The quest for exoplanet direct imaging with ELT apertures:

A hunt for companions with the Large Binocular Telescope

ExoExplorer Science Series March 18, 2022

Eckhart Spalding

espaldin@nd.edu mwanakijiji.github.io/

This is what a directly imaged planet looks like

Fig. 1 in Macintosh+ 2014 Science

How do we break the mass/msin(i) degeneracy?

Fig. 3 in Nowak+ 2020 A&A

4

How do we break the mass/msin(i) degeneracy?

Fig. 3 in Nowak+ 2020 A&A

Resolution to probe the RV planet population

Giant Magellan Telescope – GMTO Corporation

How do we do push the frontiers of exoplanet direct imaging with ELTs?

Giant Magellan Telescope – GMTO Corporation

The Large Binocular Telescope (Mt. Graham, AZ)

The Large Binocular Telescope (Mt. Graham, AZ)

Largest apertures are from the ground

11

Largest apertures are from the ground

Direct imaging

Stone+ 2018 AJ

Direct imaging

Stone+ 2018 AJ

Wall-eyed pointing

Spalding+ 2017 PASP

Direct imaging

Stone+ 2018 AJ

Wall-eyed pointing

Spalding+ 2017 PASP

8-m telescope

8-m telescope

light pattern

light pattern

light pattern

8.4 m telescope

Adapt. from Fig. 4 in Patru+ 2017 MNRAS

Adapt. from Fig. 4 in Patru+ 2017 MNRAS

Gain in high-contrast imaging with Fizeau

Adapt. from Fig. 8 in Patru+ 2017 MNRAS

Gain in high-contrast imaging with Fizeau

Adapt. from Fig. 8 in Patru+ 2017 MNRAS

34

Altair: the first high-contrast Fizeau target

A PSF with additional degrees of freedom

The scale of the Altair system

The scale of the Altair system

The scale of the Altair system

Post-processing with Fizeau: the classical regime

 $\rho > \lambda/D$

Post-processing with Fizeau: the classical regime

Post-processing with Fizeau: the classical regime

Post-processing with Fizeau: the Fizeau regime

$\lambda/D \gtrsim \rho \gtrsim \lambda/B$

Contrast curves in the classical angular regime

Fizeau baselines through the Altair HZ

49

Contrast curves: all together now

Contrast curves: all together now

Gain in high-contrast imaging with Fizeau

Adapt. from Fig. 8 in Patru+ 2017 MNRAS

DONE

Upgrade of detector readout electronics: ~10% -> ~80% integration time efficiency

DONE

Upgrade of detector readout electronics: ~10% -> ~80% integration time efficiency

PARTIALLY DONE

Independent mirror feedback

DONE

Upgrade of detector readout electronics: ~10% -> ~80% integration time efficiency

PARTIALLY DONE

Independent mirror feedback

Site-specific atmospheric condition modeling

DONE

Upgrade of detector readout electronics: ~10% -> ~80% integration time efficiency

PARTIALLY DONE

Independent mirror feedback

Site-specific atmospheric condition modeling

PLANNED

Lower-noise wavefront sensor detector

DONE

Upgrade of detector readout electronics: ~10% -> ~80% integration time efficiency

PARTIALLY DONE

Independent mirror feedback

Site-specific atmospheric condition modeling

PLANNED

Lower-noise wavefront sensor detector

Future directions for LBTI in Fizeau mode: Spalding+ 2022 AJ 163:62

Binocular observing can accommodate unique parts of search space

Binocular observing can accommodate unique parts of search space

> Fizeau variant of ADI can be used to look for companions

Binocular observing can accommodate unique parts of search space

> Fizeau variant of ADI can be used to look for companions

Bottlenecks to sensitivity include integration time and phase noise, but upgrades on the way

Steward Observatory

LARGE BINOCULAR TELESCOPE OBSERVATORY

Eckhart Spalding

espaldin@nd.edu mwanakijiji.github.io/

