Revisiting the Composition of K2-106b: an Ultra-dense, Ultra-short Period Exoplanet

> ExoExplorers Science Talks Romy Rodríguez Martínez 5th yr Astronomy PhD Candidate The Ohio State University March 18, 2022

THE OHIO STATE UNIVERSITY

rodriguezmartinez.2@osu.edu rrodriguez09.github.io/ Revisiting the Composition of K2-106b: an Ultra-dense, Ultra-short Period Exoplanet

> Scott Gaudi, Joe Schulze, Jennifer Johnson, Jared Kolecki, Kiersten Boley, Tharindu Jayansinghe

THE OHIO STATE UNIV

rodriguezmartinez.2@osu.edu rrodriguez09.github.io/

There is an extraordinary diversity of exoplanet masses, orbits and compositions

Exoplanets between $1-4 R_{\oplus}$ are the *most common* in the Galaxy

Image credit: NASA Ames/JPL-Caltech

What are these planets made of?

Are they scaled up **Earths**...?

Or scaled down Neptunes?

Credit: Kalliopi Monoyios

Fulton et al. 2017

Small planets are compositionally more diverse

Planets $\lesssim 1.5R_{\oplus}$ are generally **rocky.** (Rogers et al. 2015)

Planets between $1.5 - 4 R_{\oplus}$ exhibit more diverse compositions.

Super-Mercuries

planets with extremely high densities, consistent with a Mercury-like composition, i.e., 32% mantle, 68% Fe core. See K2-141b (Malavolta+18), K2-229b (Santerne+18), Kepler-107c (Bonomo+19), HD 137496b (Silva+2022)

Adibekyan et al. 2021

An ultra-dense, ultra short-period planet: K2-106b

K2-106b (Adams et al. 2017, Guenther et al. 2017)

EPIC 20674823, TIC 266015990 Distance: 245 pc, V= 12 mag Period: 0.57 days Mass: $8.36^{+0.96}_{-0.94} M_{\oplus}$ Radius: $1.52 \pm 0.16 R_{\oplus}$ Density: **13**. **1**^{+5.4}_{-3.6} **g cm**⁻³ CMF = 80^{+20}_{-30} %

For reference, the Earth's density is ~5.5 g/cc

Is K2-106b really a super-Mercury?

- Preliminary work (Rodríguez-Martínez+21) showed that we could reduce the planet's density uncertainty.
- Improved **parallax** from Gaia DR2 gives us an improved estimate of the planet's radius.
- We combine planet interior models with a new statistical framework.
- Goal: to assess whether K2-106b is a true super-Mercury.

 $\left(\frac{\sigma_{\rho_p}}{\rho_p}\right)^2 \approx \left(\frac{\sigma_{K_\star}}{K_\star}\right)^2 + \left(\frac{\sigma_P}{P}\right)^2 + \left(\frac{\sigma_T}{T}\right)^2$ $+\left(\frac{\sigma_{\tau}}{\tau}\right)^2 + \left(\frac{\sigma_{R_{\star}}}{R_{\star}}\right)^2 + \left(\frac{\sigma_{\delta}}{\delta}\right)^2.$

Rodríguez-Martínez et al. 2021

Revisiting K2-106b

- Used existing photometry and radial velocity data to characterize the system: a K2 light curve and 6 RVs.
- Used **EXOFASTv2** (Eastman+2013,17,19) to globally model the system.
- Use the MIST evolutionary tracks to constrain the properties of the star.

Rodríguez-Martínez et al. 2022 in preparation

Derived Planetary Parameters

Derived Planetary Parameters: K2-106b

<u>This work</u>	<u>Guenther et al. 2017</u>
$Period = 0.5 \ days$ $M_n = 8.53 \pm 1.02 \ M_c$	$Period = 0.5 \ days$ $M_n = 8.36^{+0.96}_{-0.94} \ M_{\oplus}$
$R_p^P = 1.71_{-0.057}^{+0.069} R_{\oplus}$	$R_p^{p} = 1.52 \pm 0.16 R_{e}$

lod = 0.5 days $= 8.36^{+0.96}_{-0.94} M_{\oplus}$ $R_{p} = \mathbf{1.71}_{-0.057}^{+0.069} R_{\oplus} \qquad R_{p} = 1.52 \pm 0.16 R_{\oplus}$ $T_{eq} = 2275_{-32}^{+36} K \qquad T_{eq} = 2333_{-57}^{+69} K$

Reference	Planet density g/cm^3
Rodríguez-Martínez	9.4 ± 1.55
Guenther et al. 2017	$13.1_{-3.6}^{+5.4}$
Dai et al. 2018	8.50 ± 1.90

We obtain a lower density than previously reported

Check out Schulze et al. 2020 for more details about this framework!

Calculating CMF_{ρ}

ExoPlex: Calculates the depth-dependent density, mantle, pressure, gravity profiles of planets. (Unterborn et al. 2018).

Assumes planet with Fe core and silicate mantle.

We obtain a CMF $_{\rho}$ for K2-106 of $45^{+14}_{-16}\%$

Earth's CMF is **32%**

 m_i is the molar mass of species *i*.

Stellar Abundances

• Used the synthetic spectral fitting method.

<u>Abundances:</u> $[Fe/H] = -0.03 \pm 0.014$ $[Mg/H] = 0.04 \pm 0.023$ $[Si/H] = 0.03 \pm 0.067$

HARPS spectrum, $R \approx 120,000$, $\lambda = 450 - 691 nm$

CMF_{star} for K2-106

$$CMF_{star} = \frac{\left(\frac{Fe}{Mg}\right)m_{Fe}}{\left(\frac{Fe}{Mg}\right)m_{Fe} + \left(\frac{Si}{Mg}\right)m_{SiO_2} + m_{MgO}}$$
$$\frac{Fe}{Mg} = 0.71 \pm 0.17, \qquad \frac{Si}{Mg} = 0.93 \pm 0.25$$
$$CMF_{star} = 0.29 \pm 0.06$$
$$CMF_{\rho} = 0.45^{+0.14}_{-0.16}$$

Is K2-106b a super Mercury?

Although K2-106b is highly dense and probably iron-enriched, we **cannot conclude** that it is a true Super-Mercury based on our formalism.

Instead, our analysis suggests that K2-106b is more consistent with an **Earth-like composition**.

Rodríguez-Martínez et al. 2022 in preparation

Conclusions

- We perform the most thorough characterization to date of the super-Mercury candidate K2-106b and find that it is unlikely to be a true super-Mercury.
- Our work implies that perhaps other super-Mercury candidates in the literature may not be as iron-rich as previously thought.
- To characterize the smallest planets, we will need host star abundances of Fe, Mg and Si, and precise planet masses and radii.
- We encourage the community to provide Fe/Mg/Si abundances so that we can make further progress on exoplanet composition.

Thank you for listening! Questions?

THE ROCKY PLANET

WAS NOT A SUPER-MERCURY

The bulk compositions of Earth, Venus, and Mars reflect the relative abundances of the major rock-forming elements in the Sun (Fe, Mg, Si)

Fe/Mg and Si/Mg ratios are similar in the planets and the Sun

CI chondrite meteorite

Core mass fraction (CMF)

- Defined as M_{core}/M_{planet}

The CMF controls important physical properties of the planet, such as:

- The total mass
- The strength of the magnetic field
- The presence of an atmosphere

all of which are directly related to a planet's habitability.

Derived Stellar Parameters

 $T_{eff} = 5508 \pm 70$ $logg_* = 4.44^{+0.033}_{-0.037}$ $M_* = 0.96 \pm 0.06 M_{\odot}$ $R_* = 0.98 \pm 0.023 R_{\odot}$ $\rho_* = 1.46 \pm 0.14 \ g/cm^3$ $d = 245 \ pc$ $V = 12.1 \ mag$

SED fit of the host star, K2-106

Abundance Measurements

This work (iSpec)

 $[Fe/H] = -0.03 \pm 0.014$

 $[Mg/H] = 0.04 \pm 0.023$

 $[Si/H] = 0.03 \pm 0.067$

Adibekyan+21 (MOOG) [Fe/H] = 0.10 ± 0.03 [Mg/H] = 0.07 ± 0.05

 $[Si/H] = 0.05 \pm 0.03$

CMF_{ρ}

Reference	Planet density g/cm^3	Core-mass fraction (CMF $_{\rho}$)
Rodríguez-Martínez (using constraints from MIST)	9.4 ± 1.55	45 ⁺¹⁴ ₋₁₆ %
Rodríguez-Martínez (without constraints from MIST)	9. 1 ^{+1.9} -2.6	39 ⁺¹⁹ ₋₂₃ %
Guenther et al. 2017	13. $\mathbf{1^{+5.4}_{-3.6}}$	80 ⁺²⁰ ₋₃₀ %
Dai et al. 2018	8.50 ± 1.90	$40 \pm 23\%$

Future Targets:

• GJ 1132b

• K2-141 b

- GJ 357b
- LTT 3780 b
- Kepler-105 c
- L 98-59 c
- L 168-9 b
- Kepler-406 b
- Kepler-36 b

- Kepler-80 d
- L 98-59 d
- GJ 9827 b
- K2-291 b
- HD 80653 b
- Kepler-60 b
- TOI-1235 b
- K2-216

Well-characterized planets but are missing stellar Fe, Mg and Si abundances!!

> Schulze et al. incl. **Rodriguez-Martinez**, in preparation

Transiting Exoplanet Survey Satellite (TESS)

- All-sky transit survey (>80% sky).
- 600-1000 nm
- Sensitive to $R_p < 1.75 R_{\oplus}$.
- Goal: measure masses of
- 50 planets $R_p < 4R_{\oplus}$.
- There are currently >50 small planets with mass and radius measurements.

M-dwarf planets

- TESS yield studies predict ~hundred exoplanets around M dwarfs and ~2000 planets around FGK stars, of which ~300 would be $\leq 2R_{\oplus}$ (Ballard, 2018; Barclay et al. 2018)
- Planets around M-dwarfs are easier to detect with both the transit & RV method.
- They are also ideal targets to search for future atmospheric characterization & the search for biosignatures with JWST.

James Webb Space Telescope (JWST)

- ~6.5 m mirror
- 0.6 28 microns (visible to mid-infrared)
 - HST observes at 0.1 to 2 microns (UV to near-IR)
- JWST will:
 - Study the **atmospheres** of habitable exoplanets
 - Directly image exoplanets with a coronagraph
 - See planets in transit and take spectra (composition)
- One of our goals is to provide a ranked list of interesting targets (some of which should be potentially habitable) to observe with JWST.

Previous work: Schulze et al.

	Planet	CMF_{ρ}	$\mathrm{CMF}_{\mathrm{star}}$	$P(\mathcal{H}^0)$ (%)	1σ Class	2σ Class	
	K2-229 b	$0.565\substack{+0.16 \\ -0.20}$	0.29 ± 0.06	42	IHS	IHS	
	HD 219134 c	$0.42^{+0.13}_{-0.14}$	0.28 ± 0.09	70	IHS	IHS	rce
]	Kepler-10 b	$0.13^{+0.15}_{-0.13}$	0.28 ± 0.05	65	IHS	IHS	(2018)
HI K	HD 219134 b	0.29 ± 0.15	0.28 ± 0.09	100	IHS	IHS	alog 016)
HI	Kepler-107 c	$0.70\substack{+0.10 \\ -0.12}$	0.30 ± 0.07	1	\mathbf{SM}	\mathbf{SM}	alog
Ke H	HD 15337 b	0.34 ± 0.15	0.29 ± 0.07	96	IHS	IHS	(2019) alog
]	K2-265 b	0.24 ± 0.24	0.33 ± 0.07	94	IHS	IHS	2018)
HI	HD 213885 b	0.42 ± 0.09	0.31 ± 0.07	66	IHS	IHS	(2019)
К	WASP-47 e	$0.155_{-0.15}^{+0.14}$	0.26 ± 0.07	80	IHS	IHS	(2012) (2015)
!	Kepler-20 b	$0.26\substack{+0.14\\-0.16}$	0.30 ± 0.10	98	IHS	IHS	alog
	$55 \mathrm{Cnc} \mathrm{e}$	$0.004^{+0.10}_{<0}$	0.31 ± 0.10	9	LDSP	IHS	

CMF_star error

$$\binom{X}{Y} = 10^{\left(\binom{X}{H} + A(X)_{\odot}\right) - \left(\binom{Y}{H} + A(Y)_{\odot}\right)}$$

$$\sigma_{\rm CMF_{star}} = \sqrt{\left(\frac{\partial \rm CMF_{star}}{\partial \left(\frac{\rm Fe}{\rm Mg}\right)} \, \delta\left(\frac{\rm Fe}{\rm Mg}\right)\right)^2 + \left(\frac{\partial \rm CMF_{star}}{\partial \left(\frac{\rm Si}{\rm Mg}\right)} \, \delta\left(\frac{\rm Si}{\rm Mg}\right)\right)^2}.$$