

EXOPLANET EXPLORATION PROGRAM Science Gap List 2018

Karl Stapelfeldt, Program Chief Scientist

Eric Mamajek, Deputy Program Chief Scientist

CL#19-0790 JPL Document No: 1717112

Cover Art Credit: NASA/JPL-Caltech. Artist conception of the K2-138 exoplanetary system, the first multi-planet system ever discovered by citizen scientists¹. K2-138 is an orangish (K1) main sequence star about 200 parsecs away, with five known planets all between the size of Earth and Neptune orbiting in a very compact architecture. The planet's orbits form an unbroken chain of 3:2 resonances, with orbital periods ranging from 2.3 and 12.8 days, orbiting the star between 0.03 and 0.10 AU. The limb of the hot sub-Neptunian world K2-138 f looms in the foreground at the bottom, with close neighbor K2-138 e visible (center) and the innermost planet K2-138 b transiting its star. The discovery study of the K2-138 system was led by Jessie Christiansen and collaborators (2018, Astronomical Journal, Volume 155, article 57).

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

This document has been cleared for public release (CL#19-0790).

© 2018 California Institute of Technology. Government sponsorship acknowledged.

¹ https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA22088

Approved by: Dr. Gary Blackwood Date Program Manager, **Exoplanet Exploration Program Office** NASA/Jet Propulsion Laboratory Dr. Douglas Hudgins Date Program Scientist **Exoplanet Exploration Program** Science Mission Directorate NASA Headquarters **Created by:** Dr. Karl Stapelfeldt **Chief Program Scientist Exoplanet Exploration Program Office** NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Eric Mamajek Deputy Program Chief Scientist **Exoplanet Exploration Program Office** NASA/Jet Propulsion Laboratory California Institute of Technology

JPL D: 1717112

Page 3 of 20

ExEP Science Gap List, Rev B

Release Date: February 15, 2019

ExEP Science Gap List, Rev B

Release Date: February 15, 2019

JPL D: 1717112

Page 4 of 20

The 2018 Exoplanet Exploration Program (ExEP) Science Gap List

Compiled and maintained by:
Dr. Karl Stapelfeldt, Program Chief Scientist
Dr. Eric Mamajek, Deputy Program Chief Scientist
NASA Exoplanet Exploration Program
Jet Propulsion Laboratory, California Institute of Technology

The Exoplanet Exploration Program (ExEP) is chartered by the Astrophysics Division (APD) of NASA's Science Mission Directorate (SMD) to carry out science, research, and technology tasks that advance NASA's science goal to "Discover and study planets around other stars, and explore whether they could harbor life." ExEP's three aims are:

- discovering planets around other stars,
- characterizing their properties, and
- identifying candidates that could harbor life

ExEP serves NASA and the community by acting as a focal point for exoplanet science and technology, managing research and technology initiatives, facilitating access to scientific data, and integrating the results of previous and current missions into a cohesive strategy to enable future discoveries. ExEP serves the critical function of developing the concepts and technologies for exoplanet missions, in addition to facilitating science investigations derived from those missions. ExEP manages development of mission concepts, including key technologies, as directed by NASA HQ, from their early conceptual phases into pre-Phase A.

The goal of the ExEP Science $Plan^2$ is to show how the Agency can focus its science efforts on the work most needed to realize the goal of finding and characterizing habitable exoplanets, within the context of community priorities. The ExEP Science Plan consists of three documents, which will be updated periodically, which respond directly to the ExEP Program Plan [4]:

- ExEP Science Development Plan (SDP)
- ExEP Science Gap List (SGL) (this document)
- ExEP Science Plan Appendix (SPA)

The long-term online home of the science plan documents will be https://exoplanets.nasa.gov/exep/science/.

² Much of this preamble text is drawn from the longer introduction to the ExEP Science Plan Appendix (SPA), which provides further context for the ExEP Science Plan.

ExEP Science Gap List, Rev B

Release Date: February 15, 2019

JPL D: 1717112

Page 5 of 20

The ExEP *Science Development Plan* (SDP) reviews the program's objectives, the role of scientific investigations in ExEP, important documentation, and the programmatic framework for ExEP science.

This document, the ExEP *Science Gap List (SGL)*, tabulates program "science gaps", which are defined as the difference between knowledge needed to define requirements for specified future NASA exoplanet missions and the current state of the art, or knowledge which is needed to enhance the science return of current and future NASA exoplanet missions. Making the gap list public signals to the broader community where focused science investigations are needed over the next 3-5 years in support of ExEP goals. The ExEP Science Gap List represents activities and investigations that will advance the goals of NASA's Exoplanet Exploration Program, and provides brief summaries in a convenient tabular format. All ExEP approaches, activities, and decisions are guided by science priorities, and those priorities are presented and summarized in the ExEP Science Gap List.

The *Science Plan Appendix* (SPA), lays out the *scientific* challenges that must be addressed to advance the goals of NASA's Exoplanet Exploration Program. While the Program Science Development Plan is expected to remain stable over many years, the Science Gap List will be updated annually, and this Science Plan Appendix will be updated as needed approximately every two years. Entries in the *Science Gap List* will map to sections of the *Science Plan Appendix*.

The most recent community report relevant to the NASA ExEP is the National Academies's *Exoplanet Science Strategy* (ESS) released in September 2018 [3]. The ESS report provides a broad-based community assessment of the state of the field of exoplanet science and recommendations for future investments. The National Academies also released the report *An Astrobiology Strategy for the Search for Life in the Universe* in October 2018. NASA HQ is currently considering responses to the *Exoplanet Science Strategy* and *Astrobiology Strategy* reports, but these are not available at the time of writing. The Astro2020 Decadal Survey is expected to strongly consider the recommendations of the ESS report, and their direction to NASA will guide priorities for the Astrophysics Division and Exoplanet Exploration Program.

The 2018 Exoplanet Science Strategy report provided "two overaching goals in exoplanet science":

- to understand the formation and evolution of planetary systems as products of the process of star formation, and characterize and explain the diversity of planetary system architectures, planetary compositions, and planetary environments produced by these processes, and
- to learn enough about the properties of exoplanets to identify potentially habitable environments and their frequency, and connect these environments to the planetary systems in which they reside. Furthermore, scientists need to distinguish between the signatures of life and those of nonbiological processes, and search for signatures of life on worlds orbiting other stars

ExEP Science Gap List, Rev B

Release Date: February 15, 2019

Page 6 of 20

The ESS also provided seven recommendations and thirty five findings. The ESS goals, recommendations, and findings are summarized in Appendix B of the *ExEP Science Plan Appendix*.

The ExEP science gaps do not appear in a particular order, and by being recognized on this list are deemed important. Currently the gap list is used as a measuring stick when evaluating possible new program activities: if a proposed activity could close a gap, it would be considered for greater priority for Program resources. The ExEP Science Gap List is *not* meant to provide strategic community guidance on par with a National Academies report (e.g. Decadal Survey, Exoplanet Science Strategy, etc.), but to provide program-level tactical guidance for program management within the evershifting landscape of NASA missions and mission studies. Funding sources outside NASA ExEP are free to make their own judgements as to whether or not to align the work they support with NASA's Exoplanet Exploration goals. Science gaps directly related to specific missions in phase A-E are relegated to those missions and are not tracked in the ExEP SGL. However, science gaps that facilitate science investigations derived from those missions, or support pre-phase A studies, may appear in the SGL.

©2018 California Institute of Technology. Government sponsorship acknowledged.

ID	Title	Summary	Capability Needed	Capability Today	Mitigation in
					Progress
SCI- 01	Spectral characterization of atmospheres of small exoplanets See SPA section 6 (atmospheres & biosignatures)	There are few extant spectroscopic detections of atmospheres for exoplanets smaller than Neptune, even though they dominate the exoplanet population. The very first constraints are being obtained for the atmospheric composition of terrestrial habitable zone (HZ) planets, but detection of definitive spectral features is beyond the current capability. In order to remotely assess the frequency of habitable planets and life in the galaxy, new observations and facilities must be developed.	Spectroscopy of small exoplanets, especially temperate examples, e.g. transit spectroscopy of small planets transiting cool dwarf stars., high-contrast spectroscopy of small, temperate exoplanets orbiting solar-type (FGK-type) stars. Limits to precision on extracting transmission spectra, both instrumental and due to stellar heterogeneities, are described in gap SCI-03. Need target exoplanets that provide the most photons (orbiting nearby, brightest stars for their class). Need accurate ephemerides for scheduling spectroscopic observations and making effective use of large telescopes (e.g. JWST).	A handful of small exoplanets suitable for spectroscopy have been identified by RV and transit surveys. HST transit spectra of these have marginal sensitivity and would only be able to detect cloud-free H-dominated atmospheres, which are not expected for this class of objects. So far there are no imaging detections of small exoplanets.	Current and future JWST proposals to spectrally characterize small transiting planets. Small transiting exoplanets discovered with K2, TESS, and ground-based transit surveys, can be observed with JWST. WFIRST/CGI may be able to spectrally characterize atmospheres of some super-Earths orbiting very nearest stars. Mission concept studies to define capabilities for next generation of observatory to study atmospheres of small exoplanets via transit spectroscopy (e.g. LUVOIR, HabEx, OST) or direct imaging (e.g. LUVOIR, HabEx).

ID	Title	Summary	Capability Needed	Capability Today	Mitigation in
					Progress
SCI- 02	Modeling exoplanet atmospheres See SPA section 6 (atmospheres & biosignatures)	An incomplete understanding of exoplanet spectroscopic signatures impacts ability to interpret observations (e.g. disagreements in interpretations of exoplanet spectra, i.e. clouds vs. metallicity variations vs. extreme C/O ratios vs. non-equilibrium chemistry vs. 3D effects, etc.) and instrumental choices (e.g. resolution, sensitivity, wavelength range, etc.).	Ability to model exoplanet atmospheres and spectra as a function of incident host stellar flux, pressure, composition, clouds, hazes, and illumination phase. How is atmosphere affected externally (by stellar spectrum, winds, etc.) and internally (geology, life)? Challenges include determining composition and properties of aerosols, understanding chemistry (e.g. reaction rates, photochemistry, mixing, etc.), and radiative transfer modeling (including scattering prescriptions) and 3D atmosphere dynamics (e.g. GCM models). Key supporting knowledge provided by the development of molecular and aerosol opacities.	Modeling of individual target systems (e.g. Proxima Cen b). Series of six biosignatures white papers in June 2018 issue of Astrobiology. Modeling of gas giant atmospheres accounting for varying formation mechanisms, disk chemistry, and migration. Extending the latter to 3D circulation models, modeling the impact of nonuniform cloud cover, modeling atmospheric chemistry and escape due to stellar XUV emission and tying models to spectral observations (e.g. HST, JWST, future missions, etc.).	Ongoing research by the community. ExoPAG SAG-10 (Cowan et al. 2015, PASP, 127, 311) quantified the needs and expected results from transit spectroscopy. Support of fundamental research on planetary atmospheres, including origin and evolution of atmospheres, and analysis necessary to characterize exoplanets is under purview of Planetary Science Division (following 2014 NASA Plan). NASA Astrobiology Program and NExSS research coordination network fostering interdisciplinary research on aspects of exoplanet atmospheres and climate relevant to life and biosignatures.

ID	Title	Summary	Capability Needed	Capability Today	Mitigation in
10		Summury	Cupublity 1 (cedeu	cupusinty roday	Progress
SCI- 03	Spectral signature retrieval See SPA section 6 (atmospheres & biosignatures)	Systematic instrumental and stellar effects in timeseries photometry and high contrast images limit the ability to extract reliable spectra from residual stellar signals. Key physical parameters such as spectral slopes and molecular abundances can be uncertain, and achieved spectral sensitivity may be worse than the photon noise limit. Early spectral detections have not withstood reanalysis (e.g Deming & Seager 2017, JGRP, 122, 53).	Ability to reliably extract physical parameters, such as atmospheric pressure-temperature profile and abundances. Thorough understanding of the limits of the data, including effects of correlated and systematic noise sources. Strategies for data taking, calibration, processing to mitigate these issues for each individual instrument/observatory and lessons learned for future work.	Community analyses of HST transit spectra and of imaging spectra from e.g., GPI & SPHERE. Simple noise models predict JWST transit spectra and coronagraphic spectra. Development of best practices over time to acquire exoplanet spectra with HST and JWST. Studies on contamination of stellar photospheric heterogeneities as limitation to extraction of transiting planet spectra (e.g. Rackham et al. 2018, ApJ, 122, 853).	WFIRST SITs performing retrieval experiments for CGI imaging spectra and community data challenges. Data challenges planned by JWST ERS team for transits.

ID	Title	Summary	Capability Needed	Capability Today	Mitigation in
		J. J			Progress
SCI- 04	Planetary system architectures: occurrence rates for exoplanets of all sizes See SPA sections: 2 (exoplanet popluations), 3 (exoplanet dynamics), 5 (properties of target stars)	Measurements of distribution of planetary parameters (e.g. masses, radii, orbital elements) from various techniques are important both for constraining planet formation and evolution models, and for predicting yields of future missions. The lack of integrated exoplanet population studies limits our understanding of exoplanet demographics over a wide range of masses and radii. Extrapolations to HZ demographics need to be on best basis (see SCI-05).	Integrated exoplanet demographic results from transit, direct imaging, RV, and microlensing surveys. Include effects of Kepler DR25, the low yield of direct imaging detections of self-luminous planets, and microlensing results from recent campaigns. Update periodically to include new surveys such as TESS, and to correct the host star properties used in prior surveys. The effect of measurement uncertainties on the results must be quantified. There is a need for planet formation models which account for the observed demographics.	Ongoing microlensing, RV, transit, and direct imaging projects continue to build statistics. Examples: Clanton & Gaudi (2016, ApJ, 819, 125) for demographics of exoplanets on wide separation orbits (>2 AU) for M dwarfs. Pascucci et al. (2018) study of distribution of mass-ratios of planets and their stars between microlensing and transit methods. Meyer et al. (2018, A&A, 612, L3) combined data from RV, microlensing, and imaging surveys to produce surface density distribution of gas giants in 1-10 M _J mass range for M dwarfs over 0.07-400 au.	Community studies are ongoing. Exoplanet Standard Definitions and Evaluation Team (ExSDET) investigating reconciliation of Kepler transit results (e.g. ExoPAG13) with radial velocity survey results.

ID	Title	Summary	Capability Needed	Capability Today	Mitigation in Progress
SCI- 05	Occurrence rates and uncertainties for small planets (eta-Earth) See SPA sections: 2 (exoplanet popluations), 5 (properties of target stars)	Subset of SCI-04 focusing on occurrence rates for Earth-sized planets in HZs, which remains considerably uncertain. Critical to NASA for assessment of next decadal flagship mission for HZ Earth detection.	Analysis of occurrence rates taking into account final Kepler data products (DR25), including effects of stellar multiplicity, Gaia distances, and improved stellar parameters - such that the remaining uncertainties are dominated by intrinsic Kepler systematics.	Published analyses by several authors, including (e.g. Petigura et al. 2013, PNAS, 110, 19273; Burke et al. 2015, ApJ, 809, 8; Traub 2016, arXiv:1605.02255). See ExoPAG SAG 13 final report.	This is an active research area in the community. Kepler mission scientists and community are working on planet occurrence rate studies that incorporate final Kepler DR25 data. Encourage observations which can confirm existence of candidate temperate rocky planets in Kepler data upon which eta-Earth critically relies. Further ahead, a WFIRST microlensing survey may inform this as well.
SCI- 06	Yield estimation for exoplanet direct imaging missions See SPA section: 2 (exoplanet popluations)	Quantified, non-advocate science yield comparisons made on a common basis between various mission concepts, for both detections and spectral characterizations. Community agreement on key astrophysical input assumptions.	Capability within NASA Exoplanet Program to provide peer review of yield estimates made by individual mission studies, using a transparent public code implemented independently. Provide decadal survey with summary comparisons.	Traub (2015) consistent analysis presentation at ExoPAG 12 comparing WFIRST vs. direct imaging probes (Exo-S, Exo-C). Stark (2018) presentation to April NAS Exoplanet Science Strategy committee meeting.	ExSDET is applying the ExoSIMS package for exoplanet yield calculations, in coordination with members of concept study teams, and proceeding with visibility to stakeholders.

ID	Title	Summary	Capability Needed	Capability Today	Mitigation in
10	Title	Summary	Capability Necucu	Capability Today	Progress
SCI-	Improve target lists	Improved catalog(s) of stars	For exoplanet imaging	NExScI Exoplanet	ExEP science office
07	and compilations of	and relevant properties are	mission concepts, a	Archive contains	assisting ExSDET on
07	stellar parameters	important for both ongoing	complete census of nearby	compilation of	updating/checking
	for exoplanet	NASA exoplanet missions	stars that may be potential	confirmed and candidate	multiplicity data for
	missions in	and concept studies (e.g. for	targets for imaging	exoplanets and their host	nearby star catalog.
	operation or under	assessing exoplanet yields	exoplanets (with	stars, which can inform	NExScI Exoplanet
	study	and sensitivity of proposed	architecture-dependent	mission concept studies	Archive is actively
	Study	mission architectures and	parameter limits),	focusing on studying	compiling data on
		instruments). Current	especially those in HZs, is	transits or transit	exoplanets and their host
	See SPA section	catalog for direct imaging	needed. Basic stellar data	spectroscopy/photometry	stars, and will include
		mission study yields	is required, including	of previously known	*
	5 (properties of	(ExoCat-1) is incomplete for	distance, luminosity,	exoplanets, or direct	parameters taking into account new Gaia
	target stars)	lower-mass stars and	temperature, multiplicity,	imaging of previously	distances and other
		binaries. Flight missions	known planets or detection	known exoplanets. SOA	
		(e.g. Kepler/K2, TESS) have		for complete volume-	measurements.
		there own input catalogs	limits. Knowledge of XUV emission and age can	limited samples is 8 pc	Note: SCI-07 focusses on
		based mostly on available	improve modeling of	sample from Kirkpatrick	target lists for studies &
		photometric and astrometric	exoplanet atmospheres and	et al. (2012, ApJ, 753,	supporting improvement
		data, however improvement	evolution and	156), but lacks important	of input catalogs for
		of measurement of	interpretation of planet	stellar parameters.	mission surveys, whereas
		exoplanet parameters (e.g.	spectra. Binary	ExoCat-1 hosted at	SCI-12 is for detailed
		radii, masses, temperatures,	information (brightness,	NExScI Exoplanet	(resource/time-intensive)
		etc.) rely directly on	separation, etc.) is	Archive represents the	characterization of host
		improvement of fidelity of	important as many targets	most complete publicly	stars of exoplanet
		stellar parameterization	are binaries. For potential	available catalog, but is	candidates.
		based on photometry,	transit or transit	missing information and	candidates.
		spectroscopy, astrometry,	spectroscopy/photometry	is becoming out of date.	
			missions, more general	is becoming out of date.	
		etc., and subsequent	catalogs of stellar targets		
		analysis.	and/or exoplanet host stars		
			over wider range of		
			distances may be needed.		
			Catalogs should account		
			for most recent Gaia data.		
			for most recent Gaia data.		

ID	Title	Summary	Capability Needed	Capability Today	Mitigation in
				cupusinty roday	Progress
SCI-	Mitigating stellar	Measurements of masses	PRV: Earth orbiting at 1	PRV: Smallest claimed	Major NASA investment
08	jitter as limitation	and orbits are crucial for	AU around a G2V star has	RV amplitudes detected	in PRV instrument for
	to sensitivity of	characterizing exoplanets,	RV amplitude of ~9 cm/s,	today are ~0.4 m/s for	WIYN (northern
	dynamical methods	and for modeling their	and Earth-mass planet in	Tau Ceti. Modern single	hemisphere 4-m class).
	to detect exoplanets	spectra and bulk	corresponding HZ around	measurement precision	SAG-8 (Plavchan,
	and measure their	composition. Stellar jitter	M2V star (~0.2 AU) has	(SMP) among ongoing	Latham et al. 2015;
	masses and orbits	(spots, plage, granulation,	RV amplitude of ~30 cm/s.	RV surveys summarized	arXiv:1503.01770)
		non-radial oscillations, etc.)	RV jitter intrinsic to star is	in Fischer et al. (2016,	discussed effective use of
		is an ever-present source of	at ~m/s level, and higher	PASP, 128, 066001):	the resources needed for
	See SPA sections:	noise over a variety of	for active stars. Requires	HARPS and HARPS-N	confirming exoplanets.
	3 (exoplanet	timescales for both PRV and	precision below 10 cm/s	leading the way with 0.8	Detection of Earth-like
	dynamics),	astrometric methods.	but accuracy at ~cm/s	m/s. NEID in	exoplanets in HZs may
	5 (properties of	PRV is currently the	level so that systematic	development (~0.3 m/s).	require major new
	target stars)	predominant means of	errors do not dominate.	Instrument systematics	instrument with TBD
		dynamically measuring	Likely requires large	and stellar noise are not	spectral resolution and
		masses of exoplanets, and	(>4m-class) telescopes and	well understood. SOA in	wavelength coverage.
		stellar jitter is currently the	heavy commitment of	PRV capabilities were	
		tallest tentpole in the PRV	observing time. Need new	presented at EPRV4	
		uncertainty budget. While	analysis methods to correct	workshop (Aug 2017).	
		PRV is capable of reaching	for stellar RV jitter using	Astrometry: Studies on	
		Earth-mass planets in HZs	high spectral resolution	stellar astrometric jitter	
		around M dwarfs, it is not	and broad spectral	of stars and the Sun from	
		known whether current	coverage. PRV datasets for	2000s during	
		limits to PRV can be	the Sun may enable testing	development phases for	
		overcome to detect Earth-	and improvement of	SIM and Gaia. Existing	
		like planets orbiting solar-	mitigation strategies.	ground-based astrometry	
		type (FGK) stars. If	Astrometry: Exo-Earth	(CHARA, NPOI, VLTI)	
		technological gap of	orbiting 1 M _{Sun} star at 10	cannot reach accuracy	
		achieving sub-μas-level	pc induces amplitude of	required. Gaia is	
		astrometry is achievable,	~0.3 μas. For Sun-like	collecting data that	
		and astrometric jitter could	activity levels, astrometric	should lead to	
		be understood/modeled at	jitter would be $\sim 0.05 \mu as$ –	astrometric detections of	
		sub- μ as-level, then	small, but not negligible	giant exoplanets.	
		astrometry could provide an	(but higher for more active		

ID	Title	Summary	Capability Needed	Capability Today	Mitigation in Progress
SCI- 08 (cont.)		alternative method which could yield orbits and masses for rocky planets around nearby stars.	stars). Develop capability to perform precision astrometry on nearby bright stars as precursor or followup for flagships and possibly WFIRST-CGI, as backup to PRV for detecting temperate rocky planets and measuring their masses and orbits.		Progress

ID	Title	Summary	Capability Needed	Capability Today	Mitigation in
110	Title	Summary	Capability Needed	Capability Today	Progress
COL	D ' 1	F 1 (111 (TDI CC' ·	K 1 HDEG1: 'A A'	
SCI-	Dynamical	Exoplanet candidates	There are insufficient	Keck HIRES limitation	NASA community
09	confirmation of	detected via various	precision RV resources	for Kepler/K2 exoplanet	access to Keck HIRES
	exoplanet	methods require	available to the community	confirmation is available	and eventually the new
	candidates and	confirmation and	to follow up all K2 and	time, not instrument	Keck KPF instrument.
	determination of	measurement of masses (the	TESS exoplanet	precision. At 200 new	The NEID instrument for
	their masses and	majority discovered	candidates that may be	Kepler/K2 validations	WIYN is in
	orbits	presently and in near future	relevant to JWST	per year, would need 4	development, with
		will be via transit method,	spectroscopic study.	years to achieve 50%.	commissioning in 2019A
		e.g. K2, TESS). Mass	Follow up K2 and TESS	For TESS, initial	and community access in
	See SPA sections:	constraints are crucial for	candidates with quick look	screening of science	2019B. Options for
	2 (exoplanet	understanding atmospheric	low-precision RV	team targets already	additional southern
	popluations),	spectra and planetary bulk	screening for false	planned for LCOGT,	hemisphere community
	3 (exoplanet	density / composition.	positives (e.g. eclipsing	Euler, OHP. HARPS and	PRV access are being
	dynamics),		binaries), then high	HARPS-N planned for	explored. US community
	5 (properties of		precision (~1-5 m/s) to	precise follow-up at ~1	adding new spectrograph
	target stars),		determined masses of the	m/s on the best ~100	capabilities (e.g.
	6 (atmospheres &		best candidates. TESS	candidates (expect	MAROON-X on
	biosignatures)		follow-up will require	measured masses for	Gemini-N, etc.).
			PRV observing time in N	only 50). TTV: e.g.	
			and S hemispheres.	analysis of Kepler multi-	
			Overall, TESS will	planet systems; Spitzer	
			generate ~15,000	Space Telescope	
			candidates of which	campaign observing	
			~1,250 should be detected	transits in 7-planet	
			in the 2-min cadence data,	TRAPPIST-1 system.	
			with ~250 smaller than 2		
			R _{Earth} (Barclay et al. 2018,		
			arxiv/1804.05050).		
			Modeling of transit timing		
			variations (TTVs) can be		
			used for transiting multi-		
			planet systems; further		
			observations can improve		
			orbits and masses.		

ID	Title	Summary	Capability Needed	Capability Today	Mitigation in
SCI- 10	Precursor surveys of direct imaging targets See SPA sections: 3 (exoplanet dynamics), 5 (properties of target stars), 6 (atmospheres & biosignatures)	Advance screening of targets (especially via PRV) can determine which stars to prioritize for future exoplanet spectral characterizations. Insufficient community work to inform future missions.	For the most likely targets of future direct imaging missions, assess the detection limits provided by existing RV data. Improve these limits through a precision RV observing program in both N and S hemispheres, executed consistently over > 5 years. ESA Gaia mission astrometry (final data release, ~2022) may reveal evidence of astrometric perturbations by exoplanets among some nearby stars which could be targets for direct imaging.	Howard & Fulton (2016, PASP, 128, 4401) completed analysis for 2014 versions of WFIRST, Exo-S, and Exo-C target lists using data from California planet search. Southern target stars are lacking. There are published (and unpublished) RV data for many potential WFIRST targets. Keck HIRES, Lick APF, HARPS-N and HARPS.	Progress Community contributions of precision RV datasets into NExScI Exoplanet Archive? NEID GTO program may cover a subset of these targets. Does WFIRST CGI's new tech demo status undermine the rationale for this effort – should this be a priority?

ID	Title	Summary	Capability Needed	Capability Today	Mitigation in
					Progress
SCI- 11	Understanding the abundance and distribution of exozodiacal dust See SPA section 11 (exozodiacal dust)	Exozodi dust is a noise source affecting the ability to image HZ rocky planets around nearby stars (spectroscopy integration times, science yields). Substructure in the exozodi may mimic exoplanets in low angular resolution images and thus confuse searches for HZ planets with smaller apertures. Images of habitable zone dust structures do not yet exist.	Simulations are needed of how the LBTI HOSTS exozodi survey results affect integration time for large mission concept studies and WFIRST, as a function of instrument parameters. Simulations of scenes as viewed by a future flagship missions, quantifying the effectiveness of multi-epoch observations to discriminate exozodi clumps from planets. Direct images of exozodi disks in the HZ ~5 zodi level and with sufficient resolution and sensitivity to image substructure and validate the simulations?	See Ertel et al. (2018, AJ, 155, 194) interim results on LBTI HOSTS survey of exozodi dust, and simulations by Stark et al. (2015, ApJ, 808, 149; 2016, SPIE, 99041U) of effects of exozodi on mission exoplanet yields. Theoretical models of planet-induced structure. Imaging of structure in outer debris disks with HST, ground AO, ALMA, comparisons with dynamical simulations.	LBTI HOSTS survey was completed mid-2018 and will be followed by analysis of full survey data. Mission yields will need to be recalculated incorporating constraints from final HOSTS results. Roberge et al. (2012, PASP, 124, 799) and ExoPAG SAG-1 report. Potential option for WFIRST CGI imaging of exozodi clouds in mid-2020s.

ID	Title	Summary	Capability Needed	Capability Today	Mitigation in
		·			Progress
SCI- 12	Measurements of accurate transiting planet radii See SPA sections: 2 (exoplanet popluations), 5 (properties of target stars)	Measurements of accurate exoplanet radii are important for classification of planets, estimating their densities, modeling compositions, atmospheres, and spectra, and discovering trends important to understanding planet formation and evolution. Contamination to light curves by neighboring stars and poor stellar characterization can preclude accurate radii measurement. TESS (including FFIs) will generate 10x more candidates than Kepler, and with acute confusion problem (20" pixels). AO and speckle imaging validation of Kepler prime mission candidates took 3 years. Complete vetting of TESS targets with Kepler approach could take decades. Besides imaging, there is also the challenge of assessing accurate stellar radius via observations (photometry, spectroscopy) and subsequent analysis.	High resolution imaging in bulk to validate TESS candidates. Access to observatories equipped with AO or speckle imaging cameras and turnkey pipelines, is needed in both N and S hemispheres. TESS will discover >15k exoplanet candidates and would need to measure >1k stars/year required to complete the work within a decade. Support work that improves estimation of stellar and exoplanet parameters for discovered exoplanet systems. Including supporting photometric and spectroscopic stellar data, along with astrometric, photometric, and spectroscopic data from latest Gaia data releases, are critical for accurately assessing stellar parameters – and ultimately exoplanet radii.	NESSI speckle camera at WIYN offers ability to screen a subset of targets to very small separations. Robo AO operated at Kitt Peak to validate KOIs, now offline (revival at IRTF?). Gaia DR2 photometry & astrometry resolves bright multiples, and provides parallaxes for improving radii estimates. For improving knowledge of host star Teff, metallicity, gravity: high-res. spectroscopic surveys (e.g. California-Kepler survey), low-res. spec. surveys (e.g., APOGEE & LAMOST), community access to spectrographs for extracting stellar spectra (e.g. Keck HIRES, NEID, etc.). SOA reviewed at "Know Thy Star – Know Thy Planet" Conference in 2017.	Continued NASA support for community access to speckle camera on WIYN (NN-Explore program) in NEID era. Note: SCI-12 is for detailed (resource/time-intensive) characterization of host stars of exoplanet candidates, whereas SCI-07 focusses on target lists for studies & supporting improvement of input catalogs for mission surveys.

ExEP Science Gap List, Rev B
Release Date: February 15, 2019
Page 19 of 20

APPENDIX A: ACRONYM LIST

ALMA Atacama Large Millimeter Array

APF Automated Planet Finder (robotic 2.4-m optical telescope at Lick Observatory)

CGI Coronagraph Instrument (on WFIRST)

CHARA Center for High Angular Resolution Astronomy

DR Data Release

EC Executive Committee

ERS Early Release Science (JWST program)

ExeP Exoplanet Exploration Program
Exo-C Exo-Coronagraph (Probe Study)
Exo-S Exo-Starshade (Probe Study)

ExoPAG Exoplanet Program Analysis Group

ExoSIMS Exoplanet Open-Source Imaging Mission Simulator ExSDET Exoplanet Standard Definitions and Evaluation Team

FFI Full Frame Images

GCM General Circulation Model

GI Guest Investigator
GPI Gemini Planet Imager

GTO Guaranteed Time Observations

HabEx Habitable Exoplanet Imaging Mission

HARPS High Accuracy Radial velocity Planet Searcher

HARPS-N High Accuracy Radial velocity Planet Searcher-North HATNet Hungarian-made Automated Telescope Network

HIRES High Resolution Echelle Spectrometer

HOSTS Hunt for Observable Signatures of Terrestrial Planetary Systems

HST Hubble Space Telescope

HZ Habitable Zone

IRTF NASA Infrared Telescope Facility
JWST James Webb Space Telescope

KELT Kilodegree Extremely Little Telescope

KPF Keck Planet Finder

JPL Jet Propulsion Laboratory
JWST James Webb Space Telescope
KOI Kepler Object of Interest
LBT Large Binocular Telescope

LBTI Large Binocular Telescope Interferometer

LCOGT Las Cumbres Observatory Global Telescope Network

LUVOIR Large UV/Optical/IR Surveyor

NASA National Aeronautics and Space Administration

NEID NN-explore Exoplanet Investigations with Doppler spectroscopy

NESSI NASA Exoplanet Star (and) Speckle Imager

NExScI NASA Exoplanet Science Institute

ExEP Science Gap List, Rev B

Release Date: February 15, 2019

Page 20 of 20

NPOI Navy Precision Optical Interferometer

PRV Precision Radial Velocity PTF Palomar Transient Factory

RV Radial Velocity

SAG Science Analysis Group

SGL Science Gap List

SMD Science Mission Directorate SMP Single Measurement Precision

SIG Science Interest Group SIT Science Investigation Team

STDT Science and Technology Definition Team

TBD To Be Determined

TESS Transiting Exoplanet Survey Satellite

TPF Terrestrial Planet Finder

VLTI Very Large Telescope Interferometer

WASP Wide Angle Search for Planets

WIYN Wisconsin, Indiana, Yale, NOAO Observatory

WFIRST Wide-Field Infrared Survey Telescope