Modelihg Super-Earth Atmospheres

In Preparatidn for Upcoming Extremely Large Telescopes

Maggie Thompson'®
Jonathan Fortney', Andy Skemer’, Tyler Robinson?,
Theodora Karalidi', Steph Sallum’

TUniversity of California, Santa Cruz, CA; °Northern Arizona University, Flagstaff, AZ

ExoPAG 19
January 6, 2019
Seattle, Washington

USNHERNSTYﬁFCELﬁOan @ EXOPLANET PROGRAM "T@THER WORLDS

LABORATORY
Image Credit: NASA Ames/JPL-Caltech/T. Pyle




Roadma

Pressure-Temperature Profiles for Sub-Set of Confirmed Super-Earths o a—
Confirmed Exoplanets to Date 0 ? -
> '-c‘gz
P Z,}
- s
T 4
(R
=
_+ ¢ e e e
G‘-i&f-’ -
—
-
r —*
.
)
.

Research Goals & Current Atmosphere Modeling Selecting Super-Earths for

State of Super-Earth Tool (Past & Present) Follow-Up Observations
Detection
30-meters ;192 T |

segments

of reflective glass pieced
together to form one
giant primary mirror

in diameter

MIRI 11.4
TOTAL COLLECTING AREA:

655—_
"‘"" square meters ——~___

12 time
sharper

than that of the
Hubble Space Telescope

)
m
as
?
@
B
€
Q
2]
[=))
s
-

NIRCam 4.6

0oododooo
uooobbodoboboood

Theta (arcsec)

Future Observatories for Preliminary Assessment of
Super-Earths Upcoming Instruments’
Capabilities for Super-Earths

Conclusions &
Future Work



Research Goals

® Extend previous modeling tool to simulate super-Earth planet

atmospheres around M, K and G stars

® Apply modified code to explore the parameter space of actual and
synthetic super-Earths to select most suitable set of confirmed
exoplanets for follow-up observations with JWST and next-generation
ground-based telescopes

® Inform the design of advanced instruments such as the Planetary

Systems Imager (PSI), a proposed second-generation instrument for
TMT/GMT



Current State of Super-Earth Detections (1)

Confirmed Exoplanets to Date
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Current State of Super-Earth Detections (2)

Confirmed Exoplanets to Date
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Atmosphere Modeling Tool

Evolution of Atmosphere Model
® Solar System Planets & Moons ~ 1980°s
(e.g., McKay et al. 1989)

® Brown Dwarfs ~ 2000’s £
(e.g., Burrows et al. 2001) //
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® Hot Jupiters & Other Giant Exoplanets ~ 2000’s
(e.g., Fortney et al. 2005)
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Limitations of the Model
® Pre-computed Atmospheric Abundances

® Limited Treatment of Clouds

 Lack of Surface Boundary Conditions

¢ Limited Combinations of High and Low Spectroscopic Resolutions



Super-Earth Atmosphere Modeling Code

® Applied Extrasolar Giant Planet (EGP) code to small, terrestrial-like exoplanets
® Solves radiative transfer equation via Toon et al. 1989 algorithm and iteratively
determines radiative-convective equilibrium

Inputs
Distance from Star

Incoming Stellar Flux

Intrinsic Temperature

Chemical Abundances
Opacities
Surface Albedo

Surface Gravity

Cloud Properties




Sample of Atmosphere Modeling Results

Pressure-Temperature Profiles for Sub-Set of Confirmed Super-Earths
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Planet Selection for Follow-Up Observations
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Future Ground-based Observatories for Super-

Earths

®* By mid-2020’s, next-generation telescopes such as TMT, GMT, E-ELT expected

to achieve first light

® Planetary Systems Imager (PSI) proposed second generation instrument for TMT
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Preliminary Assessment of PSI’s Super-Earth Capabilities

PSI Contrast Curves with 50 Selected Super-Earth Candidates
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Examples of Stmulated Spectra for 3 Planets

Spectra for Sub-Set of Confirmed Planets
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JWST’s Super-Earth Capabilities

JWST Contrast Ratios (5 sigma)
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Conclusions

® EGP code can be applied to model known super-Earth
atmospheres

® Instruments such as PSI on next-generation ground-based
telescopes are likely to be able to image some super-Earths

® At present, the scarcity of super-Earth candidates at large star-
planet separations limit the imaging capabilities of JWST

Future Work

® Incorporate TESS super-Earth detections to expand the set of
candidates for follow-up observations

® Modify the EGP code to account for optically thin atmospheres
(e.g., proper surface boundary condition)



