IMPACTS ON PLANET FORMATION: PLANET OCCURRENCE AROUND METAL-POOR STARS

Kiersten Boley NSF Graduate Research Fellow Advisors: Dr. Jessie Christiansen & Prof. Ji Wang The Ohio State University

ExoExplorers 20 May 2022

When did the **first** planets form?

How much material is required to form a planet?

Petigura et al. 2018

- Host Star metallicity is thought to be a tracer for the protoplanetary disk
- Giant planets have been shown to be strongly correlated with metallicity for dwarf stars

- Host Star metallicity is thought to be a tracer for the protoplanetary disk
- Giant planets have been shown to be strongly correlated with metallicity for dwarf stars

- Host Star metallicity is thought to be a tracer for the protoplanetary disk
- Giant planets have been shown to be strongly correlated with metallicity for dwarf stars

Still above the metallicity limit at which no planets can form Johnson et al 2012

- Host Star metallicity is thought to be a tracer for the protoplanetary disk
- Giant planets have been shown to be strongly correlated with metallicity for dwarf stars
- Transit method along with TESS enable larger data sets than previous works

SAMPLE SELECTION

The sample was constructed using the following criteria:

- Spectroscopically derived [Fe/H]
 - ► [Fe/H]< -0.4
- Tess Magnitude < 14 mags</p>
- ✤ Log (g) > 4
- Effective Temperature < 7500 K</p>

SAMPLE SELECTION

Metallicity range based on spectra: $(-1.0 \le [Fe/H] \le -0.4)$

Spectral Types: F-M dwarfs

- TESS FFI data from -100,000 metal-poor stars acquired from MAST
- The data is optimized for planet transit searches

For more details check out: Boley et al (2021)

Two pipelines that run in parallel:

- Planet Detection Pipeline
 - Detects any planets with the sample
- Planet Injection Pipeline
 - Determines the search completeness of our pipeline

- Planet Detection Pipeline
 Transit Search Algorithm:

 Transit Least Squares (TLS)
 Based on Kepler light curves
 - Edi-Vetter
 - Planet Candidate
 Vetting Software

Planet Injection Pipeline

- Injection-Recovery Test
 - 100 synthetic planet signals injected into each light curve
- Detection Efficiency
- Search Completeness combines
 - Geometric Transit Probability
 - Detection Efficiency

CALCULATING PLANET OCCURRENCE

For bins without planet detections, we place upper limits using:

$$P(d, N, f_p) = f_p^d (1 - f_p)^{N-d} \frac{N!}{(N-d)!}$$

f_p = Planet Frequency d= Number of Planet Detections N= Total Sample Size

CALCULATING PLANET OCCURRENCE

PRELIMINARY DETECTION EFFICIENCY

FFI Data

Detection Efficiency by planet type between for periods 0.5-10 days :

- Jupiters: 66%
- Sub-Saturns: 33%
- Sub-Neptunes: 16%
 - Super-Earths: 14%

<u>FFI Data</u> Average upp planet occur

Average upper limits of planet occurrence for periods 0.5-10 days:

- Jupiters : 0.016%
- Sub-Saturns: 0.037 %

Sub-Neptunes: 0.071%

Average upper limits of planet occurrence for periods 0.5-10 days:

Jupiters : 0.016%

FFI Data

*

Sub-Saturns: 0.037 %

<u>FFI Data</u> Average upper limits of planet occurrence for periods 0.5-10 days:

- Jupiters : 0.016%
- Sub-Saturns: 0.037 %
- Sub-Neptunes: 0.071%
- Super-Earths: 0.082%

Comparison

23

FUTURE WORK

METALLICITY

Constraining planet occurrence as a function of metallicity

Connecting planet formation to the evolution of our galaxy

FUTURE WORK

METALLICITY

Constraining planet occurrence as a function of metallicity

Connecting planet formation to the evolution of our galaxy

Alpha Elements

Investigating planet occurrence in terms of alpha element abundance

Such as C, O, Ca, Mg, Si

Host stars with low [Fe/H] have been shown to have high alpha elemental abundance (Adibekyan 2012a)

OUTREACH

astro [sound] bites

Alex Gagliano

Will Saunders

Sabrina Berger

Kiersten Boley

Astro [sound] Bites

- Astronomy / Science Podcast that aims to make astronomy more accessible
- Target audience: undergrads, grads, amateurs, and the public
- High-level summaries of research papers aimed at undergrad science level

Check out our website!

URSA Program

Undergraduate Residential Summer Access (URSA) Program

- 2 week summer pre-arrival program for incoming students from under-represented backgrounds
- We aim to provide academic resources and introduce them to research
- We also aim to build a strong cohort between the students that will help them in future classes

URSA Program

Undergraduate Residential Summer Access (URSA) Program

- 2 week summer pre-arrival program for incoming students from under-represented backgrounds
- We aim to provide academic resources and introduce them to research
- We also aim to build a strong cohort between the students that will help them in future classes

URSA Program

SUMMARY

- Planet formation requires a sufficient amount of metals to build a planet
- With this sample, we will place the most stringent constraints on planet occurrence rates around metal-poor stars (-1< [Fe/H] <-0.4)

THANK YOU!

Boley et al. 2021 Check it out!

