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ABSTRACT 

As planning for the next generation of high contrast imaging instruments (e.g. Roman-CGI, HabEx, and LUVOIR, TMT-PSI, 
ELT-EPICS, Magellan-GMagAO-X, SPHERE+, GPI-2.0, SCExAO, and MagAO-X) matures, and first-generation extreme 
adaptive optics facilities (e.g. VLT-SPHERE, Gemini-GPI) finish their large main surveys, it is imperative that the performance 
of different designs, post-processing routines, observing strategies, observing calibration procedures, and survey results be 
compared in a consistent, statistically robust framework. SAG19, exoplanet imaging signal detection theory and rigorous 
contrast metrics, is meant to address the performance of these direct imaging instruments, strategies, and methods. In this 
report, we create a reference document for high contrast exoplanet detection terminology (Sections 2 and 3, drawing from work 
published as part of SAG19), summarize the results of three additional publications that resulted from SAG19 (Section 4, 5, 
and 6), and summarize the broad findings of SAG19 (Section 7). 
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1 The SAG 19 Charter 
The scope of SAG19 is: 

• To go back to the basics of Bayesian Signal Detection Theory (SDT). Bayesian SDT implies H0:signal absent / H1:signal 
present hypothesis testing, and invokes well-known concepts such as: the confusion/contingency matrix, false positive 
(type I error), false negative (type II error), true positive, and true negative fractions, and useful combinations of these 
quantities such as sensitivity (or completeness) and specificity. 

• To rebuild a solid set of usual definitions used for or in lieu of “contrast” in different contexts, such as astrophysical 
contrast or ground truth, instrumental contrast used for coronagraph/instrument designs, and the measured on-sky 
data-driven contrast. 

Bayesian, hypothesis testing SDT will automatically force our community to be inclusive of all possible aspects of 
exoplanet detection, and signal-to-noise ratio (SNR) metrics, including signal-related parameters: planet-star contrast, 
SED, polarization, variability; instrument parameters: throughput, bandwidth, Strehl ratio/encircled energy, background 
(sky/thermal, or astrophysical), detector characteristics; noise characteristics as affected by the starlight suppression 
technique (in a very broad sense): mean intensity, RMS pixel intensities, RMS resolution element (resel, of characteristic 
size wavelength/telescope diameter) intensities, the probability density function (PDF) computed over pixels, the same 
PDF computed over resels, their nature and higher order moments, the sample zone and size, outlier management, etc. 

• To identify what we can learn and apply from communities outside our field (e.g. medical imaging). A good example is 
the widespread use of receiver operating characteristic curve (ROC) and area under the curve (AUC). ROC plots the true 
positive fraction against the false positive fraction, and is useful to capture the true performance of a given high contrast 
imaging instrument, or post-processing/detection algorithm. Other formalisms, alternative to the ROC curve, such as the 
precision-recall curve will also be considered. 

• To define precise contrast computation and ROC curve computation recipes, a new “industry standard”. The goal is to be 
able to compare results from surveys, instrument and/or telescope designs on a level-playing field. 

• To identify how the new metrics and recipes can be used to define confidence levels for detection (H1) and subsequently 
error bars for photometric, spectroscopic, astrometric characterization. Ancillary goals: better understanding what limits 
exoplanet characterization, not just detection. For instance, understanding the limiting precision of extracted planet 
spectra from algorithms that anneal the planet signal and gaining proper error assessments from spectral extraction. 
This is particularly important in cases where the prior on the signal/wavelength to be detected is unknown and iterative 
forward-modeling must be applied. 

• To perform a community data challenge before and after applying our proposed set of standardized SDT rules and recipes, 
and apply lessons learned. 
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2 Definitions, contrast and yield metrics (partly adapted from Krist, 2016; Ruane et al., 
2018) 

We define the “contrast" as the ratio of the planet intensity to the star intensity when both objects are observed in exactly the 
same manner. When contrast is used to describe coronagraphic or survey performance, however, its meaning becomes more 
complicated: the field of interest (e.g., a coronagraphic dark hole) as measured with the detector will be filled with diffracted 
light from the star (mostly, but not completely, eliminated by the starlight suppression system), scattered light speckles and stray 
light from optical defects (perhaps reduced by wavefront control), and extended astrophysical sources (e.g., zodi or exozodi). 
Even with a perfect detector and post-processing capabilities, the shot noise from these features limits the system’s sensitivity 
to faint exoplanets. We assume here that the scattered and stray light, as well as the astrophysical backgrounds, are generally 
independent of the suppression technique, and hence we ignore them in favor of focusing on comparative performances. 

2.1 Point Spread Function (PSF) 
PSF0(x,λ ), is the PSF of the imaging system with a perfect wavefront, flat deformable mirrors, and with all of the coronagraph 
masks removed (including apodizers, focal plane masks, and Lyot stops). We take x to be the position vector in the image plane 
and λ as the wavelength. In this case, the PSF is theoretically shift invariant. The PSF is normalized such that Z 

PSF0(x)dx = 1 (1) 

2.2 Coronagraphic, shift-variant PSF 
The coronagraphic PSF, PSFcoro(x,x0,λ ), is the PSF with the coronagraph masks in place and DMs set to minimize starlight in 
the desired dark hole region of the image plane. PSFcoro is different from PSF0 in that it varies as a function of source position 
x0. 

2.2.1 Off-axis coronagraphic PSF and planet throughput ηp 

Most starlight suppression techniques reduce the intensity of the stellar diffraction pattern in a manner that also modifies the 
shape and intensity of the PSF of a field sources such as a planet. Pupil apodization, Lyot stops, and intentionally-induced 
wavefront modulations for obscuration compensation may block light and/or diffract it out of the core and into the wings. In 
most cases, planets are sufficiently faint that only the light within the core of the planet’s PSF will be measurable, so even a 
lossless suppression system may have poor net performance if the majority of the planet’s flux is dispersed over large angles due 
to PSF reshaping. Thus, the metric that defines an effective suppression performance must include the field PSF characteristics 
to make comparisons among suppression methods reasonable. 

Low/no loss systems such as the starshade or (for unobscured systems) PIAA or vector vortex coronagraphs have field PSFs 
that are very close in morphology and photometry to the non-coronagraphic ones, except near and within the inner working 
angle defined by the occulter or focal plane mask. Shaped pupil and hybrid Lyot coronagraphs (HLC), however, suffer from 
low transmission due to their pupil/Lyot masks, redistribution of light from the planet PSF’s core into the wings as a result of 
the masks, and, in the case of the HLC, the wavefront modulations. 

The signal detected in photo-electrons from the planet and star at position x0 is Z 
Sp(x0) = ηp(x0,λ )Φp(λ )AΔt q(λ )T (λ )dλ (2)

Δλ 

respectively, where ηp is the fraction of collected planet light that is detected, Δt is the integration time, Φp(λ ) and Φs(λ ) 
are the flux from the planet and star (photons per unit area per unit time per unit wavelength at the primary mirror), Δλ is 
the spectral bandwidth, A is the collecting area of the telescope, q(λ ) is the detective quantum efficiency, and T (λ ) is the 
transmission of the instrument describing losses that affect the star and planet equally. Specifically, ηp may be computed by Z 

ηp(x0,λ ) = PSFcoro(x,x0,λ )dx (3)
AP(x0) 

where the signal is integrated over a finite circular aperture for photometric estimation in the image plane, AP(x0), centered 
on the source position x0. 

2.2.2 Throughput definitions 
The relative throughput is normalized to the throughput of the system without the coronagraph masks: ηp(x0,λ )/ηtel(λ ), 
where Z 

ηtel(λ ) = PSF0(x,λ )dx. (4) 
AP(0) 
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The total energy throughput is the integral of ηp(x0,λ ) with respect to x0 over the image plane and with respect to λ over the 
spectral bandwidth Δλ . The spectral bandwidth is most often reported as a fraction (Δλ /λ ) or percentage (Δλ /λ × 100) for 
broadband imaging, whereas the spectral resolution of spectrographs is typically given by R = λ /Δλ . 

2.2.3 On-axis coronagraphic PSF, residual stellar intensity ηs 

The signal detected in photo-electrons from the star at position x0 is Z 
Ss(x0) = ηs(x0,λ )Φs(λ )AΔt q(λ )T (λ )dλ , (5)

Δλ 

respectively, where ηs is the fraction of collected astrophysical light that is detected. Specifically, ηs may be computed by 

Z 
ηs(x0,λ ) = PSFcoro(x,0, λ )dx, (6)

AP(x0) 

where the signal is integrated over a finite circular aperture for photometric estimation in the image plane, AP(x0), centered on 
x0. 

2.3 Starlight suppression 
The term suppression has been used in the past, especially for interferometers including the visible nulling coronagraph concept, 
to describe how much the diffraction pattern of the star has been reduced by the instrument. Its use, however, is fraught with 
potential interpretation errors. It might reasonably mean that the wings of the stellar PSF are suppressed to the level of a planet 
with a given planet/star contrast, or that the entire stellar PSF has reduced, or that the surface brightness of the wings has been 
reduced. Without any other qualifiers, the term “suppression" does not indicate how the brightness of the suppressed stellar PSF 
compares to the planet intensity. As a quantifier, suppression is therefore only useful within the context of a specific system 
configuration and cannot be used across different instruments. 

2.4 Raw (coronagraphic, background) contrast 
The most widely used coronagraph performance metric is the raw contrast defined by 

ηp(x0, λ )
C(x0,λ ) = . (7)

ηs(x0,λ ) 

The raw contrast may also be integrated in over spatial and spectral dimensions. Subsequently in this document, we use the 
term C to refer to the raw contrast in Equation 7. 

2.5 Normalized intensity 
Another widely used coronagraph performance metric is normalized intensity defined by 

ηs(x0,λ )
CI (x0,λ ) = . (8)

ηs(0, λ ) 

It may also be integrated in over spatial and spectral dimensions. 

2.6 Signal to noise ratio 
The signal to noise ratio is one of the most relevant metric pertaining to signal detection. 

2.6.1 Photon noise limited √ 
In the presence of stellar photon noise, the signal-to-noise ratio for detection is SNR = Sp/ Ss. For the sake of simplicity in 
this discussion, we assume ηs, ηp, and the planet-to-star flux ratio, ε = Φp/Φs, are approximately constant as a function of 
wavelength. The expression for the planet and star signals simplify to 

Sp = ηpεN?, (9) 
Ss = ηsN?, (10) 

where Z 
N? = Φs(λ )AΔt q(λ )T (λ )dλ (11)

Δλ 
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ξξ

ξξ

is the unocculted stellar signal in units of photo-electrons. From this point, we assume the x0 argument is implicit. The stellar 
photon noise limited SNR becomes r 

ηp √ ηpN?SNR = √ ε N? = ε . (12)
ηs C 

The detection limits of an observation are most often communicated in terms of the minimum detectable planet-to-star flux 
ratio εlim. To achieve an SNR of unity, s 

C
εlim = . (13)

ηpN? 

An exoplanet with ε = 10−10 may be detected if the C is small enough to ensure that the flux ratio limit set by photon noise εlim 
is less than 10−10. A system with ηp = 10% and N? ≈ 1012, which is typical for a one hour integration on a solar type star at 
10 pc, requires C ≈ 10−10. 

2.6.2 Speckle noise limited 
The dominant noise source in high-contrast images is often spatial speckle noise. Speckles appear as blobs in the image whose 
spectral irradiance at a single wavelength is described by 

I(x,λ ) = |E0(x,λ )|2 + |Especk(x,λ )|2 + 2Re{E0(x,λ ) ∗Especk(x,λ )}, (14) 

where |E0(x,λ )|2 ≈ PSFcoro(x,0,λ ) with an unaberrated wavefront and Especk(x,λ ) represents the field in the focal plane due 
to a small additive wavefront error normalized by the coronagraph throughput (Racine et al., 1999; Bloemhof et al., 2001; 
Sivaramakrishnan et al., 2002; Perrin et al., 2003; Aime & Soummer, 2004a; Soummer et al., 2007). The additive wavefront 
errors that cause speckles interfere with the underlying residual starlight. 

Aberrations that change slowly may be calibrated using differential imaging techniques, such as Angular Differential 
Imaging (ADI) (Davies, 1980; Marois et al., 2006). Those that change on small timescales (e.g. atmospheric residuals) average 
out into a speckle halo, which may also be subtracted from the image. In these cases, we are only left with the photon noise from 
the subtracted speckles. However, aberrations that vary on intermediate timescales (i.e. quasi-static) are the most problematic 
since they are responsible for residual spatial speckle noise after differential imaging. The remaining spatial speckle noise 
introduces a systematic noise floor for detecting companions through direct imaging. 

The SNR when limited by spatial speckle noise is SNR = Sp/σspeck, where (Aime & Soummer, 2004a; Soummer et al., 
2007) 

σ
2 

speck + 2SspeckS0, (15)speck ≈ S2 

where Sspeck and S0 are the signals that would be detected from the aberrated and unaberrated wavefronts alone. Expanding the 
signal terms: 

Sspeck ≈ CspeckηpN?, (16) 

S0 ≈ C0ηpN?, (17) 

where we have made the approximation that ηp is constant over the spectral bandwidth. The raw contrast of a speckle at a 
position x0 is directly tied to the amplitude of an aberration at spatial frequency ξ = x0/λ F# cycles per pupil diameter, where 
F# is the focal ratio. For a wavefront error ω at the spatial frequency ξ , the raw contrast at x is Cspeck = 2(πω)2, where ω is in 
units of waves rms (Malbet et al., 1995; Ruane et al., 2018). C0 is the minimum possible raw contrast (unaberrated case). The 
SNR may be written 

εηpN? ε
SNR = q = q . (18) 

C2 N2 N2 C2 
speckηp 

2 
? + 2CspeckC0ηp 

2 
? speck + 2CspeckC0 

The planet-to-star flux ratio at which SNR is unity is given by q 
C2 (19)εlim = speck + 2CspeckC0. 
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More generally, we write the flux ratio limits as three terms added in quadrature: q
εlim = speck,1 + ε2 

phot, (20)ε2 
speck,2 + ε2 

p p
where εspeck,1 = Cspeck, εspeck,2 = 2CspeckC0, and εphot = C/ηpN? represent the individual flux ratio limit terms. 

Coronagraph instruments are often designed to minimize the limiting flux ratio. The first term, εspeck,1, is set by wavefront 
stability and the effectiveness of the differential imaging strategy. It is minimized by creating a dark hole in the stellar PSF with 
the adaptive optics system and maintaining it throughout the observation. The second term, εspeck,2, describes the interaction 
between wavefront errors and starlight diffracted through the coronagraph in the unaberrated case. Lastly, εphot is the stellar 
photon noise term. 

2.6.3 Integration time 
Another way to define coronagraph design metrics is to predict the minimum integration time for a detection. For example, in 
the stellar photon noise limited regime, the integration time for SNR=1 is 

C 1 ηs 1
Δt = = , (21)

ηp ε2Ṅ? ηp 
2 ε2Ṅ? 

where Ṅ? = N?/Δt is the count rate. Thus, an optimal coronagraph minimizes ηs/ηp 
2. Generalizing the SNR expressions above 

to include other noise sources, 

SpSNR = q , (22) 
Ss + σ2 

det + σ2 
bkgd 

where σdet is the detector noise and σbkgd is the background noise (e.g. thermal background). Since the additional noise terms 
do not depend on the coronagraph throughput, we can characterize the relative importance of each additional noise term as 
constants an, where σ2 = anN?, and write the integration time as follows: n � � 

Δt = 
1 

ηs + ∑an . (23)
ηp 

2ε2Ṅ? n 

Thus, the coronagraph is only designed to suppress starlight enough such that the stellar photon noise no longer dominates the 
error budget. 

Finally, when limited by mid-spatial frequency aberrations that generate speckles, an optimal coronagraph minimizes 
their photon noise contribution by maximizing the coronagraph throughput. We write σspeck = bN?, where b is a constant 
representing the strength of the spatial speckle noise. The expression for the integration time becomes " # 

1 ηs + ∑n an
Δt = . (24)

ε2Ṅ? η2 − b2/ε2 
p 

If b > ηpε , spatial speckle noise prevents detection (i.e. integration time is negative). Therefore, an optimal coronagraph 
minimizes |Δt|, but maintains ηp > b/ε to ensure planets may be detected. Furthermore, the removal of speckles through 
differential imaging is most efficient when the coronagraph throughput is maximized because the SNR of the speckle 
measurement is also maximized in each frame. 

3 Signal detection theory (partly adapted from Mawet et al., 2014) 
The detection problem consists of making an informed decision between two hypotheses, H0, signal absent, and H1, signal 
present. While the application of hypothesis testing for the binary classification problem of exoplanet imaging using matched 
filtering and Bayesian techniques has been discussed in detail elsewhere (eg Kasdin & Braems, 2006), here we focus on the 
background and photon noise only without any considerations for speckle noise or sample sizes. 

Because most exoplanet hunters want to minimize the risk of announcing false detections or waste precious telescope time 
following up artifacts, high contrast imaging has mostly been concerned (so far) with choosing a detection threshold τ , defining 
the contrast which minimizes the false positive fraction (FPF), defined as 

Z +∞FP 
FPF = = pr(x|H0)dx (25)

T N + FP τ 
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where x is the intensity of the residual speckles, and pr(x|H0) is the probability density function of x under the null 
hypothesis H0. FP is the number of false positives and TN is the number of true negatives. Under H0, the confidence level 
CL = 1− FPF is called the “specificity.” However, exoplanet hunters who want to optimize their survey, and derive meaningful 
conclusions about null results, also wish to maximize the so-called “True Positive Fraction” (TPF), or in statistical terms the 
“sensitivity” (some authors refer to “completeness”, see, e.g. Wahhaj et al. (2013)), which is defined as 

Z +∞T P 
T PF = = pr(x|H1)dx (26)

T P + FN τ 

with pr(x|H1) is the probability density function of x under the hypothesis H1, TP is the number of true positives, and FN is 
the number of false negatives. For instance, a 95% sensitivity (or completeness) for a given signal µc, and detection threshold τ 
means that 95% of the objects at the intensity level µc will statistically be recovered from the data. Ultimately, the goal of high 
contrast imaging, as a signal detection application, is to maximize the TPF while minimizing the FPF. Optimizing detection 
thus consists of maximizing the so-called AUC, i.e. the area under the “Receiver Operating Characteristics” (ROC) curve. The 
ROC curve plots the TPF as a function of the FPF. The optimal linear observer, or discriminant, maximizing the AUC is called 
the Hotelling observer, and can be regarded as a generalization of the familiar pre-whitening matched filter (see, for instance 
Caucci et al. (2007), Lawson et al. (2012), Ruffio et al. (2017)). 

3.1 The effect of non-Gaussian statistics 
Statistical tools to assess the significance of a point source detection at large angles are most often based on the assumption that 
the underlying noise is Gaussian. However, it was clear early in the history of direct imaging that speckle noise in raw high 
contrast images is never Gaussian (Perrin et al., 2003; Aime & Soummer, 2004a; Bloemhof, 2004; Fitzgerald & Graham, 2006; 
Soummer et al., 2007; Hinkley et al., 2007; Marois et al., 2008). The main conclusion of this series of pioneering papers is 
that the probability density function (PDF) of speckles in raw images does not follow a well-behaved Gaussian distribution, 
but rather it is better described by a modified Rician (MR) distribution, which is a function of the local time-averaged static 
point-spread function (PSF) intensity Ic and random speckle noise intensities Is: 

� � � √ � 
1 I + Ic 2 IIc pMR(I, Ic, Is) = exp − Io (27)
Is Is Is 

where I0 is the modified Bessel function of the first kind, and where the mean and variance of I are µI = Ic + Is, and 
σ2 = I2 + 2∗ IcIs, respectively (Soummer et al., 2007).I s 

The bulk of past studies related to speckle statistics focused on the temporal aspects of speckle noise in the presence of 
atmospheric turbulence, corrected or not by adaptive optics systems. In the virtual case of an instrument with perfect optics on a 
ground-based telescope, the practical impact of the temporal MR PDF of speckles would only have a minor effect on detection 
limits by virtue of the central limit theorem (CLT). Indeed, if a large number of independent and identically distributed (i.i.d.) 
speckles are co-added at a specific location in the image, then the sample means will be normally distributed (Marois et al., 
2008). In other words, the speckle sampling distribution will be Gaussian. 

Unfortunately, optics are never perfect nor hold their imperfect shape constant over time, and so they induce slowly varying 
wavefront errors, creating quasi-static speckles. Marois et al. (2008) used a heuristic argument to show that quasi-static speckle 
noise inside annuli centered on the PSF core would follow the MR PDF Eq. 27, because it is basically produced with the same 
value of Ic (the unaberrated PSF). The typical lifetime of quasi-static speckles has been found to range from several minutes 
to hours (Hinkley et al., 2007). Is has thus a complex spatio-temporal dependence Is(θ , t). Slowly varying wavefront errors 
disturb the spatio-temporal autocorrelation of the PSF accordingly, and thus its temporal and spatial statistical properties: the 
samples of resolution elements used to compute noise properties are no longer independent and identically distributed. 

Marois et al. (2008) showed that the net effect of the MR nature of quasi-static speckle noise is that the confidence level 
(CL) at a fixed detection threshold τ significantly deteriorates. Subsequently, in order to preserve CLs, or equivalently control 
the likelihood of type I errors (false alarm probability, or false positive fraction) the detection thresholds need to be increased 
significantly, e.g. up to a factor 4 (Marois et al., 2008). 

Fortunately, observing strategies such as angular differential imaging (ADI, Marois et al., 2006), and data reduction 
techniques such as principal component analysis (PCA, Soummer et al., 2012; Meshkat et al., 2013) routinely demonstrate 
their “whitening” capability, i.e. the efficient removal of the correlated component of the noise. Whitening yields independent 
Gaussian noise samples through complementary mechanisms. First, once the correlated component has been removed (even 
partially), other noise sources start to dominate. The latter (background, photon noise, readout or dark current) are independent 
noise processes and thus Gaussian by virtue of the central limit theorem (CLT). Second, ADI and other differential imaging 
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techniques enhance the efficiency of the first mechanism (if the removal is only partial) by introducing geometrical diversity 
(field rotation in the case of ADI), further consolidating the independence of noise samples. 

3.2 The effect of small sample statistics 
In the close separation regime (down to the diffraction limit at 1λ /D), speckle noise dominates at all contrast levels, even 
after being controlled or nulled by active speckle correction (Malbet et al., 1995; Bordé & Traub, 2006; Give’on et al., 2007) 
and/or a dedicated low-order wavefront sensor (see, e.g., Guyon et al. 2009). In the case of very high contrast images (109 : 1 
and higher), other sources of noise such as photon noise, readout or dark current might become dominant, especially at larger 
separations (see, e.g., Brown (2005), and Kasdin & Braems (2006) for thorough treatments of the uniform background case). 
At small separations, these factors are presumably less important compared to the speckle variability induced by residual 
low-order aberrations. The detailed error budget largely depends on the hardware available, and must therefore be studied on a 
case-by-case basis, which is beyond the scope of this report. 

Quasi-static speckles at a given radius r are all drawn from the same parent population of mean µ and standard deviation σ 
(Marois et al., 2008). Assuming that the detection is performed on individual resolution elements λ /D, we must treat speckle 
noise on this characteristic spatial scale as well. We also note that the size of residual speckles is always ∼ λ /D, even after 
coherent (interference) or incoherent (intensity image) linear combinations. At the radius r (in resolution element units λ /D), 
there are 2πr resolution elements and thus possible non-overlapping speckles, i.e. about 6 at 1λ /D, 12 at 2λ /D, 18 at 3λ /D, 
and 100 at 16λ /D. The empirical estimators of the mean and standard deviation, x̄ and s, are thus calculated from a sample 
with a limited number of elements, or degree of freedom (DOF), shrinking with r. For samples containing less than ∼ 100 
elements (this number is somewhat arbitrary and varies according to practices and applications), we are in the regime of small 
sample statistics, which significantly affects the calculation of Eq. 25 and Eq. 26. 

Mawet et al. (2014) quantified the effect of small sample statistics on the computation of the pr(x|H0) (and pr(x|H1)), and 
its impact on the choice of the detection threshold τ (and thus contrast) using the two-sample t-test. 
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4 The Performance Map: A New Standard for Assessing the Performance of High Con-
trast Imaging Systems (a summary of Jensen-Clem et al., 2018) 

The contrast curve is a means of representing the true and false positive fractions associated with a range of signals and 
positions in a final image. Schematically, we can define the “observer’s" contrast as: � �� � 

factor× noise 1 
contrast = (28)

stellar aperture photometry throughput 

where the numerator is the detection threshold, expressed as a multiple of the noise distribution’s width. Often, the width of 
the noise distribution (here, the “noise") is chosen to be the standard deviation of the resolution element intensities at a given 
separation from the star, while the multiplicative “factor” is chosen to be three or five to produce a 3σ or 5σ contrast curve. 
The detection threshold is then converted to a fraction of the parent star’s brightness via the “stellar aperture photometry" term. 
Finally, the “throughput” term corrects this brightness ratio for any attenuation of the off-axis signal relative to the star’s (e.g. 
due to field-dependent flux losses imposed by the coronagraphic system and post-processing algorithms). The final contrast 
is therefore the planet-to-star flux ratio of a planet whose brightness is equal to the detection threshold. Hence, the contrast 
curve can be interpreted as the signal for which we achieve 50% completeness given our choice of detection threshold in the 
numerator. The numerator also fixes the false positive fraction – for example, choosing factor= 3 for a white noise distribution 
gives FPF = 0.001. Finally, it is important to note that the contrast curve’s statistics refer to planet detectability, and not to the 
photometric accuracy associated with any given planetary signal. 
Where the Contrast Curve Falls Short: Both practical and fundamental shortcomings, however, undermine the utility of the 
contrast curve as a general purpose performance metric. First, the contrast is inflexible: by fixing the true positive fraction to 
0.5 and the false positive fraction to a value set by the numerator, we cannot explore the (TPF, FPF, detection threshold) trade 
space. Fixing the TPF, FPF, and detection threshold for all separations may not be desirable for all applications – because the 
number of resolution elements, the PDF of the noise, and the predicted population of planets all vary as a function of separation, 
a particular imaging program’s science goals may be better served by a detection threshold that also varies with separation. 
Also problematic are the calculation of the terms in Equation 28.The choice of the“noise” term as the standard deviation of 
resolution elements in a region of the image (whose shape and size widely varies in the literature) is valid if two conditions are 
met: 1) if the region includes enough statistically independent realizations of the noise to allow for an accurate measure of 
the distribution’s standard deviation, and 2) if the underlying noise distribution is Gaussian. While there is no hard and fast 
rule for deciding whether the first condition is met, statisticians generally consider 30 independent samples to be the boundary 
between large and small sample statistics. For the case of 1λ /D-wide annular regions, 30 samples corresponds to a separation 
of ∼ 5λ /D. Below this threshold, the sample standard deviation is an increasingly uncertain estimate of the width of the 
underlying noise distribution. The mitigating strategy proposed by Mawet et al. (2014), however, also requires that condition 
#2 (Gaussian noise) is met. Aime & Soummer (2004b) and others show that uncorrected low-order wavefront aberrations cause 
the noise at small separations to follow a positively skewed modified rician distribution rather than a normal distribution. While 
numerous observing and post-processing strategies have been employed to whiten this skewed distribution, their success at 
small separations is limited by the temporal and spectral variability of the noise. The result is that the noise distribution at 
small angles retains an unknown skewness at small separations that increases the false positive fraction compared to a Gaussian 
distribution. Hence, neither condition for the use of the standard deviation as a proxy for the FPF is met at small separations. 
The Performance Map: We propose two modifications to the contrast curve: 1) a detection threshold (and hence FPF) that 
varies with separation, and 2) the inclusion of all possible TPFs as a heatmap. When the detection threshold is held constant 
with separation, the radial distribution of false positives is not uniform because the number of resolution elements varies with 
separation. If the expected number of false positives NFP is given by NFP(r) = FPF × 2πr for separation r, then a constant 
detection threshold (and hence a constant FPF) allows more total false positives at wide separations than at small separations. If 
we instead keep the radial distribution of false positives constant, we allow the detection threshold to adapt to the changing 
number of resolution elements with separation. Next, we plot the astrophysical flux ratios of those planets that give any desired 
TPF as a function of separation. Rather than choosing a single TPF contour, we propose to show the full 0 ≤ TFP ≤ 1 space as 
a heatmap. A representative TPF contour can be overplotted for clarity. We call this modified figure the performance map. 
We argue that the performance map highlights the most scientifically and programmatically relevant quantities, namely the 
TPFs of the signals of interest for a given number of false positives. The contrast curve, on the other hand, highlights the 
detection threshold, which has no intrinsic meaning beyond pointing to a false positive fraction. Our proposed performance 
map is one among many possible methods for visualizing the true and false positive fractions associated with a high dynamic 
range image. The performance map is an opportunity for displaying the results of planet search programs in a consistent and 
statistically correct way as well as comparing the performance of various post-processing algorithms within a well-defined 
statistical framework. By encouraging the scrutiny of this new metric, we hope to improve the prediction and evaluation of the 
performance of the next generation of high contrast imaging instruments. 
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5 A Bayesian Framework for Exoplanet Direct Detection and Non-Detection (a summary 
of Ruffio et al., 2018) 

Overview: Rigorously quantifying the information in high contrast imaging data is important for informing follow-up strategies 
to confirm the substellar nature of a point source, constraining theoretical models of planet-disk interactions, and deriving 
planet occurrence rates. However, within the exoplanet direct imaging community, non-detections have almost exclusively been 
defined using a frequentist detection threshold (i.e. contrast curve) and associated completeness. This can lead to conceptual 
inconsistencies when included in a Bayesian framework. A Bayesian upper limit is such that the true value of a parameter lies 
below this limit with a certain probability. The associated probability is the integral of the posterior distribution with the upper 
limit as the upper bound. In summary, a frequentist upper limit is a statement about the detectability of planets while a Bayesian 
upper limit is a statement about the probability of a parameter to lie in an interval given the data. The latter is therefore better 
suited for rejecting hypotheses or theoretical models based on their predictions. Here, we emphasize that Bayesian statistics 
and upper limits are more easily interpreted and typically more constraining than the frequentist approach. 
A companion at a known location: We first need to define a probability, hereafter cutoff probability, of the true planet flux to 
fall below the upper limit. The Bayesian upper limit is then defined as the value for which the cumulative distribution of the 
posterior is equal to the cutoff probability. For a Gaussian noise with known standard deviation σ , an unbounded uniform prior 
and a 97.7% cutoff probability, the upper limit is 2σ above the estimated flux. The flux can be estimated even if the planet is 
not formally detected as long as its position is known. In the unlucky event of a very negative noise sample (for example lower 
than −2σ ) at the location of the planet, the estimated flux and the upper-limit could become negative. This might be unsettling 
as we know that a flux is strictly positive, but this will be corrected by a more informative prior, which will forbid negative 
values of the flux. For a given noise distribution, it is important to note that the upper-limit is a function of the data, here the 
estimated flux, while the detection threshold is a property of the noise; using the detection threshold in place of an upper limit 
is not making optimal use of the data. Assuming Gaussian noise, we find that the planet’s flux upper limit flim is the value for 
which the cumulative distribution of the posterior is equal to a cutoff probability η (for example 97.7%), � � 

flim = Q f̃x,σx 
η +(1 − η)C f̃x,σx 

(0) (29) 

where Q and C are respectively the quantile and cumulative distribution functions associated with a gaussian distribution with 
mean f̃  x and standard deviation σx, where f̃  x and σx are the estimated planet flux and flux uncertainty at the image position x. 
A companion with a known orbit: Here, we assume that we know the orbit of a planet projected onto the sky plane, but that 
we do not know its position along it. For example, this situation arise when trying to constrain the mass of a planet in the gap of 
a proto-planetary disk, where the geometry of the gap defines its orbit. We define the data d, or observation, as the random 
vector representing the pixel values of the image. The point-source parameters are its position on the projected orbit defined as 
the curvilinear abscissa s and its flux f . We also define n as a Gaussian random vector with zero mean and covariance matrix 
Σ. In practice, the noise is assumed to be independent, in which case Σ becomes diagonal. Data, signal and noise are related 
through d = f m + n, with m = m(s) the planet model in the direct imaging data, which is effectively a function of the planet 
position S. We assume a uniform positive prior over flux, and note that the probability of finding the companion at any position 
in the orbit is proportional to the time spent around that position according to Kepler’s laws. We further assume that we are 
assessing the planet’s flux from speckle-subtracted images, that planet signal is faint relative to the speckles, and that the noise 
is Gaussian. With these assumption, we find that the posterior distribution is given by Z � � 

s f 1 � � 1 
P( f |d) ∝ H ( f ) exp − f 2 − 2 f f̃  s ds. (30) 

s=si 2σs 
2 T vpro j 

where T is the orbital period and vpro j = vpro j(s) is the projected velocity of a companion at the position s on the ellipse 
representing the projected orbit. f̃  s is the estimated flux of the planet at the location s on its projected orbit. 
Combining Radial Velocity (RV) and Direct Imaging Observations: Combining RV data with direct imaging is another 
promising avenue for constraining masses of non-transiting wide-orbit planets detected with Doppler measurements. An 
example of application of this method can be found in the case of ε Eridani in Mawet et al. (2019) for which Ruffio et al. 
(2018) describes the theoretical concepts. RV data only provides a lower limit on the mass of the planet due to the M sin(i) 
mass-inclination degeneracy. Direct imaging non detection can provide a mass upper bound and therefore reject the lower 
inclinations. Combining the data involves defining a joint likelihood for the inference of the orbital elements and the masses 
of the planet and the star. These parameters are all combined into the symbol Θ. We define dRV as the time series of radial 
velocities and dDI as the direct imaging observation. Since the data are independent, the likelihood can be decomposed as 

1 � � 
P(dDI ,dRV |Θ) = P(dRV |Θ)P(dDI |Θ), logP(dDI | f ,x) = − f 2 − 2 f f̃  x . (31)

2σ2 
x 
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6 Exoplanet Imaging Data Challenge: benchmarking the various image processing meth-
ods for exoplanet detection (a summary of Cantalloube et al., 2020) 

Overview: The Exoplanet Imaging Data Challenge is a community-wide effort meant to offer a platform for a fair and common 
comparison of image processing methods designed for exoplanet direct detection. For this purpose, it gathers on a dedicated 
repository (Zenodo), data from several high-contrast ground-based instruments worldwide in which we injected synthetic 
planetary signals. The data challenge is hosted on the CodaLab competition platform, where participants can upload their results. 
The specifications of the data challenge are published on our website 1. The first phase, launched on the 1st of September 2019 
and closed on the 1st of October 2020, consisted in detecting point sources in two types of common data-set in the field of 
high-contrast imaging: data taken in pupil-tracking mode at one wavelength (subchallenge 1, also referred to as ADI) and 
multispectral data taken in pupil-tracking mode (subchallenge 2, also referred to as ADI+mSDI). 

Based on the planetary signal injections in the data sets available for each subchallenge, we counted the number of true 
positives (TP), false positives (FP), true negatives (TN) and false negatives (FN) at the detection threshold provided by the 
participants. We then repeated this procedure for a range of detection thresholds. A TP is defined as a detection within one 
resolution element from the position of an injected companion, while a FP is a detection at any other location. Any signal above 
the chosen threshold is considered as a detection. From these counts, we compute different metrics: 

1. the true positive rate (also called sensitivity or recall): T PR = T P/(T P + FN), 
2. the false discovery rate (also called precision): FDR = FP/(FP + T P), 
3. the F1-score (harmonic mean of precision and sensitivity): F1-score = 2 · T P/(2 · T P + FP + FN). 

As a result, we chose to use three figures of merit: (1) the F1-score computed at the submitted threshold, (2) the AUC of the 
TPR (must be close to 1), and (3) the AUC of the FDR (must be close to 0). The three scores have values between 0 and 1. If 
no synthetic planetary signals have been injected into the data set, these three scores are undefined. We computed these scores 
for each data set separately, and averaged them for each instrument, then finally averaged them for all the data sets of a given 
subchallenge. 

We received 22 valid submissions to the ADI subchallenge and 6 valid submissions to the ADI+mSDI subchallenge. We 
split these submissions into three main families: (1) speckle subtraction techniques, such as PCA and LOCI, (2) inverse problem 
approaches, such as forward modeled matched filter, and (3) supervised machine learning techniques such as SODINN. Based 
on the three scores defined above, we compute the F1-score, the AUC of the TPR and AUC of the FDR for all data sets. 

We highlight four conclusions from the ADI subchallenge: (1) The three rankings based on each of the three scores 
give consistent results; however some algorithms are more robust to false alarms (high AUC of the FDR) but are not very 
sensitive to faint signals (low AUC of the TPR). Depending on the science case (such as deep search for a point source or 
homogeneous processing of a large sample of data) one may use the most relevant metric to choose some methods over the 
others. (2) As expected, we observe that globally the speckle subtraction based techniques do not perform as well as more 
recent techniques, with the exception of supervised machine learning techniques for which we observe numerous false positives. 
(3) Any technique’s performance is dependent on the type of instrument (e.g. coronagraphic versus non-coronagraphic). (4) 
The latest algorithms, such as RSM and SLIMask for the speckle subtraction techniques, and FMMF, PACO and TRAP for the 
inverse problem approaches, are providing with the best performance along with the three scores used here. 

We highlight four conclusions from the ADI+mSDI subchallenge: (1) Properly exploiting the spectral information helps to 
detect fainter sources. (2) The spectral template used as a prior for the planetary signal in some methods plays an important role. 
(3) As a general rule, the more advanced/recent techniques perform better at detecting planetary signals but the results are not 
homogeneous. This shows once again that applying various algorithms based on different concept is the most appropriate way 
of validating or invalidating a candidate based on a single data set. (4) As for the ADI subchallenge, inverse problem approaches 
are the only methods providing directly with the contrast of the planetary signal candidates. This allows to additionally help 
disentangling the candidate from a stellar residual, by comparing the extracted spectrum of the candidate with the extracted 
spectrum of a residual speckle. 

In the future, we intend to increase the number of data sets available. For instance, we put a link towards the NEAR 
campaign data on the EIDC website, to allow anyone to test advanced algorithms on this challenging observation sequence. On 
top of using comparison metrics that are more adapted, we also plan to launch new phases of the data challenge, adding, for 
example, the characterisation of the detections (position and contrast with their uncertainties) or adding extended sources to be 
detected. We also plan to offer alternative data set enabling the direct detection of exoplanets, such as high spectral resolution 
images. We aim to regularly publish the results of the EIDC at every future SPIE astronomical telescopes+instrumentation 
conference. 

1https://exoplanet-imaging-challenge.github.io/ 
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7 Summary of Findings 
• The contrast curve represents a single choice of a detection threshold, false positive fraction, and true positive fraction 

(e.g. a 3σ contrast curve indicates a detection threshold of 3σ , a false positive fraction of 0.001 assuming the noise 
follows a Gaussian distribution, and a true positive fraction of 0.5). Fixing these values with respect to separation from 
the central star may not be optimal for all applications. 

• A contrast curve can be invoked as a frequentist upper limit on the detectability of a planet with a certain separation 
and brightness. However, a Bayesian upper limit is better suited to rejecting hypotheses regarding a particular planet’s 
detection because it is a statement about the probability of a parameter (e. g. a planet’s brightness) to lie within a given 
interval in the data. 

• The contrast curve includes the implicit assumption that the noise in the science image follows a Gaussian distribution. 
However, the presence of speckles near the coronagraph’s inner working angle in the final post-processed science image 
indicate that the noise is not fully whitened. 

• Modern techniques for speckle subtraction (e. g. the Regime-Switching Model detection map; Dahlqvist et al., 2020), 
generally outperform first-generation techniques (e. g. LOCI; Lafrenière et al., 2007) when applied to the same datasets. 
However, machine learning techniques (e. g. SODINN; Gomez Gonzalez et al., 2018), do not yet outperform first-
generation techniques. 
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