

Jet Propulsion Laboratory California Institute of Technology

NASA Exoplanet Exploration Program

Dr. Gary Blackwood, Program Manager Jet Propulsion Laboratory California Institute of Technology

August 8, 2016

ART Meeting #2 Boulder, CO

Outline

- Program Overview
- Technology Investments: Coronagraphs
- Technology Investments: Starshade
- Preparing for Future Missions: Studies

Program Overview

NASA Exoplanet Exploration Program

Astrophysics Division, Science Mission Directorate

Purpose described in 2014 NASA Science Plan

- 1. Discover planets around other stars
- 2. Characterize their properties
- 3. Identify candidates that could harbor life

Exoplanet Exploration is both:

- The Search for Life in our Galaxy
- All Planets Great and Small

ExEP serves the science community and NASA by Implementing NASA's space science vision for exoplanets

http://exoplanets.nasa.gov

NASA Exoplanet Exploration Program

Astrophysics Division, Science Mission Directorate

NN-EXPLORE

http://exoplanets.nasa.gov

NASA Exoplanet Exploration Program

Astrophysics Division, Science Mission Directorate

WFIRST

Dark Energy, Alien Worlds

- WFIRST in Formulation Phase: NASA Key Decision Point (KDP)-A 2/17
- Formulation Science Working Group and Science Investigation Teams underway
- Wide Field Instrument Industry Concept Studies complete: Ball Aerospace and Lockheed Martin ATC
- Project received APD direction (June 2016) to incorporate starshade compatibility into Phase A DRM for SMD decision following SRR/MDR

WFIRST Science

- Dark Energy Survey
- Widefield Infrared Survey
- Microlensing: Exoplanet Census
- Coronagraph Tech
 Demo: Exoplanet Direct
 Imaging

Kepler Close Out

Delivering Kepler's Legacy

- Kepler closeout and final data processing continues steadily on track
 - SOC 9.3 Q0-Q17 Short
 Cadence Light Curves
 Delivered to MAST
 - Documentation
 Completeness Review
 (Oct 2016)
 - SOC 9.3 Final Occurrence Rate Products (April 2017)

NASA Kepler reveals 1,284 new planets, in the biggest reveal from any mission to date: go.nasa.gov/1rRqoOy

Kepler K2

Extending the Power of Kepler to the Ecliptic

- Data released through Campaign 8, Campaign 10 underway High-value exoplanets: small, rocky, nearby (46 pc), orbiting bright stars
- Spacecraft returned to science mode after loss of science module 4 (third of 21 detectors lost)
- K2 does much more than exoplanets example: shock breakout seen in supernova lightcurve (Garnavich et al. 2016)

Large Binocular Telescope Interferometer

Measures exozodiacal dust in habitable zones

- Results of HOSTS survey to inform next decadal survey on direct exoplanet imaging
- Demonstrated 12-15 zodi sensitivity for a solar twin at 10 pc at May 2015,
- HOSTS survey interrupted by glycol leak in secondary mirror, repairs complete January 2016
- Plan to complete 35-star HOSTS survey by 2018 at 12 zodi or better

LBTI instrument (green structure) mounted between the two LBT primary mirrors

NN EXPLORE

Partnership for Exoplanet Discovery and Characterization.

- Motivation
 - 2010 Decadal Survey calls for precise ground-based spectrometer for exoplanet discovery and characterization
 - Follow-up & precursor science for current missions (K2, TESS, JWST, WFIRST)
- Scope:
 - Extreme precision radial velocity spectrometer (<0.5 m/s) for WIYN telescope
 - Penn State NEID proposal selected in March
 - Instrument to be commissioned by July 2019
 - Ongoing Guest Observer program using NOAO share of telescope time

NN-Explore Exoplanet Investigations with Doppler Spectroscopy

PI: S. Mahadevan

3.5m WIYN Telescope Kitt Peak National Observatory Arizona

Program Overview - Summary

Implementing Astro2010 Decadal Survey Priorities

- WFIRST: Astro2010
 top priority
- Kepler => exoplanet occurrence rates
- LBTI => exozodiacal dust survey

- NNEXPLORE => radial velocity followup of TESS targets for JWST, precursor for WFIRST
- Technology Investments for high contrast imaging

Technology Investments

Driving Documents

- #1 large-scale recommendation: WFIRST
- #1 medium-scale recommendation:
 Preparation for a planet imaging mission (HabEx)

- Confirms WFIRST as #1 Division priority after JWST
- Commissions Exo-C and Exo-S probeclass studies

- LUVOIR Surveyor
- Far-IR Surveyor
- X-Ray Surveyor
- Earth Mapper (interferometer)

ExEP Technology Gap Lists

Starshade Technology Gap List

Table A.4 Starshade Technology Gap List

ID	Title	Description	Current	Required
5-1	Control Edge- Scattered Sunlight	Limit edge-scattered sunlight with optical petal edges that also handle stowed bending strain.	Graphite edges meet all specs except sharpness, with edge radius ≥10 µm.	Optical petal edges manufactured of high flexural strength material with edge radius ≤ 1 µm and reflectivity ≤ 10%.
S-2	Contrast Performance Demonstration ar Optical Model Validation	Experimentally validate the equations that predict the contrasts achievable with a starshade.	Experiments have validated optical diffraction models at Fresnel number of ~500 to contrasts of 3×10 ⁻¹⁰ at 632 nm.	Experimentally validate models of starlight suppression to $\leq 3 \times 10^{-11}$ at Fresnel numbers ≤ 50 over 510- 825 nm bandpass.
5-3	Lateral Formation Flying Sensing Accuracy	Demonstrate lateral formation flying sensing accuracy consistent with keeping telescope in starshade's dark shadow.	Centroid accuracy ≥ 1% is common. Simulations have shown that sensing and GN&C is tractable, though sensing demonstration of lateral control has not yet been performed.	Demonstrate sensing lateral errors $\leq 0.20m$ at scaled flight separations and estimated centroid positions $\leq 0.3\%$ of optical resolution. Control algorithms demonstrated with lateral control errors $\leq 1m$.
5-4	Flight-Like Petal Fabrication and Deployment	Demonstrate a high- fidelity, flight-like starshade petal and its unfurling mechanism.	Prototype petal that meets optical edge position tolerances has been demonstrated.	Demonstrate a fully integrated petal, including blankets, edges, and deployment control interfaces. Demonstrate a flight-like unfurling mechanism.
S-5	Inner Disk Deployment	Demonstrate that a starshade can be autonomously deployed to within the budgeted tolerances.	Demonstrated deployment tolerances with 12m heritage Astromesh antenna with four petals, no blankets, no outrigger struts, and no launch restraint	Demonstrate deployment tolerances with flight-like, minimum half-scale inner disk, with simulated petals, blankets, and interfaces to launch restraint.

EXOPLANET EXPLORATION PROGRAM Technology Plan Appendix 2016

Jet Preputation Laboratory

Coronagraph/Telescope Technology Gap List

10	Title	Description	Carrent	Required
ы	Specialized Geromagraph Dybez	Maska, appediarre, or brane-shaping aption to provide startight suppression and plants determines capabilities	A lacase most design has pictured 3.2×10 ²⁺¹⁰ means raw constraint fram 3×16 A/B with 1DN basefieldth surng an manhemened papel in a static lab demonstration.	Excellarly generative model achieving & 1+30 ⁴⁴ contents with INOA & 23,70 and a 1996 hardbeiddh en shaccerúl re regenerateil pagda.
62	Low-Under Warefrant Serving & Control	Beam jitter and slowity warring large mide (low- order) sphilal alternations every observer the detection of an supplanet.	Tip/Tik erren have here benevil and permitted to a stable is assess environment with a stability of 10° 2 reseat sub-Itz frequencies.	Tip/Tilt, Socia, adaptatism, and come second and corrected dataflateneously in 16 ⁴ kJ = 10 ⁵ of polymers in materials ray calculated of a 1 = 10 ³ M is a simulated dynamic trading involvement.
6.P	-3P Lings-Foreau Law-estar visible: Bira-Lon Nose Visible Detertory Detertor		rout Lew-ooter viable: Rand roose of -1 ir /pinet w detention for land the cooperation with any term barged if with Reporting radi.	
04	Lorgo Parsait Deformable Marcon	Natarona of defermable salver technology toward flight realization.	Electroniticitive Statid Dills have been descandicated to meet a 18 ⁻⁶ contrasts to a report attrictment and 18% leasts idds.	a fotost-LOMs with Right-like electronics capable of wavefront correction to a 10 ⁻¹⁰ contrasts. Full environmental funting valification.
6-5	Efficient Rate at which source/our Destrant control methods achieve Desergement 10 ⁻⁴⁴ contrast.		Model and resourcement assurtantian lower waveform control conversions: and require many times to bundlede of devations to get to 10 ¹⁰ contrained in the addition contraint from an arbitrary initial everythest.	Wavehout control methods that make control methods that the control of the site of the set of the s
649	Post-Data Proceeding	Tephniquest are resulted to characterize ensplanet spectra from residual speciale naises for typical targets.	First 108 specific suppression law heen achieved by HST and by ground-based AD intercogen in the Nill and in contrast trigeneoid 10+ to 10%, dominant by phase errors.	A 10-kid improvement over the raw contrast of $-10^{+1}{\rm km}$ the same summary of $-10^{+1}{\rm km}$ the mathe where amplitude errors are expected in no longer to negligible with respect to phase errors.

ExEP Technology Spinoffs

Starshade Technology Project

WFIRST Coronagraph Instrument

Technology Investments: Coronagraphs

Coronagraph/Telescope Technology Gaps

Starlight Suppression <u>Mirrors</u> COR/PCOS Systems and Design Coronagraph Reference Dependent Architectures (CG-2) Deformable mirrors (CG-3) WFIRST Large monolith (CG-1) Image post-processing (CG-4) Segmented (CG-1) **WFE Stability** Systems and Design **Detection Sensitivity** L giv From Reference Dependent Adaptive Martice fit have 5 WFIRST COR/PCOS Wavefront sensing **Telescope vibration** and control (CG-5) sensing and control (CG-7) Ultra-low noise visible Ultra-low noise infrared detectors (CG-8) detectors (CG-9)

Segment phasing and rigid body sensing and control (CG-6)

High Contrast Imaging Testbeds (HCITs) Test Facility

- Two vacuum chambers with 1 mTorr capability
- Seismically isolated, temperature-stabilized
- ~ 10 mK at RT.
- Narrow or broad band coronagraph system demos: Achieved 3x10⁻¹⁰ contrast (narrowband)
- Fiber/Pinhole "Star" Illumination
 - -Monochromatic: 635, 785, 809, and 835 nm wavelengths
 - -2, 10, and 20% BW around 800 nm center
 - -Medium and high power super-continuum sources
- CCD camera (5e⁻), 13 μm pixels
- Complete computer control with data acquisition and storage
- Coronagraph model validation & error budget sensitivities. Remote access through FTP site.

HCIT-1 Single-testbed capacity (5'x8')

HCIT-2 Two-testbed capacity (6'x10')

Availability for two testbed in HCIT-2 expected beginning of CY17

Coronagraph Mask Technology

TDEM investments (clear aperture)

Coronagraph	2009 SOA	2016 SOA
Hybrid Lyot	6x10 ⁻¹⁰ , monochromatic, 4- 10I/D	6x10 ⁻¹⁰ , 10% BW, 4-10λ/D
ΡΙΑΑ	2x10 ⁻⁷ , monochromatic,1.65-4.4 I/D	5-8x10 ⁻¹⁰ , monochromatic, 2-4 λ/D
Vortex	3.4x10 ⁻⁹ , monochromatic, 2.5-12 I/D	4.3x10 ⁻¹⁰ , monochromatic,3-8 λ/D 3.2x10 ⁻⁸ , 10% BW
Visible Nulling	5x10 ⁻⁹ ,1.5% BW, 2-4 I/D	Same
Shaped Pupil	2x10 ⁻⁹ , 10% BW, 4-14λ/D	Same

WFIRST Investments (on-axis obscured)

- HLC: 8x10⁻⁹, 10% bandwidth, 3-9 λ /D, static
- SPC: 8x10⁻⁹, 10% bandwidth, 3-9 λ /D, static
- PIAA: in progress

HCIT FY17 Coronagraph Facility Upgrades

Decadal Survey Testbed

In anticipation of future unobscured and segmented coronagraph demonstration needs, facility preparation for 10^{-10} contrast, 3 λ /D, and 10% broadband demo starting in FY17.

- Phase 1: proof-of-existence 10⁻¹⁰
- Phase 2: static demo (unobscured or segmented)
- Phase 3: dynamic demo (unobscured or segmented)

WFIRST testbed

Technology Investments:

Starshades

Starshade **Technology** Project **Starshade Technology Gaps Starlight Suppression Formation Sensing** and Control Controlling Sunlight scattering off petal edges (S-2) Maintaining lateral offset requirement between the spacecrafts (S-3) **Deployment Accuracy** and Shape Stability Suppressing starlight and validating optical model (S-1)

Positioning the petals to high precision, blocking on-axis starlight, maintaining overall shape on a highly stable structure (S-5)

Fabricating the petal to high precision (S-4)

24

The Starshade Technology Project

- Purpose: achieve TRL5 by ~Decadal 2020
- Directed funding and reprogramming of competed funds
- March 23: APD Instructions to begin Planning Phase

Milestone	Description	Responsible Authority	Date	
Design Review	Confirm updated reference mission is complete enough to begin tech development plan	Starshade Technology Project	May 2017	
Technology Development Project Plan Review	Confirm technology development plan is complete and forms a good baseline to complete the planning of the implementation phase	Exo planet Program Office	Jul 2017	
Internal Planning Stage Review	Ensure Planning Stage Phase Plan is robust	JPL Director-for 7X	Aug 2017	
Baseline TRL-5 Development Plan	Authorize start of Planning Stage Phase	SMD Astrophysics Division	Sep 2017	

- Intent is broad institutional participation and funding
- Next step: Open workshop for work prioritization (Sept)

Starshade Laboratory

Jet Propulsion Laboratory

Starshade Laboratory

Jet Propulsion Laboratory

Starshade Field Tests: McMath Solar Telescope

Northrop-Grumman, University of Colorado

Starshade Field Testing

1km testing for verification of models by JPL, NGAS, CU, PU

Preparing for Future Missions: Studies

Studies in Support of Exoplanet Direct Imaging

https://exoplanets.nasa.gov/exep/Studies/

Past Studies

 Many Coronagraphs; Starshades: New Worlds Observer, THEIA, O3

Recent Studies

- Probes:
 - Exo-C (Coronagraph)
 - Exo-S (Starshade, standalone and WFIRST Rendezvous)
- Probe Extended Studies:
 - Coronagraph
 - WFIRST Starshade Rendezvous

Current Studies

- Large Missions:
 - HabEx, LUVOIR, FarIR, XRay
- Starshade Readiness Working Group
- Segmented Coronagraph Design Analysis

Future

 Astrophysics Probes for Decadal Survey

Mission Studies

Starshade and Coronagraph

Study	Telescope Diameter (m)	Starshade Diameter (m)	Wavelength (nm)
NWO (2010)	4.0	50	250-1700
THEIA (2010)	4.0	40	250-1000
03 (2010)	1.1	40	250-1100
Exo-S Starshade Probe (2015)	1.1	30	400-1000
Exo-S Starshade Probe WFIRST Rendezvous(2015)	2.4	34	425-1000
Exo-S Extended Probe Study – WFIRST Rendezvous (2015)	2.4	20	425-1000
Study	Telescope Diameter (m)	Telescope Design	Wavelength (nm)
Exo-C Coronagraph Probe (2015)	1.4	Off-axis	450-1000
Exo-C Extended Probe Study (2016)	2.4	Off-axis	450-1000
WFIRST Coronagraph (Phase A)	2.4	On-axis	400-1000

Segmented Coronagraph Design Analysis

- 1. PIAA CMC (University of Arizona/NASA-Ames/JPL)
- 2. APLC/SPC (Space Telescope Science Institute/Princeton)
- Vortex (Caltech/JPL)
- 4. Hybrid Lyot (Caltech/JPL)
- 5. Visible Nulling Coronagraph (NASA-GSFC)

Recent Workshop (May 2016): https://exoplanets.nasa.gov/exep/events/160/

Participants:

- Stuart Shaklan (NASA-JPL) Lead
- Lee Feinberg (NASA-GSFC)
- Phil Stahl (NASA-MSFC)
- Gary Matthews (Harris)
- Paul Lightsey (Ball)
- Scott Knight (Ball)
- Tony Hull (UNM)

Starshade Readiness Working Group

http://exoplanets.nasa.gov/sswg/

- Require a risk reduction plan for technology validation of starshades to enable starshade flight science missions to be considered in 2020 Decadal Survey
- Will answer these questions and deliver recommendation:

How to go from TRL 5 to ~TRL6,7

- Do we need a tech demo, and if so, what is it?
- Adopted the Exo-S probe "Starshade Rendezvous" as representative motivation of technology requirements
- Chairs: G. Blackwood (ExEP/JPL), S. Seager (MIT)
- Status:
 - Consensus reached on musts, wants; options defined, technical and programmatic vetting underway
 - Kickoff: January 2016, Report to APD: October 2016.

Summary

Exoplanet Exploration Program

• Exoplanet Exploration Program implements the Astro2010 top priorities

– WFIRST, New Worlds Technology Program

- Kepler (occurrence rates) and LBTI (exozodi)

- NEID radial velocity facility instrument

- Technology Investments: Coronagraphs
- Technology Investments: Starshade
- Studies prepare for Future Missions

National Aeronautics and Space Administration

let Propulsion Laboratory California Institute of Technology Pasadena, California

Acknowledgements

- This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. © 2016 All rights reserved.
- Work was also carried out at NASA
 - Goddard Space Flight Center
 - Ames Research Center
- Work was also carried out under contracts between the NASA and:
 - Princeton University
 - University of Arizona
 - Northrop Grumman Aerospace Systems
 - National Optical Astronomy Observatory
 - Massachusetts Institute of Technology
 - Pennsylvania State University
 - University of Colorado

Proposed 2017 Coronagraph Technology Gap List (1/2)

Exoplanet Exploration Program

	ID	Title	Description	Current Canabilities	Needed Canabilities
Contrast	CG-2	Coronagraph Optics and Architecture	Coronagraph optics and architecture that suppress diffracted starlight by a factor of $\leq 10^{-9}$ at visible and infrared wavelengths.	6x10 ⁻¹⁰ raw contrast at 10% bandwidth across angles of 3-16 λ/D demonstrated with a linear mask and an <u>unobscured</u> pupil in a static vac lab env't (Hybrid Lyot) < 8.8x10 ⁻⁹ raw contrast at 10% bandwidth across angles of 3-9 λ/D demonstrated with a circularly-symmetric mask and obscured pupil in a static vacuum lab	Coronagraph masks and optics capable of creating circularly symmetric dark regions in the focal plane enabling raw contrasts $\leq 10^{\circ}$ ⁹ , IWA $\leq 3 \lambda$ /D, throughput $\geq 10\%$, and bandwidth $\geq 10\%$ on obscured/segmented pupils in a simulated dynamic vacuum lab environment.
Angular Resolution (plus sensitivity, integration time, and planet yield)	CG-1	Large Aperture Primary Mirrors	Large monolith and multi- segmented mirrors that meet tight surface figure error and thermal control requirements at visible wavelengths.	Monolith: 3.5m sintered SiC with < 3 um SFE (Herschel) 2.4m ULE with ~ 10 nm SFE (HST) Depth: Waterjet cutting is TRL 9 to 14", but TRL 3 to >18". Fused core is TRL 3; slumped fused core is TRL 1. <u>Segmented:</u> 6.5m Be with 25 nm SFE (JWST) Non-NASA: 6 dof, 1-m class SiC and ULE, < 20 nm SFE, and < 5 nm wavefront stability over 4 hr with thermal control	Aperture: 4m - 12m; SFE < 10 nm rms (wavelength coverage 400 nm - 2500 nm) Wavefront stability better than 10 pm rms per wavefront control time step. Segmented apertures leverage 6 DOF or higher control authority meter-class segments for wavefront control. Environmentally tested.
Detection Sensitivity	CG-8	Ultra-Low Noise, Large Format Visible Detectors	Low-noise visible detectors for faint exoplanet characterization with an Integral Field Spectrograph	1kx1k silicon EMCCD detectors provide dark current of 8x10 ⁻⁴ e-/px/sec; effective read noise < 0.2 e- rms (in EM mode) <u>after</u> irradiation when cooled to 165.15K (WFIRST). 4kx4k EMCCD fabricated but still under development.	Effective read noise < 0.1e- rms; CIC < 3x10 ⁻³ e-/px/fram; dark current < 10 ⁻⁴ e-/px/sec tolerant to a space radiation environment over mission lifetime. ≥ 2kx2k format
Detection Sensitivity	CG-9 Ultra-Low Noise, Large Format Near Infrared Detectors Field Spectrographs.		Near infrared wavelength (900 nm to 2.5 μm), extremely low noise detectors for exo- earth spectral characterization with Integral Field Spectrographs.	HgCdTe photodiode arrays have read noise <~ 2 e- rms with multiple non- destructive reads; dark current < 0.001 e- /s/pix; very radiation tolerant (JWST). HgCdTe APDs have dark current ~ 10-20 e- /s/pix, RN << 1 e- rms, and < 1kx1k format Cryogenic (superconducting) detectors have essentially no read noise nor dark current: radiation tolerance is unknown.	Read noise << 1 e- rms, dark current < 0.001 e-/pix/s, in a <u>space radiation environment</u> over mission lifetime. ≥ 2kx2k format

Proposed 2017 Coronagraph Technology Gap List (2/2)

Exoplanet Exploration Program

	ID	Title	Description	Current Capabilities	Needed Capabilities
Contrast Stability	CG-6	Segment Phasing Sensing and Control	Multi-segment large aperture mirrors require phasing and rigid-body sensing and control of the segments to achieve tight static and dynamic wavefront errors.	6 nm rms rigid body positioning error and 49 nm rms stability (JWST error budget) SIM and non-NASA: nm accuracy and stability using laser metrology	Systems-level considerations to be evaluated but expect will require less than 10 pm rms accuracy and stability.
Contrast Stability	CG-7	Telescope Vibration Control	Isolation and damping of spacecraft and payload vibrational disturbances	80 dB attenuation at frequencies > 40 Hz (JWST passive isolation) Disturbance Free Payload demonstrated at TRL 5 with 70 dB attenuation at "high frequencies" with 6-DOF low-order active pointing.	Monolith: 120 dB end-to-end attenuation at frequencies > 20 Hz. Segmented: 140 dB end-to-end attenuation at frequencies > 40 Hz. End-to-end implies isolation between disturbance source and the telescope.
Contrast	CG-3	Deformable Mirrors	Environment-tested, flight- qualified large format deformable mirrors	Electrostrictive 64x64 DMs have been demonstrated to meet ≤ 10 ⁻⁹ contrasts and < 10 ⁻¹⁰ stability in a vacuum environment and 10% bandwidth; 48x48 DM passed random vibe testing.	4 m primary: ≥ 96x96 actuators 10 m primary: ≥ 128x128 actuators Enable raw contrasts of ≤ 10 ⁻⁹ at ~20% bandwidth and IWA ≤ 3 λ/D Flight-qualified device and drive electronics (radiation hardened,environmentally tested, life-cycled including connectors and cables) Large segment DM needs possible for segmented telescopes.
Contrast Stability	CG-5	Low-Order Wavefront Sensing and Control	Sensing and control of line of sight jitter and low-order wavefront drift	< 0.5 mas rms per axis LOS residual error demonstrated in lab with a fast-steering mirror attenuating a 14 mas LOS jitter and reaction wheel inputs; ~ 100 pm rms sensitivity of focus (WFIRST). Higher low-order modes sensed to 10-100 nm WFE rms on ground-based telescopes.	Sufficient fast line of sight jitter (< 0.5 mas rms residual) and slow thermally-induced (≤ 10 pm rms sensitivity) WFE sensing and control to maintain closed-loop < 10 ⁻⁹ raw contrast with an obscured/segmented pupil and simulated dynamic environment.
Contrast	CG-4	Post-Data Processing	Post-data processing techniques to uncover faint exoplanet signals from residual speckle noise at the focal-plane detector.	Few 100x speckle suppression has been achieved by HST and by ground-based AO telescopes in the NIR and in contrast regimes of 10 ⁻⁴ to 10 ⁻⁵ , dominated by phase errors.	A 10-fold contrast improvement in the visible from 10 ⁻⁹ raw contrast where amplitude errors are expected to be important (or a demonstration of the fundamental limits of post-processing)

Exoplanet Exploration Program

Proposed 2017	Starshade	Technology	Gap	List
110000002011	otaionaac	reonnology	oup	-100

	ID	Title	Description	Current Capabilities	Needed Capabilities
ance and Model Validation	S-2	Optical Performance Demonstration and Validated Optical Model	Experimentally validate the equations that predict the contrasts achievable with a starshade.	3x10 ⁻¹⁰ contrast at 632 nm, 5 cm mask, and ~500 Fresnel #; validated optical model 9x10 ⁻¹⁰ contrast at white light, 58 cm mask, and 210 Fresnel #	Experimentally validate models predicting contrast to ≤ 10 ⁻¹⁰ just outside petal edges in scaled flight-like geometry with Fresnel numbers ≤20 across a broadband optical bandpass.
Optical Perform	S-1	Controlling Scattered Sun Light	Limit edge-scattered sunlight and diffracted starlight with optical petal edges that also handle stowed bending strain.	Machined graphite edges meet all specs but edge radius (10 um); etched metal edges meet all specs but in-plane shape tolerance (Exo-S design).	Integrated petal optical edges maintaining precision in-plane shape requirements after deployment trials and limiting contrast contribution of solar glint to < 10 ⁻ ¹⁰ at petal edges.
Formation Sensing and Control	S-3	Lateral Formation Sensing	Demonstrate lateral formation flying sensing accuracy consistent with keeping telescope in starshade's dark shadow.	Centroid star positions to ≤ 1/100 th pixel with ample flux. Simulations have shown that sensing and GN&C is tractable, though sensing demonstration of lateral control has not yet been performed.	Demonstrate sensing lateral errors ≤ 0.30 m accuracy at scaled flight separations (±1 mas bearing angle). Estimated centroid positions to ≤ 1/40 th pixel with limited flux from out of band starlight. Control algorithms demonstrated with scaled lateral control errors corresponding to ≤ 1 m.
and Shape Stability	S-5	Petal Positioning Accuracy and Opaque Structure	Demonstrate that a starshade can be autonomously deployed to within its budgeted tolerances after exposure to relevant environments.	Petal deployment tolerance (≤ 1 mm) verified with low fidelity 12m prototype and no optical shield; no environmental testing (Exo-S design).	Deployment tolerances demonstrated to ≤ 1 mm (in-plane envelope) with flight-like, minimum half-scale structure, simulated petals, opaque structure, and interfaces to launch restraint after exposure to relevant environments.
Deployment Accuracy :	S-4	Petal Shape and Stability	Demonstrate a high-fidelity, flight-like starshade petal meets petal shape tolerances after exposure to relevant environments.	Manufacturing tolerance (≤ 100 μm) verified with low fidelity 6m prototype and no environmental tests. Petal deployment tests conducted but on prototype petals to demonstrate rib actuation; no shape measurements.	Deployment tolerances demonstrated to ≤ 100 µm (in-plane envelope) with flight-like, minimum half-scale petal fabricated and maintains shape after multiple deployments from stowed configuration.

Strategic Astrophysics Technology - TDEM

Reports for completed and active TDEMs: http://exep.jpl.nasa.gov/technology/ Reviewed and approved by ExoTAC, Alan Boss (chair)

- Active TDEMs
 - 2010
 - (Bierden) Environmental Testing of MEMs DMs
 - (Helmbrecht) Environmental Testing of MEMs DMs
 - 2012
 - (Kasdin) Optical and Mechanical Verification of External Occulter
 - 2013
 - (Bendek) Enhanced Direct Imaging with Astrometric Mass
 - (Cash) Development of Formation Flying Sensors
 - 2014
 - (Bolcar) Next Generation Visible Nulling
 - (Serabyn) Broadband Vector Vortex Coronagraph

WFIRST Technology Milestones

MS #	Milestone	Date
1	First-generation reflective Shaped Pupil apodizing mask has been fabricated with black silicon specular reflectivity of less than 10 ⁻⁴ and 20 μm pixel size.	7/21/14
2	Shaped Pupil Coronagraph in the High Contrast Imaging Testbed demonstrates 10 ⁻⁸ raw contrast with narrowband light at 550 nm in a static environment.	9/30/14
3	First-generation PIAACMC focal plane phase mask with at least 12 concentric rings has been fabricated and characterized; results are consistent with model predictions of 10 ⁻⁸ raw contrast with 10% broadband light centered at 550 nm.	12/15/14
4	Hybrid Lyot Coronagraph in the High Contrast Imaging Testbed demonstrates 10 ⁻⁸ raw contrast with narrowband light at 550 nm in a static environment.	2/28/15
5 🧭	Occulting Mask Coronagraph in the High Contrast Imaging Testbed demonstrates 10 ⁻⁸ raw contrast with 10% broadband light centered at 550 nm in a static environment.	9/15/15
6 🧭	Low Order Wavefront Sensing and Control subsystem provides pointing jitter sensing better than 0.4 mas and meets pointing and low order wavefront drift control requirements.	9/30/15
7	Spectrograph detector and read-out electronics are demonstrated to have dark current less than 0.001 e/pix/s and read noise less than 1 e/pix/frame.	8/25/16
8	PIAACMC coronagraph in the High Contrast Imaging Testbed demonstrates 10 ⁻⁸ raw contrast with 10% broadband light centered at 550 nm in a static environment; contrast sensitivity to pointing and focus is characterized.	9/30/16
9	Occulting Mask Coronagraph in the High Contrast Imaging Testbed demonstrates 10 ⁻⁸ raw contrast with 10% broadband light centered at 550 nm in a simulated dynamic environment.	9/30/16

Technology - Coronagraph

All prior WFIRST technology milestones met on schedule

PISCES Integral Field Spectrograph hardware delivered by GSFC to HCIT

- First demonstration of ultra-high contrast spectroscopy for characterization of exoplanets and image speckles
- Setup and initial testing this summer
- New PI Avi Mandell

Key upcoming milestones by 9/30/16:

- Read noise of EMCCD detector+readout
- First lab demo of PIAACMC coronagraph
- Demonstrate 10⁻⁸ raw contrast in 10% banc in a simulated dynamic environment

Exo-S Extended Probe Study completed

(Seager et al.)

- Options for follow-on missions with WFIRST, with operations at the Earth-Sun L2 point.
- Petal optimization for detection in blue band could improve Tech Demo and Extended Study IWA

Mission Option Characteristics						Performance Characteristics					
Option	Starshade Size	Mission Duration	Mission Class	Launch Option	Retarget Propulsion	Ball-Park Mission Cost	Search Mode IWA	Search Mode Bandpass	Telescope Separation	Exo-Earth Detections*	Exo-Earth Character- izations
Exo-S Tech Demo	20 m	1 yr.	D	Antares 3m fairing	Monoprop	\$300M	100 mas	425-565 nm	20 Mm	≥1 candidate	0
Exo-S Extended Study	20 m	3 yr.	С	Falcon 9 5m fairing	Biprop	\$450M	100 mas	425-565 nm	20 Mm	≥1	<1
Exo-S Case Study	34 m	3 yr.	С	Falcon-9 5m fairing	Biprop	\$600M	70 mas	425-602 nm	50 Mm	≥2	≥1
Exo-S Enhanced	40 m	5 yr.	В	Falcon-9 5m fairing	SEP	\$900M	50 mas	425-560 nm	82 Mm	≥4	≥2

Maraian	Devenetere	Observing Bands				
version	Parameters	Blue	Green	Red		
Case Study	Bandpass (nm)	425-602	600-850	706-1000		
20m inner disk	IWA (mas)	70	100	118		
28 7m petals	Separation (Mm)	50	35	30		
Extended study	Bandpass (nm)	425-565	600-800	750-1000		
10m inner disk	IWA (mas)	100	140	176		
28 5m petals	Separation (Mm)	20.5	15	12		

Exo-S ES compared to Exo-S CS

- **Discovery:** Stars that could be searched have the same quality images as before. Fewer targets with desirable IWA
- Characterization by spectra: only blue band is accessible for exoEarths
- **Background discrimination:** lack of colors at small IWA hurts for background contamination

Exo-C Extended Probe Study Completed (Cahoy et al.)

- Exo-C ES report captures the science capability of a 2.4-m aperture space telescope designed specifically for exoplanet direct imaging.
- Highlights technology development needs beyond WFIRST:
 - 4k x 4k radiation-tolerant EMCCD detectors
 - 96 x 96 actuator deformable mirrors
 - Refinement and validation of contrast stability models to 10⁻¹¹
- Considered possible secondary payloads.
 - NIR coronagraph, Transit
 Spectrometer, NIRSpec "Lite"

