before launch.
Why is Ground Based Verification Good Enough for Formation Sensing and Control?

- Sensor suite for formation acquisition is well defined and leverages existing WFIRST sensors used in similar fashion by its coronagraph
 - Coarse acquisition with a modified star tracker
 - Intermediate acquisition with the WFIRST coronagraph imager
 - Fine sensing with the WFIRST coronagraph low-order wavefront sensor

- Flight-like sensor performance at modest contrast (10^{-3}) is reliably simulated with small-scale laboratory validation tests
 - Sensor uses out of band starlight at high flux, and diffraction is well understood

- Control system algorithms can be tested in all-software simulations using high-fidelity sensor models validated in the laboratory

- Lateral control requirement to ± 1 m in ≤ 20 μg disturbance environment is well within the current state-of-art
 - more precise control done regularly for docking in LEO

Ground verification plans for sensing and control will reduce residual risks sufficiently before launch
Why is Ground Based Verification Good Enough for Starlight Suppression Demonstration?

- **Flight-like optical diffraction can be reliably tested in a small scale laboratory**
 - Matching the flight Fresnel number yields identical diffraction performance at all scales
 - Optical model can be validated over a range of starshade size, telescope separation distance, and wavelength
 - Tests at Princeton are now underway; may extend to a larger facility if needed
 - If precision manufacturing doesn’t meet tolerances on the small masks, or
 - If air turbulence in the lab prevents validation at sufficient fidelity and precision.
 - Optical model validations and associated error budget will be traceable to flight requirements and will include ample allocations for model uncertainty

- **The mitigation of scattered Sun light off the petal edges can be demonstrated through extensive lab scatter testing of small and full-scale samples**

Ground optical verification of a sub-scale starshade with model validation will reduce residual risks sufficiently before launch.
Summary of Why Ground Validation is Sufficient

• Ground verification plans will adequately verify all critical requirements for the key technology areas:
 – Starlight suppression
 – Deployment accuracy and shape stability
 – Formation sensing and control

• Ground verification plans will significantly and adequately reduce residue risk prior to flight

• All NPR 7120.5 flight readiness requirements can be fully verified with a ground-based test program

A flight technology demonstration is not required prior to KDP-C of WFIRST Rendezvous
DISSENT DISCUSSION
Consensus and Dissent

- We follow 7120.5E, Ch 3.4, “Process for Handling Dissenting Opinion”
 - Three options: (1) Agree, (2) Disagree but fully support the decision, (3) Disagree and raise a dissenting opinion
 - The SSWG treats (1) and (2) as consensus for the purposes of the recommendation
 - Dissents (3) will be documented and delivered to APD Director

3.4 Process for Handling Dissenting Opinions

3.4.1 Programs and projects shall follow the Dissenting Opinion process in this Section 3.4. NASA teams have full and open discussions, with all facts made available, to understand and assess issues. Diverse views are to be fostered and respected in an environment of integrity and trust with no suppression or retribution. In the team environment in which NASA operates, team members often have to determine where they stand on a decision. In assessing a decision or action, a member has three choices: agree, disagree but be willing to fully support the decision, or disagree and raise a Dissenting Opinion. Unresolved issues of any nature (e.g., programmatic, safety, engineering, health and medical, acquisition, accounting) within a team should be quickly elevated to achieve resolution at the appropriate level.

3.4.2 When time permits, the disagreeing parties jointly document the issue, including agreed-to facts, discussion of the differing positions with rationale and impacts, and the parties’ recommendations. The joint documentation needs to be approved by the representative of each view, concurred with by affected parties, and provided to the next higher level of the involved authorities with notification to the second higher level of management. This may involve a single authority (e.g., the Programmatic Authority) or multiple authorities (e.g., Programmatic and TAs). In cases of urgency, the disagreeing parties may jointly present the information stated above orally with all affected organizations represented, advance notification to the second-higher level of management, and documentation follow up.

3.4.3 Management’s decision on the dissent memorandum (or oral presentation) is documented and provided to the dissenter and to the notified managers and becomes part of the program or project record. If the dissenter is not satisfied with the process or outcome, the dissenter may appeal to the next higher level of management. The dissenter has the right to take the issue upward in the organization, even to the NASA Administrator, if necessary.
Dissent Discussion

• Professor Webster Cash, University of Colorado, dissents with the recommendation and premise of SSWG (using Exo-S Rendezvous concept study as the starting point)
 – Reports that he will not join the consensus recommendation of SSWG
 – Did not participate in the second face-to-face workshop nor in any consensus-building discussion with SSWG
 – Declined invitation to brief his dissent to the ExoTAC
 – States that he does not plan to voice his dissent in open forum to the APD Director, nor publicly document the dissent
 – States that he will privately deliver one paragraph non-technical dissent to the APD Director

• We open the floor now for any walk-on dissent
EXOTAC ASSESSMENT
TAC Assessment - Summary

• Alan Boss (Chair, ExoTAC) and Joe Pitman participated in every meeting of the SSWG evaluation process.
• The TAC fully concurs with the conclusions of this study, including the assumptions made, the process of evaluating the options, and the findings presented.
• The SSWG process was thorough, fair, and open-minded, allowing all participants to share equally.
• The process was rigorous and based in part on the results of ongoing TDEM technology development efforts for star shades.
• The fact that a consensus recommendation was reached even for a group of this size strengthens the conclusions considerably.
• The one concern of the dissenter regarding exozodi levels was addressed by the ExoPAG EC and found to be manageable.
CLOSING STATEMENTS
1. Conduct architecture trades (deployment) during FY17 Starshade Technology Project

2. Continue with analysis of WFIRST starshade accommodation

3. Conduct parallel pre-mission studies of WFIRST Starshade rendezvous to solidify context for technology development

4. Convey interest to STMD in an mDOT TDM – enhancement of technical risk reduction involving science measurements and operation, along with benefits for formation flying beyond starshade applications
Acknowledgements

Additional contributions as subject matter experts:
Stanford University, Langley Research Center, Ball Aerospace, Lockheed Martin, Boeing, Northrop Grumman, Carnegie Institution for Science, Exploration Sciences, Lawrence Livermore National Laboratory, National Optical Astronomy Observatory, and American Museum of Natural History
BACKUP
Acknowledgements

This work was carried out at

- The Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. © 2016. All rights reserved.

- The Goddard Space Flight Center, the Ames Research Center, the Marshall Space Flight Center, the Space Telescope Science Institute, the Search for Extraterrestrial Intelligence Institute, the Massachusetts Institute of Technology, Princeton University, the University of Colorado, and the United States Air Force Academy

- Stanford University, Langley Research Center, Ball Aerospace, Lockheed Martin, Boeing, Northrop Grumman, Carnegie Institution for Science, Exploration Sciences, Lawrence Livermore National Laboratory, National Optical Astronomy Observatory, and American Museum of Natural History
StarShade Readiness Working Group (SSWG) - Charter

1/14/2016

A. Background

The search for Earth-like planets orbiting other stars and their subsequent characterization for evidence of life will require the ability to directly image exoplanets. NASA’s Astrophysics Division (APD) within the Science Mission Directorate (SMD) intends on having two direct-imaging techniques sufficiently matured for possible recommendation by the 2020 Decadal Survey Committee. The starshade concept is one of two high-contrast imaging technology architectures that will be studied. The Astrophysics Division chartered and recently completed two probe-scale mission concept studies\(^1\) to explore what compelling exoplanet direct-imaging science could be performed within a ~$1B lifecycle cost. The Science and Technology Definition Team (STDT) for the Exoplanet Starshade (Exo-S) delivered two concepts for external occulter missions using a ~30m deployable starshade flying in formation with an imaging telescope, and the STDT for the Exoplanet Coronagraph (Exo-C) delivered a concept for an internal occulter mission.

A starshade technology plan to achieve TRL 5 was delivered by the Exo-S STDT and is being updated by the Exoplanet Exploration Program (ExEP) with community input for submission to APD in CY16 for planning and funding purposes. The plan to advance from TRL5 to a flight mission has not yet been fully developed nor vetted. It is widely assumed that some form of subscale starshade flight demonstration would be required before NASA implemented a starshade as a core element of a large mission involving exoplanet imaging and characterization. The Starshade Rendezvous science mission concept, one of the two architectures delivered by the Exo-S STDT, would be another example of one such prior demonstration. Therefore, a technical concept and risk reduction plan for the technology validation of starshades from TRL5 to TRL 6/7 is required to prioritize technology investments that enable starshade science flight missions to be considered in the 2020 Decadal Survey.

For operational purposes this working group will assume the Starshade Rendezvous mission concept, one of the two architectures delivered by the Exo-S STDT, as a point of reference to motivate the performance requirements for technology readiness. The Starshade Rendezvous concept study assumed that a 34-meter starshade is flown in formation with WFIRST, an example, or any large telescope in an L2 orbit. Although the Starshade Rendezvous mission concept documented by the STDT is in fact a range of mission options, the one case studied and documented in detail is considered to be reasonably sufficient to initially motivate performance requirements and technology drivers for the class of missions that may be considered at the time of the next Decadal Survey, until such time as updates are delivered by the large mission study team recently chartered by the Astrophysics Division.

B. Deliverables

The Exoplanet Exploration Program Office (ExEPO) is directed by the NASA Astrophysics Divisions to:

1. Develop and deliver to the NASA Astrophysics Director by July 2016 a recommendation for a plan to validate starshade technology (to TRL 6/7) that is both necessary and sufficient prior to building and flying a Starshade Rendezvous science mission. The recommendation will best satisfy the architecture and technical goals for the Starshade Rendezvous option studied by the Exo-S STDT, the NASA definitions for technology readiness prior to project formulation and project implementation, and programmatic criteria including risk formulation and project implementation, and programmatic criteria including risk formulation and project implementation.

C. Participation

The APD is committed to receiving a recommendation produced through active and open engagement with the community. The following groups will participate in the study:

1. A Working Group consisting of engineers and scientists who are representative of the breadth of starshade technology, including representatives from government and academia.

2. A Steering Committee (a subset of the Working Group) responsible for ensuring adequate community representation and for assisting the chairpersons in setting agendas and evaluating progress.

3. Subject Matter Experts (SMEs) as needed and approved by the Steering Committee

4. An independent Technical Advisory Committee (TAC) approved by the APD to provide technical assessment of the recommendation.

https://exoplanets.nasa.gov/exep/studies/sswg/
D. **Structure of the Work:** The process leading to a recommendation to APD is illustrated in Figure 1 and the attached schedule.

- Kickoff with Steering Group (December 2015)
- [1] The Exo-S-ES STD7 will deliver the science and technology goals of a possible WFIRST Starshade Rendezvous mission concept to provide the framework for the validation recommendation.
- [2] The ExEPO Chief Technologists Team will deliver the TRL 5.6.7 success criteria tailored to starshade mission technologies.
- [3] Advocates will propose technical validation concepts and approximate implementation plans
- [4] The Working Group will, as a whole, analyze figures of merit (both technical and programmatic) relative to the TRL criteria
- [5] The ExEPO Chief Technologist Team will deliver an assessment of the degree to which the proposed validation concepts against the TRL 5.6.7 success criteria, considering completeness and risk
- [6] The Technology Management Team will deliver an assessment of the cost, schedule and viability of the plans to implement the concepts
- [7] The TAC will provide an independent analysis of the proposed validation to meet the TRL criteria
- [8] By July 2016 the co-chairs will deliver a joint recommendation to the Astrophysics Division Director.

The SSWG is expected to consist of approximately two face-to-face workshops of 1-2 days duration and supporting biweekly telecons that enable virtual participation by all participants. The Space Technology Mission Directorate will be briefed periodically on the progress of the working group.

https://exoplanets.nasa.gov/exep/studies/sswg/
Threshold Science
(as defined by Exo-S final report for Rendezvous-CS)

• Science goals will emphasize RV planet spectroscopy and searching for small planets around the nearest bright stars

• WFIRST Starshade Rendezvous Concept Study (CS) science yield depends on the inner working angle (smaller is better), number of maneuvers that can be executed (more is better), and the bandpass accessible at a single starshade-telescope separation (more is better).

• The baseline Design Reference Mission (DRM) is partly defined by Case 3 in Chapter 5 of the Exo-S STDT final report, to be modified for complementarity to the DRM of the WFIRST-CGI instrument. The DRM for follow-up observations of discovered planets (multi-color photometry, multi-epoch astrometry) is still to be defined.

• The threshold science is defined as a survey of 10 HZs with 25% completeness and spectral characterization of 10 known RV planets.
What Happened to Options 3 and 5?

• These were ideas that came from the initial brainstorming session
• Option 3: the former label for Option 1b (recast Rendezvous Concept Study as technology demo version of 1a)
 – Option 3 became Option 1a
 – Option 3 label retired
• 5 was “ride-along” – the piggyback on another (non-ISS) flight mission
 – No concepts developed further
 – Option 5 retired
Proof of Concept:

Analytical and experimental demonstration of hardware/software concepts that may or may not be incorporated into subsequent development and/or operational units.

Breadboard:

A low fidelity unit that demonstrates function only, without respect to form or fit in the case of hardware, or platform in the case of software. It often uses commercial and/or ad hoc components and is not intended to provide definitive information regarding operational performance.

Brassboard:

A medium fidelity functional unit that typically tries to make use of as much operational hardware/software as possible and begins to address scaling issues associated with the operational system. It does not have the engineering pedigree in all aspects, but is structured to be able to operate in simulated operational environments in order to assess performance of critical functions.

Proto-type Unit:

The proto-type unit demonstrates form, fit, and function at a scale deemed to be representative of the final product operating in its operational environment. A subscale test article provides fidelity sufficient to permit validation of analytical models capable of predicting the behavior of full-scale systems in an operational environment.

Engineering Unit:

A high fidelity unit that demonstrates critical aspects of the engineering processes involved in the development of the operational unit. Engineering test units are intended to closely resemble the final product (hardware/software) to the maximum extent possible and are built and tested so as to establish confidence that the design will function in the expected environments. In some cases, the engineering unit will become the final product, assuming proper traceability has been exercised over the components and hardware handling.
Mission Configuration:

The final architecture/system design of the product that will be used in the operational environment. If the product is a subsystem/component, then it is embedded in the actual system in the actual configuration used in operation. Laboratory Environment:

An environment that does not address in any manner the environment to be encountered by the system, subsystem, or component (hardware or software) during its intended operation. Tests in a laboratory environment are solely for the purpose of demonstrating the underlying principles of technical performance (functions), without respect to the impact of environment.

Relevant Environment:

Not all systems, subsystems, and/or components need to be operated in the operational environment in order to satisfactorily address performance margin requirements. Consequently, the relevant environment is the specific subset of the operational environment that is required to demonstrate critical "at risk" aspects of the final product performance in an operational environment. It is an environment that focuses specifically on "stressing" the technology advance in question.

Operational Environment:

The environment in which the final product will be operated. In the case of space flight hardware/software, it is space. In the case of ground-based or airborne systems that are not directed toward space flight, it will be the environments defined by the scope of operations. For software, the environment will be defined by the operational platform.
Appendix E. Technology Readiness Levels

<table>
<thead>
<tr>
<th>TRL</th>
<th>Definition</th>
<th>Hardware Description</th>
<th>Software Description</th>
<th>Exit Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic principles observed and reported</td>
<td>Scientific knowledge generated underpinning hardware technology concepts/applications.</td>
<td>Scientific knowledge generated underpinning basic properties of software architecture and mathematical formulation.</td>
<td>Peer reviewed publication of research underlying the proposed concept/application.</td>
</tr>
<tr>
<td>2</td>
<td>Technology concept and/or application formulated</td>
<td>Invention begins, practical applications is identified but is speculative, no experimental proof or detailed analysis is available to support the conjecture.</td>
<td>Practical application is identified but is speculative; no experimental proof or detailed analysis is available to support the conjecture. Basic properties of algorithms, representations, and concepts defined. Basic principles coded. Experiments performed with synthetic data.</td>
<td>Documented description of the application/concept that addresses feasibility and benefit.</td>
</tr>
<tr>
<td>3</td>
<td>Analytical and experimental critical function and/or characteristic proof-of-</td>
<td>Analytical studies place the technology in an appropriate context and laboratory demonstrations, modeling and simulation</td>
<td>Development of limited functionality to validate critical properties and predictions using non-integrated software components.</td>
<td>Documented analytical/experimental results validating predictions of key parameters.</td>
</tr>
</tbody>
</table>
NPR 7123.1B Appendix E (2/2)

4 Component and/or breadboard validation in laboratory environment.

- **Concept**: A low fidelity system component is built and operated to demonstrate basic functionality and critical test environments, and associated performance predictions are defined relative to final operating environment.
- **Objective**: Key functionality critical software components are integrated and functionally validated to demonstrate interoperability and begin architecture development. Relevant environments defined in the performance predicted.
- **Output**: Documented test performance demonstrating agreement with analytical predictions. Documented definition of relevant environment.

5 Component and/or breadboard validation in relevant environment.

- **Concept**: A medium fidelity system component is built and operated to demonstrate overall performance in a simulated operational environment with realistic support elements that demonstrate overall performance in critical areas. Performance predictions are made for subsequent development phases.
- **Objective**: End-to-end software elements implemented and interfaced with existing systems/simulations conforming to target environment. End-to-end software system tested in relevant environment, meeting predicted performance. Operational environment performance predicted. Prototype implementations developed.
- **Output**: Documented test performance demonstrating agreement with analytical predictions. Documented definition of scaling requirements.

6 System/sub-system model or prototype demonstration in a relevant environment.

- **Concept**: A high fidelity system component prototype that adequately addresses all critical scaling issues is built and operated in a relevant environment to demonstrate operations under critical environmental conditions.
- **Objective**: Prototype implementations of the software demonstrating full-scale, realistic problems. Partially integrated with existing hardware/software systems. Limited documentation available. Engineering feasibility fully demonstrated.
- **Output**: Documented test performance demonstrating agreement with analytical predictions.

7 System prototype demonstration in an operational environment.

- **Concept**: A high fidelity engineering unit that adequately addresses all critical scaling issues is built and operated in a relevant environment to demonstrate performance in the actual operational environment and platform (ground, airborne, or space).
- **Objective**: Prototype software exists having all key functionality available for demonstration and test. Well integrated with operational hardware/software systems demonstrating operational feasibility. Most software bugs removed. Limited documentation available.
- **Output**: Documented test performance demonstrating agreement with analytical predictions.

9 Actual system flight proven through successful mission operations.

- **Concept**: The final product is successfully operated in an actual mission.
- **Objective**: All software has been thoroughly debugged and fully integrated with all operational hardware and software systems. All user documentation, training documentation, and maintenance documentation completed. All functionality successfully demonstrated in simulated operational scenarios. Verification and validation completed. Performance verifying analytical predictions.
- **Output**: Documented mission operational results.

Note: In cases of conflict between NASA directives concerning TRL definitions, NPR 7123.1 will take precedence.

DISTRIBUTION:

This Document Is Uncontrolled When Printed.

Check the NASA Online Directives Information System (NODIS) Library to Verify that this is the correct version before use: http://nordis.gsfc.nasa.gov
TRL-5

Component and/or breadboard validation in relevant environment.

A medium fidelity system/component brassboard is built and operated to demonstrate overall performance in a simulated operational environment with realistic support elements that demonstrate overall performance in critical areas.

Performance predictions are made for subsequent development phases.

* a medium fidelity demonstrates performance and function as well as feasibility of form and fit.

TRL-5 for a Starshade

Critical Performance Items

- **Optical contrast** performance near a flight Fresnel #; validated optical model
- **Solar glint** measurements contribute less than contrast requirements
- **Full-scale petal** fabricated to shape tolerances
- **Full-scale petal deployment** mechanism
- **Deploying and positioning petals** to in-plane tolerance
- **Scaled lateral formation sensing** tolerances met
- **Thermal and dynamic modeling, error budget**

Medium Fidelity

- **Fit** is approximate
- **Form** is approximate
- **Functionality** is partial, but includes all critical functions

Relevant Environments

- **Petal Positioning and Optical Shield Deployment**
 - Vacuum
 - 0-g
 - Deployment and handling cycles (during ground testing)

- **Petal Shape**
 - Thermal cycles
 - Deployment and handling cycles (during ground testing)
 - Optical shield thermal deformation

- **Solar Glint**
 - Sun-target angles

- **Formation Sensing Accuracy**
 - 30,000-50,000 km separations between two spacecrafts

- **Optical Performance**
 - Micrometeoroids, space
TRL-6
System/subsystem model or prototype demonstration in a relevant environment.

A high fidelity* system/component prototype that adequately addresses all critical scaling issues is built and operated in a relevant environment to demonstrate operations under critical environmental conditions.

* a high fidelity unit demonstrates performance as well as form, fit, and function at a scale deemed to be representative of the final product operating in its operational env’t

TRL 6 is a necessary milestone on the path to flight

Relevant Environments
Same as TRL-5

Critical performance
Same as TRL-5

Fidelity
Form is flight-like
Fit is representative with scaling issues understood
Functionality is flight-like with all interfaces addressed

Interfaces
Petal – Petal Latch – Unfurling System
- Launch restraint unlatch
- Quasi-static unfurling mechanism
Petal – Inner Disk
- Precision hinges
- Full deploy latch
Optical Shield – Inner Disk
Starshade Beacon – Telescope Sensor

TRL-6 Starshade Success Criteria

TRL 6 is a necessary milestone on the path to flight
TRL 7 Starshade Success Criteria

TRL-7

System prototype demonstration in an operational environment.

A high fidelity engineering unit/prototype that adequately addresses all critical scaling issues is built and operated in a relevant environment to demonstrate performance in the actual operational environment and platform (ground, airborne, or space).

Operational Environments (including Space)

- Ground handling and transportation
- Long-term stowage
- Launch vibration
- Ascent venting
- Dust
- Vacuum
- 0-g
- Moisture absorption/loss
- Thermal
- Sun-target angles
- Space charging
- Micrometeoroids

TRL-7 Interpretations

- “pathfinder”
 - Can demonstrate one or more critical technologies
 - Doesn’t have to be a full system or “build-to-print”
- “prototype in an operational environment”
- “risk reducer”
- “will enable a science mission to become possible and achievable”

TRL 7 is not a necessary milestone, however, in some cases it may play an important role in technology maturation and risk mitigation.
Proposed Steps to Starshade TRL-5 Demo

(1) 5-m scale petal verifying optical shape tolerances and edge scatter performance

(2) 10-m scale latching and unfolding mechanism verifying controlled petal deployment with no edge contact during and after launch

(3) 10-m scale inner disk verifying deployment and petal positioning tolerances

(4) Sub-scale test demonstrating lateral formation flying sensing accuracy

Key models and analyses predicting:

(5) Optical performance and validate optical model based on Princeton and NGAS demonstrations

(6) Maximum micro-meteoroid hole area

(7) Error budget and draft requirements for a possible mission concept

(8) Dynamic and thermal stability modeling

Note: the deployment architecture remains an open trade at this time