The quest for exoplanet direct imaging with ELT apertures:
A hunt for companions with the Large Binocular Telescope

ExoExplorer Science Series
March 18, 2022

Eckhart Spalding
espaldin@nd.edu
mwanakijji.github.io/
This is what a directly imaged planet looks like
Current RV planets

![Graph showing current RV planets with various Ks mag and Msini values.](image-url)
How do we break the mass/msin(i) degeneracy?
How do we break the mass/msin(i) degeneracy?

RV & DI \rightarrow m_P, formation scenarios
Resolution to probe the RV planet population

\[\lambda/D \ (4 \text{ um}) \]
How do we do push the frontiers of exoplanet direct imaging with ELTs?
The Large Binocular Telescope (Mt. Graham, AZ)
The Large Binocular Telescope (Mt. Graham, AZ)
Largest apertures are from the ground

\[B_{EE} = 22.7 \text{ m} \]

\[B_{CC} = 14.4 \text{ m} \]

\[D = 8.25 \text{ m} \]

LBT GMT
Largest apertures are from the ground

\[B_{EE} = 22.7 \text{ m} \]

\[B_{CC} = 14.4 \text{ m} \]

\[D = 8.25 \text{ m} \]
Direct imaging

Stone+ 2018 AJ
Direct imaging
Stone+ 2018 AJ

Wall-eyed pointing
Spalding+ 2017 PASP
Direct imaging

Stone+ 2018 AJ

Wall-eyed pointing

Spalding+ 2017 PASP

Nulling interferometry

Ertel+ 2020 AJ & Physics Today (April 2022)
The LBT Interferometer
The LBT Interferometer
The LBT Interferometer
The LBT Interferometer

Infrared Instrument

Beam in 4.16 m Beam in

3.6 m

Phil Hinz
The LBT Interferometer

Phil Hinz
The LBT Interferometer

- Left adaptive secondary mirror
- Right adaptive secondary mirror
- Left primary and tertiary mirrors
- Right primary and tertiary mirrors
- LMIrcam
- NOMIC
- Phasecam
- NIC cryostat
The LBT Interferometer

- Left adaptive secondary mirror
- Right adaptive secondary mirror
- Left primary and tertiary mirrors
- Right primary and tertiary mirrors
- LMRcam
- NOMIC
- NIC cryostat
- Phasecam
- Phase
LBT: the first ELT aperture

8-m telescope
LBT: the first ELT aperture

8-m telescope

point spread function, "PSF"

\[\sim \frac{\lambda}{D} \]
LBT: the first ELT aperture

22.7 m telescope

light pattern
LBT: the first ELT aperture

22.7 m telescope

"Fizeau" interferometry

\[\sim \frac{\lambda}{B} \]
LBT: the first ELT aperture

8.4 m telescope

Adapt. from Fig. 4 in Patru+ 2017 MNRAS
LBT: the first ELT aperture

8.4 m telescope
22.7 m telescope

Adapt. from Fig. 4 in Patru+ 2017 MNRAS
Gain in high-contrast imaging with Fizeau

Adapt. from Fig. 8 in Patru+ 2017 MNRAS
Gain in high-contrast imaging with Fizeau

\[G(x, y) \propto \frac{\text{PSF}_{\text{One}}}{\text{PSF}_{\text{Fizeau}}} \]
Current RV planets

\[\lambda/B \quad \lambda/D \quad (4 \text{ um}) \]

- DEC (degrees)
- Angle (arcsec)

- Ks mag
- Msin(i)
 - -3
 - 0
 - 3
 - 6
 - 9
 - 12
 - 10
 - 20
 - 30
 - 40
 - 50
Current RV planets

\[\frac{\lambda}{B}, \frac{\lambda}{D} \text{ (4 um)} \]

JWST NIRCam, MIRI coronagraphs (approx.)

DEC (degrees)

Angle (arcsec)

s mag

Msin(i)

10
20
30
40
50
Current RV planets

\[\lambda/B \quad \lambda/D \ (4 \text{ um}) \]

JWST NIRCam, MIRI coronagraphs (approx.)

JWST NIRISS
Altair: the first high-contrast Fizeau target
A PSF with additional degrees of freedom
The scale of the Altair system
The scale of the Altair system

Altair, 1AU

Habitable zone (Cantrell+ 2013)
The scale of the Altair system
Post-processing with Fizeau: the classical regime

\[\rho > \frac{\lambda}{D} \]
Post-processing with Fizeau: the classical regime
Post-processing with Fizeau: the classical regime

angular differential imaging, "ADI"
Post-processing with Fizeau: the Fizeau regime

\[\frac{\lambda}{D} \gtrsim \rho \gtrsim \frac{\lambda}{B} \]
Contrast curves in the classical angular regime
Fizeau baselines through the Altair HZ
Contrast curves: all together now
Contrast curves: all together now

Fizeau regime:
\[\frac{\lambda}{D} \gtrsim \rho \gtrsim \frac{\lambda}{B} \]

Classical regime:
\[\rho > \frac{\lambda}{D} \]
Gain in high-contrast imaging with Fizeau

\[G(x, y) \propto \frac{\text{PSF}_{\text{One}}}{\text{PSF}_{\text{Fizeau}}} \]
What improvement does the gain suggest?

1 Gyr: $\sim 0.1 M_{\text{sol}}$

100 Myr: $\sim 60 M_J$
What improvement does the gain suggest?
What improvement does the gain suggest?
Areas for improvement (examples)
Areas for improvement (examples)

DONE

Upgrade of detector readout electronics: \(~10\% \rightarrow \sim80\%\) integration time efficiency
Areas for improvement (examples)

DONE

Upgrade of detector readout electronics: \(~10\% \rightarrow \sim 80\%\) integration time efficiency

PARTIALLY DONE

Independent mirror feedback
Areas for improvement (examples)

DONE

Upgrade of detector readout electronics: ~10% -> ~80% integration time efficiency

PARTIALLY DONE

Independent mirror feedback

Site-specific atmospheric condition modeling
Areas for improvement (examples)

DONE

Upgrade of detector readout electronics: ~10% -> ~80% integration time efficiency

PARTIALLY DONE

Independent mirror feedback

Site-specific atmospheric condition modeling

PLANNED

Lower-noise wavefront sensor detector
Areas for improvement (examples)

DONE

Upgrade of detector readout electronics: ~10% -> ~80% integration time efficiency

PARTIALLY DONE

Independent mirror feedback

Site-specific atmospheric condition modeling

PLANNED

Lower-noise wavefront sensor detector

Future directions for LBTI in Fizeau mode:
Spalding+ 2022 AJ 163:62

Image: U Arizona
Take-away points

Image: U Arizona
Binocular observing can accommodate unique parts of search space.
Take-away points

Binocular observing can accommodate unique parts of search space

Fizeau variant of ADI can be used to look for companions

Image: U Arizona
Take-away points

- Bottlenecks to sensitivity include integration time and phase noise, but upgrades on the way.
- Binocular observing can accommodate unique parts of search space.
- Fizeau variant of ADI can be used to look for companions.