

LBTI Status

Phil Hinz June 12, 2016

Outline:

Need for LBTI and the HOSTS program HOSTS Status Instrument Update Observational Results

Zodiacal Dust in the Solar System

The problem with exozodiacal dust

- Flux is problematic for any imaging mission.
- · Clumpiness (resonances) complicates the detection.

4

How nulling interferometry works

- First proposed by Bracewell (1978) to directly detect "non-Solar" planets;
- Subtracts starlight by destructive interference;

Nulling Implementation

Pupil coordinates [m] 2 0 -4 -2 0 2 4 Pupil coordinates [m] Fourier amplitude (phasecam) 200 Tip [mas] -200 -200 0 200 Tilt [mas] Fourier phase (phasecam) 200 Tip [mas]

Camera image (phasecam)

-200 0 200 Tilt [mas]

LBTI is uniquely sensitive for measuring warm dust

- Performance is currently 10-12X improved over KIN.
- Nulling Self-Calibration provides much of this improvement.

B

The Hunt for Observable Signatures of Terrestial planetary Systems (HOSTS)

- Survey of ~50 nearby stars defined by LBTI's science team:
 - 1. What is the exozodi luminosity function for nearby stars?
 - 2. Does the level of cold/hot dust correlate with exozodi level?
 - 3. How does the exozodi level vary with stellar type?

HOSTS Objectives

1. Observe ACTUAL stars that would be good targets for a future direct imaging mission

Targets lists published in Weinberger et al. 2015, ApJS, 216:24

HOSTS Objectives

10

Understand the level of exozodi around nearby stars because it is a potential noise source for direct imaging / spectroscopy of planets

HOSTS Status

HOSTS Context

- Proposed as a 52 night survey executed from FY14-17
 - Assumed efficiency of 3 stars per night 35% of nights usable.
 - Challenging requirement: 6 zodi sensitivity
- Telescope, weather, and instrument performance have affected availability.
 - Adaptive Secondaries (AdSec's) have failure modes with long downtime. These are being mitigated.
 - Instrument improvement efforts are difficult to balance with survey reliability.
 - Productive nights can vary when 35% of the time is usable.

HOSTS History

- FY14 Initial Performance Assessment (4 nights).
 - Adaptive Secondaries issues limited fall 2013 availability.
 - Phase Control Loop initially implemented.
 - dust around eta Crv characterized (Defrere et al. 2015)
- FY15 Performance Improvement (16 nights).
 - Improved null uncertainty to 500 ppm (15 zodis on a solar type star).
 - Observed 5 additional stars to varying levels of sensitivity.
- FY16 Program Refinement (11 nights).
 - Schedule compressed by AdSec failure in fall 2016.
 - Poor weather and instrument reliability limited progress.
 - Detection of a ~35 zodi disk around Vega.

- Instrument reliability is being assessed.
 - Critical spares identified and replacement procedures refined.
 - Early Instrument Checkout is being formalized.
- A queue-based observing approach has been developed for 2016B and onward.
 - low PWV and good seeing nights will be used for HOSTS.
- Telescope/AO reliability is being improved.
 - Improved preventive maintenance of Adaptive Secondaries.
 - Margin in proposed schedule to allow for future down time.

Instrument Update

LBTI Null Uncertainty

Nulling Uncertainty has been **reduced by 10X** in FY2015.

- A complete path length feed-forward system was implemented in summer/fall 2015 by Jorg-Uwe Pott and Michael Bohm (MPIA).
 - System is called OPD and Vibration Monitoring System (OVMS)
- Tested in Feb-March 2016.
 - Very good correlation with NIR Phasecam data.
 - Reduced phase residuals by 25% (560 nm -> 410 nm RMS) when used in conjunction with phase sensing.
 - Mainly eliminates an 11 Hz vibration in structure.
- Used routinely starting in March 2016.

OVMS Results

 Residuals are reduced to 410 nm RMS from 560 nm RMS in March testing.

- Installation of a dual wavelength filter, and realignment of the NIR phase sensor was carried out in summer 2015.
- Software changes to calculate phase at both 1.65 and 2.2 μm completed in fall 2015.
- On-sky testing carried out in Feb. 2016.
 - Off-line analysis allowed us to determine the correct algorithm and predict null values taken at the time.
- On-sky feed-forward needs to be verified.

Improved Phasecam Measurements

K band measurement. Only uses one output.

H band measurement

PWV Results

- Basic Approach:
 - Use (phase_H Phase_K) to predict phase variation due to water vapor.
 - Adjust K band tracking set point to minimize variations at 11. μ m.
- Feb. data can be predicted using revised algorithm.

Observational Results to Date

- Commissioning tests on the star eta Crv detected a bright disk (Defrere et al. 2015).
- Modeling indicates dust is at < 1 AU (Kennedy et al. 2015).
- Data are consistent with a ~1200 zodi surface density in the habitable zone (although the model actually predicts most of the dust is inside of the HZ).

HE UNIVERSITY OF ARIZONA®

Commissioning tests on the star β Leo detected a disk at the level of 6000±500 ppm.

This corresponds to a disk that is **90 ± 8 zodi.**

THE UNIVERSITY

ARIZONA

Cold disk known from Herschel to be at R=40 AU.

11 µm emission detected by LBTI is likely at ~4 AU.

Limits to planets around beta Leo

- Warm dust can be predicted from a colder parent body belt using analytic models (Wyatt et al. 2005, Kennedy and Piette 2015)
- P-R drag from this reservoir appears to be consistent with the warm emission

Combined, the data are all consistent with a single parent body belt at 40 AU, creating **both** the warm and cold dust, and **no giant planets** capable of clearing out the intervening material.

Vega Observations

detection in 2014 data

Number of bin factor

Number of bootstrap

Number of pointings

Reduced chi2 limit

Number of OBs

1

: 200

4.0

010

: 002

Null depth

- Disks are more readily detectable around early type stars (Kennedy and LBTI team. 2015).
- A detection of 3500+/-1300 ppm excess around Vega is equivalent to a ~35+/-13 zodi disk around the star.
 - If confirmed, this is the faintest warm disk ever detected.

- Plan addresses the minimum number of star (32) with margin (15 stars).
- Requires 20 additional nights (40 total), or equivalently, an additional year of LBTI observations (FY18).
- Queued observation analysis predicts we will be able to observe for eight nights per year, yielding 24 stars per year.
 - 48 stars achievable with plan.
 - Provides margin for any unplanned downtime.

Summary

- HOSTS observations are in progress. Slower than planned progress can be mitigated by:
 - Implementing telescope and instrument reliability improvements.
 - Implementing a Queue-based observing strategy.

 The HOSTS survey can provide unique constraints on exozodiacal dust with continued observations.

Supplementary Slides

Weather Analysis

Sweet spot for TPF is F-G-K stars, but A stars are included

Stark et al. 2014 "Altruistic Yield Optimization" for their baseline 8 m telescope and IWA=2 _/D

33

🕂 The University of Arizona®

1. Sun-like Sample

F5 – K7 type (analogous to Kepler targets) – 48 stars

2. Early-type Sample

A0 – F4 type (Bright nearby stars) – 20 stars

Our 68 Best LBTI targets are likely TPF targets

51 are on a sample TPF list

HD	Name	Sp Type	DIST
* 216956	Fomalhaut	A4V	7.7
102647	Altair	A7V	11.0
🔆 187642	bet Leo	A3Va	5.1
* 97603	del Leo	A4V	17.9
203280	Alderamin	A7IV	15.0
48737	ksi Gem	F5IV	18.0
* 38678	zet Lep	A2IV-V(n	21.6
81937	h UMa	FOIV	23.8
* 40136	eta Lep	F2V	14.9
38393	gam Lep	F6V	8.9
🔆 10700	tau Cet	G8.5V	3.7
102870	bet Vir	F9V	10.9
105452	alf Crv	F1V	14.9
142860	gam Ser	F6IV	11.3
* 128167	sig Boo	F2V	15.8
197692	psi Cap	F5V	14.7
🗱 109085	eta Crv	F2V	18.3
164259	zet Ser	F2IV	23.6
17206	tau01 Eri	F75	14.2
16895	13 Per	F7V	11.1
23754	tau06 Eri	F5IV-V	17.6
222368	iot Psc	F7V	13.7
9826	ups And	F9V	13.5
173667	110 Her	F6V	19.2
215648	ksi Peg A	F7V	16.3
126660	tet Boo	F7V	14.5
89449	40 Leo	F6IV	21.4
X 22484	LHS 1569	F8V	14.0
19373	iot Per	F9.5V	10.5
** 90839	36 Uma	F8V	12.8
142373	LHS 3127	F8Ve	15.9
34411	lam Aur	G1.5IV-V	12.6
141004	lam Ser	G0IV-V	12.1
693	6 Cet	F8V	187

Example List Here:

- TPF list is for a 4m telescope, 2
 /D IWA, 2 yr total integration time (Stark et al. 2014)
- This list is ranked by LBTI sensitivity (34 targets shown, 2 observed already).
- Actual targets will be chosen by science and technical prioritization plus weather plus scheduling

35

The University of Arizona

