EVAPORATING EXOPLANETS FOR EVERYONE

AN OPEN-SOURCE FRAMEWORK TO PLAN AND INTERPRET OBSERVATIONS OF ATMOSPHERIC ESCAPE IN EXOPLANETS Leonardo A. dos Santos, STScI Fellow

<u>ldsantos@stsci.edu</u>

Cloud structure in the atmosphere of Venus. Credit: JAXA/ISAS/DARTS/Kevin M. Gill

Artist's impression of iron rain in WASP-76b. Credit: ESO/M. Kornmesser (see Ehrenreich et al. 2020, Nature 580)

PLANET HUNTING.

'Hot Jupiters' Leave Theorists in the Cold

CAPRI, ITALY—It has been just 10 months Within the group of less massive compansince a pair of Swiss astronomers first identiions in circular orbits, astronomers have been fied a planet orbiting a sunlike star other than surprised to find a completely new class of our own, but the tally of so-called "exoplanets" planets, which they dubbed "hot Jupiters." has now passed the total of nine familiar These giant planets are termed hot because their orbits are between 10 and 20 times closer planets of our solar system. That mark came earlier this month at the Fifth International to their parent stars than the Earth is to the sun, and their orbital periods---or "years"-are only Conference on Bioastronomy on this island a few days long. The original exoplanet, around off the southern Italian coast, where astronomers reported several new sightings, includ-51 Pegasi, belongs to this class, and three ing the first evidence of another multiplanet more have since been discovered orbiting 55 system around a sunlike star. And with the Cancri, Tau Bootis, and Upsilon Andromedae, total steadily growing, researchers are begin-Marcy and Butler's most recent find. "55 ning to identify tentative groupings of planet Cancri and Tau Bootis are close cousins of types, one of which, says Geoff Marcy of San 51 Pegasi, while Upsilon Andromedae is a Francisco State University, is "a class of planreal twin," says Marcy. Within a couple of ets that is completely unlike the planets in months Mayor expects to announce four new our solar system." members of this class, based on observations

PLANET HUNTING.

'Hot Jupiters' Leave Theorists in the Cold

PLANETS DISCOVERED AROUND OTHER SUNLIKE STARS				
Star I	Distance to star (Earth-Sun = 1)	r Orbital period	Lower limit on mass (Jupiter = 1)	Notes
51 Pegasi	0.05	4.3 days	0.5	First exoplanet, "hot Jupiter"
47 Ursae Majoris	2.1	1103 days	2.4	
70 Virginis	ecc. orbit	116.7 days	6.6	Possible brown dwarf
55 Cancri	0.11	14.76 days	0.8	"Hot Jupiter"
55 Cancri	>5	unknown	>5	
HD 114762	ecc. orbit	84.01 days	10	Possible brown dwarf
Tau Bootis	0.0047	3.31 days	3.7	"Hot Jupiter"
Upsilon Andromed	dae 0.054	4.61 days	0.6	"Hot Jupiter"
Lalande 21185	2.2	5.8 years	0.9	Astrometric detection
Lalande 21185	11	30 years	1.1	Astrometric detection (uncertain)

Francisco State University, is "a class of planets that is completely unlike the planets in our solar system." real twin," says Marcy. Within a couple of months Mayor expects to announce four new members of this class, based on observations

Hydrogen escapes thermally

Extreme Ultraviolet We we we we We we we Mr Mr Mr W w-w-w

Solar Wind

Credit: D. Brain, M. Chaffin, H. Egan, R. Ramstad, B. Jakosky, S. Curry, J. Luhmann, C. Dong, R. Yelle

.

Thermal Escape

3

Escaping Species: H

Simulations of an escaping atmosphere in the hot Jupiter WASP-107b

MacLeod & Oklopčić (2022, AAS Journals in press, arXiv:2107.07534)

HOT (SUB-)NEPTUNES, BEWARE

YOU WILL LOSE YOUR MAJESTIC FLUFF

Hot Neptune desert radius

Direction of radius evolution

HOT (SUB-)NEPTUNES, BEWARE

YOU WILL LOSE YOUR MAJESTIC FLUFF

- What are the timescales of mass loss and radius change?
- What is the efficiency of converting stellar irradiation into outflow?
- How much does the internal energy from planet's core contribute to evaporation?
- And what about magnetic fields?!*

Lyman- α transit spectroscopy of GJ 436 b

Ehrenreich et al. (2015, Nature 522)

Lyman- α transit spectroscopy of GJ 436 b

- Only the Hubble can observe
- Low-mass stars are faint in UV
- Interstellar medium attenuation

Ehrenreich et al. (2015, Nature 522)

Transmission spectrum of an evaporating warm Neptune

Pallé et al. (2020, A&A 638)

Metastable He spectroscopy has become very productive and popular!

Orell-Miquel et al. (2022, A&A in press)

OPEN-POLICY TOOLS

(OPEN-SOURCE, OPEN-DATA, ETC.)

batman: Bad-Ass Transit Model cAlculatioN

Welcome to the documentation for batman, a Python pack exoplanet transit light curves. The package supports calcu

And many others!

A&A 640, A29 (2020) https://doi.org/10.1051/0004-6361/202038802 © ESO 2020

Search for helium in the upper atmosphere of the hot Jupiter WASP-127 b using Gemini/Phoenix

Leonardo A. dos Santos¹, David Ehrenreich¹, Vincent Bourrier¹, Romain Allart¹, George King^{2,3}, Monika Lendl¹, Christophe Lovis¹, Steve Margheim⁴, Jorge Meléndez⁵, Julia V. Seidel¹, and Sérgio G. Sousa⁶

Fig. 4. Transmission spectrum of WASP-127 b around the He triplet. Absorption is positive.

AN OPEN-SOURCE CODE TO MODEL 1D EXOPLANET OUTFLOWS

FORWARD MODELLING: ABSORPTION IN FUNCTION OF TRANSIT PHASE

Dos Santos et al. (2022, A&A in press, arXiv:2111.11370)

RETRIEVALS: ATMOSPHERIC ESCAPE RATE AND OUTFLOW TEMPERATURE

Dos Santos et al. (2022, A&A in press, arXiv:2111.11370)

HOT (SUB-)NEPTUNES, BEWARE

YOU WILL LOSE YOUR MAJESTIC FLUFF

- What are the timescales of mass loss and radius change?
- What is the efficiency of converting stellar irradiation into outflow?
- How much does the internal energy from planet's core contribute to evaporation?
- And what about magnetic fields?!*

RETRIEVALS: ATMOSPHERIC ESCAPE RATE AND OUTFLOW TEMPERATURE

$\dot{m} = 0.14^{+0.08}_{-0.04} \,\mathrm{M_{\bigoplus}} \,\mathrm{Gyr^{-1}} \approx 0.5 \,\%^{+0.3\%}_{-0.1\%} \,\mathrm{Gyr^{-1}}$

HAT-P-11 b is, likely, stable against evaporation

Dos Santos et al. (2022, A&A in press, arXiv:2111.11370)

p-winds **WARNING: PRELIMINARY RESULTS!**

Keck/NIRSPEC result is under review (Kirk, Dos Santos et al. 2022)

CARMENES data is a kind courtesy of M. López-Puertas and M. Lampón

WARNING: PRELIMINARY RESULTS!

Kirk, Dos Santos et al. (2022, AAS Journals under review)

WASP-52 b, observed with **Keck/NIRSPEC Hot Jupiter**

$\dot{m} = 0.63^{+0.26}_{-0.21} M_{\oplus} \text{Gyr}^{-1}$ or $\dot{m} \approx 1.2 \times 10^{11} \, {\rm g \, s^{-1}}$

WARNING: PRELIMINARY RESULTS!

Data is courtesy of the M. López-Puertas and M. Lampón

HD 209458 b, observed with **CARMENES Hot Jupiter**

$\dot{m} = 0.08^{+0.12}_{-0.06} \,\mathrm{M}_{\oplus} \,\mathrm{Gyr}^{-1}$

or $\dot{m} \approx 1.5 \times 10^{10} \, {\rm g \, s^{-1}}$

WARNING: PRELIMINARY RESULTS!

Data is courtesy of the M. López-Puertas and M. Lampón

GJ 3470 b, observed with **CARMENES** Warm Neptune

$\dot{m} = 0.30^{+0.08}_{-0.06} \,\mathrm{M}_{\oplus} \,\mathrm{Gyr}^{-1}$

 $\dot{m} \approx 5.7 \times 10^{10} \,\mathrm{g \, s^{-1}}$ or $\dot{m} \approx 2\% \,\mathrm{Gyr}^{-1}$

SAMPLE-LEVEL TRENDS

• F_{XUV} vs. He absorption

SAMPLE-LEVEL TRENDS

• F_{XUV} vs. He absorption

WARNING: PRELIMINARY RESULTS!

Sample-level trends:

- F_{XUV} vs. He absorption
- F_{XUV}/ρ vs. mass loss rate

Energy-limited mass loss formulation

pesky heating efficiency factor

PUBLISHED RESULT!

discrepancy between model and helium data Ь

He narrow-band photometry yield a subset of self-consistent models (Vissapragada et al. 2022, ApJ in press)

p-winds more results and projects are in the pipeline!

MORE OPEN-SOURCE CODES

FOR ATMOSPHERIC ESCAPE STUDIES

PLATYPOS - PLAneTarY PhOtoevaporation Simulator

Tool to estimate the atmospheric mass loss of planets induced by stellar X-ray and extreme UV irradiation.

Ketzer & Poppenhaeger (2022, proceedings of the XMM-Newton Workshop 2021)

The ATES code

The ATES code has been created to perform hydrodynamical simulations of the atmospheric mass loss from irradiated exoplanets. For a detailed description of the code, we refer to [1] In the following we describe the code organization and how to run.

Requirements

The code can be compiled with both gfortran (tested successfully in version 9.3.0) and ifort (tested on the 2021.2.0 20210228 version). For the compiler choice, see below. A basic installation of python3 is required. The following libraries are used: numpy,tkinter,os,shutil,matplotlib,sys,time.

Installation

The code doesn't require any special installation, and can be directly downloaded from the Github page or, in alternative, the repository can be cloned via

git clone https://github.com/AndreaCaldiroli/ATES-Code

Caldiroli et al. (2021, A&A 655)

TAKE-HOMEPOINTS

- exoplanets
- The whole community benefits from open-policy initiatives

AN OPEN-SOURCE FRAMEWORK TO PLAN AND INTERPRET OBSERVATIONS OF ATMOSPHERIC ESCAPE IN EXOPLANETS Leonardo A. dos Santos, STScI Fellow Idsantos@stsci.edu

Hot Jupiters and (sub-)Neptunes are a laboratory to study atmospheric escape in

• We need to analyze the sample of evaporating exoplanets with a common framework