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MOTIVATION
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MOTIVATION
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% Host Star metallicity is thought to

be a tracer for the protoplanetary
disk

% Giant planets have been shown to
be strongly correlated with
metallicity for dwarf stars
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MOTIVATION

% Host Star metallicity is thought to
be a tracer for the protoplanetary

disk

% Giant planets have been shown to
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metallicity for dwarf stars

o
o

B
&)

Occurrence [%]

o
Ul

=
o

g
o

—_
o1

[N
=

—— Johnson et al. (2010)
. —-—--+ Udry & Santos (2007)
—— Fischer & Valenti (2005)
Sozzetti et al (2007)
Mortier et al (2011)
—}— Boley et al (2021)

—15 -1.0 =05
[Fe/H]

I
[\S]H
(=)

0.0

0.5




MOTIVATION

% Host Star metallicity is thought to
be a tracer for the protoplanetary
disk

% Giant planets have been shown to
be strongly correlated with
metallicity for dwarf stars
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MOTIVATION

% Host Star metallicity is thought to

be a tracer for the protoplanetary
disk

% Giant planets have been shown to
be strongly correlated with
metallicity for dwarf stars

% Transit method along with TESS

enable larger data sets than previous
works
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SAMPLE SELECTION

The sample was constructed using
the following criteria:

7

% Spectroscopically derived [Fe/H]
> [Fe/Hl<-04

% Tess Magnitude < 14 mags

% Log(g) >4

< Effective Temperature < 7500 K

® Complete Sample: 99,908 stars
Two Min. Data Available: 8,285 stars
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SAMPLE SELECTION

Metallicity range based on spectra:

(-1.0 <[Fe/H]<-0.4)

Spectral Types:
F-M dwarfs
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® Complete Sample: 99,908 stars
Two Min. Data Available: 8,285 stars
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METHOD

Acquire TESS FFI Data
= TESS FFI data from -100,000 I
metal-poor stars acquired from Optimize Data

MAST

Injection-Recovery Tests
Planet Transit Search Detection Efficiency
Search Completeness

Planet Occurrence Rates

@ The data is optimized for planet
transit searches

For more details check out:
Boley et al (2021)
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METHOD

Two pipelines that run in parallel: Acquire TESS FFI Data
@ Planet Detection Pipeline Optimize Data
o Detects any planets \

Injection-Recovery Tests

® Planet Injection Pipeline Planet Transit Search Detection Efficiency

o Determines the /
search completeness Search Completeness

of our pipeline
Planet Occurrence Rates

with the sample
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METHOD

Planet Detection Pipeline
Transit Search Algorithm:
= Transit Least Squares (TLS)

o Based on Kepler light
curves

= Edi-Vetter

o Planet Candidate
Vetting Software

Acquire TESS FFI Data

l

Optimize Data

Injection-Recovery Tests
Detection Efficiency
Search Completeness

Planet Occurrence Rates

Planet Transit Search
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METHOD

Planet Injection Pipeline

= Injection-Recovery Test

o 100 synthetic planet signals
injected into each light
curve

= Detection Efficiency

@ Search Completeness combines
o Geometric Transit Probability

o Detection Efficiency

Acquire TESS FFI Data

'

Optimize Data

N

Injection-Recovery Tests

\

Planet Transit Search Detection Efficiency

/

Search Completeness

Planet Occurrence Rates
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CALCULATING PLANET OCCURRENCE

For bins without planet detections,
we place upper limits using:

P(d,N, fp) = f4(1 — fpyN 4

(N —d)

fp = Planet Frequency
d= Number of Planet Detections

N= Total Sample Size

Acquire TESS FFI Data

'

Optimize Data

N

Injection-Recovery Tests

\

Detection Efficiency

/

Search Completeness

i

Planet Occurrence Rates

Planet Transit Search




CALCULATING PLANET OCCURRENCE

For bins without planet detections,
we place upper limits using:
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Total Effective

Sample Size
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FUTURE WORK

Constraining planet occurrence
as a function of metallicity

Connecting planet formation to
the evolution of our galaxy
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FUTURE WORK

Constraining planet occurrence
as a function of metallicity

Connecting planet formation to
the evolution of our galaxy

Investigating planet occurrence in
terms of alpha element
abundance

Such as C, O, Ca, Mg, Si

Host stars with low [Fe/H] have
been shown to have high alpha

elemental abundance (Adibekyan
2012a) 25
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Astronomy / Science Podcast that aims to
make astronomy more accessible

Target audience: undergrads, grads,
amateurs, and the public

High-level summaries of research papers
aimed at undergrad science level

Check out our
website!
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Undergraduate Residential
Summer Access (URSA) Program
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% 2 week summer pre-arrival
program for incoming students
from under-represented
backgrounds

% We aim to provide academic
resources and introduce them to
research

% We also aim to build a strong
cohort between the students that
will help them in future classes
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Habitability Around M-dwarf Stars

Transit Light Curves and Density Wi&{

Pushkar Shirahatti, Samuel Wilms, Revanth Yalamanchi

THE OHIO STATE UNIVERSITY URSA program

Abt Kepler 10 b:

The planet is part of the Kepler
star system named after the first
discoveries made by the Kepler
telescope. The surface
temperature of the planet is a
chilly 2,840 degrees Fahrenheit
on the day side and a blistering
-369.7 degrees Fahrenheit on
the night side. It has negligible

Carter Sears, Shelby Summers, Emma Tassé
The Ohio State University U.R.S.A. Program
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Overview

% where life produces
detectable biosignature

% with Life

These are the planets being
observed that are terrestrial
and in the habitable zone of a
quiet star.

% of stars with rocky
planets in habitable zone
Estimated frequency is 0.43-0.51
(variation of size is 0.5-2.0 Earth
radii), or about [10].

Seager’s equation was developed
as a model to predict how many
planets with detectable signs of
life we could discover based on oui
current technology [3].

Transits: References:
The transit method of
finding planets
involves measuring
the brightness of stars
and noticing
differences in
brightness when an
object passes in front
of said star to

dius,

Methods:

First we acquired the
needed transit data and
created a light curve out
of said data. With the
information gained from
the light curve such as
using information PUsIGHO denlh e
gained from a light were able to program an
curve graph and equation to find the

alraadh knawn AR

Background:
The goal of this
project was to find
out if it was
possible to
mathematically
relate transit light
curve data of a
planet to its density

Spectrometry measures the
elements in a planet's
atmosphere.

Methane, 0,, and €O, could
indicate life [5].

Life includes prokaryotes that

M-Dwarfs 1L, cool stars that| e "
A perform basic life functions [5].

are commonly found in our galaxy.
Due to their size, they have narrow
habitable zones that would force
orbiting planets to be tidally
locked, but recent research has
suggested that these planets can

oquium - Simon
G

We can estimate a 40%
chance of detection.

We estimate a 10% chance that
life develops.

cknowledgements:
L 9 bi one and only,
genius, Kiersten

Conclusion
Based on current data, we
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Planets in Binary Star Systems

The Ohio State University
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Introduction

o Binary star systems have two stars that

Erin Duell, Maura Kelley, Brooks Powalie

U.R.S.A. Program

Cireumbinary stars

Detection

environment so close to the binary so they often
migrate toward the “stability limit" after formation

proximity of other star [1]
High eccentricity compared to P-type and
single star orbits

References

There are different ways that these planets are
discovered, which is similar to single planet
systems, and different types of planets are found

with different detection methods
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period on a given

lcompares the relative

day

radial velocity of the planet and
the host star. It can also be

resists the force of gravity and allows gas giants to exist.

data into a python
program which

basis so that connections
\ could be drawn. )

M-stars.
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With detectable life in our
galactic neighborhood
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SUMMARY :

v

= Planet formation requires a sufficient amount of
metals to build a planet

= With this sample, we will place the most stringent
constraints on planet occurrence rates around

metal-poor stars (-1< [Fe/H] <-0.4)
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