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WFIRST CGI project / SIT status

» WEFIRST project past SRR, approaching mission PDR in 2019 for nominal 2025
launch

» Coronagraph currently defined as a technology demonstration with potential
future GO-like program

» Design requirements set by tech demo
* Good performance on V~5 mag stars
e Limited filter sets

» Coronagraph Science Investigation Teams (SITs) still operational

* Helping define requirements and plans for tech demo phase
* Advocating for maximizing science potential within realistic constraints

» Coronagraph SITs will conclude their service in two years
* To be replaced by a “participating science program” (see later slides)



ﬁ Mission plan

» Primary objective: validate coronagraph techniques and technology for future
visible-light exoplanet imaging/characterization missions

» 2000 hour technology demonstration/validation observations in first 1.5 years of
mission
* Imaging / photometric observations of multiple known planets
e SNR=10 spectrum of at least one known planet
* Observations of known (cold) debris disks and warm zodiacal disks
* Performance characterization and model validation
* Led by instrument team with support from participating scientists

» If science capabilities are compelling

e ~25% of remaining mission time available for Pl-led projects, through the framework of the
Participating Scientist Program and perhaps general GO calls
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@ SIT science aspirations for the mission

» Demonstrate the techniques of high-contrast exoplanet reflected-light
spectroscopy from raw pixels to planetary atmospheric parameters

» Demonstrate high-contrast astrometry and orbit determination

» Measure scattered-light brightness, polarimetry, and morphology of zodiacal dust
to ~10 times solar

» Photometrically characterize a large sample of giant planets to determine bulk
properties such as clouds

» Spectroscopically characterize a few planets to coarsely constrain C/H ratio
» Study protoplanetary systems in visible light (including H-alpha accretion)

» Photometrically characterize a small sample of Neptune-sized planets (new
discoveries by GAIA+RV or WFIRST-CGI)



@ SIT activities: Macintosh & Lewis SIT

» Develop and make available a comprehensive list of reflected-light giant planet
models

» Develop a database of potential targets including orbital predictions, stellar
properties, disk properties, and predicted planetary properties

» Develop quantitative predictions and metrics for disk science

» Collaborate with JPL on requirements, DRM, design trades, calibration

» Collaborate with science center (IPAC) on data requirements/processing
» Coordinate precursor observations (imaging) with project and Turnbull SIT

» Develop notional GO programs



@ SNR=10 IFS spectra can detect CH, and measure EW
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#) power of WFIRST CGI Photometry
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& Imaging Mission Database (plandb.sioslab.com) Talk #402.04 (Savransky)
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& Science opportunity: Exozodis and Faint Disks
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Talks:

& #340.01 (Debes)
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ﬂ Modeling Known Planet+Disk Systems

7 Disk+Planet Systems available on IPAC WFIRST site
(https://wfirst.ipac.caltech.edu/sims/Chen_WPS.html)

Model Disks constrained by observed IR SED
Model HLC images simulated with planets+0S6 scenario
Useful for DRM/Tech Demo
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@ Turnbull SIT Activities and AAS Posters

e Maggie Turnbull (PI, SETI Institute), with Co-Is...

* Neil Zimmerman and Avi Mandell (GSFC, CGI Image Simulations and Data
Challenge) = #140.44

e Stephen Kane and Zhexing Li (UC-Riverside, RV Precursor Observations,
Target Characterization) 2 #140.42, #140.43

* Sergi Hildebrandt and Stuart Shaklan (JPL, Starshade Image Simulations)
- #140.48

* Aronne Merrelli and Tristan L'Ecuyer (UW, Planetary Spectral Simulations)
- #140.31

(All posters in Monday’s Exoplanet session.)



@ WFIRST CGI Imaging Data Challenge

e AAS Poster on MONDAY: #140.44 (Mandell et al., CGIl) and #140.48 (Turnbull et al,,
Starshade images)

* The Turnbull SIT is organizing the second community data challenge for the WFIRST
Coronagraph Instrument.

* Beginning February 2019, release simulated WFIRST datasets of exoplanetary systems
imaged at multiple epochs over a 6-year baseline, including images taken with a starshade
rendezvous probe at later epoches.

* Participants will be asked to post-process the images, discriminate planet candidates from
noise and background objects, and fit their orbits using relative astrometry.

e All experience levels are welcome to participate, with plans for hack days and tutorial
sessions. Contact Turnbull for signup.



ﬁ Simulated, processed images for example system
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» These are co-added images from 3 sample observing epochs; in the case of HLC, this includes reference
differential imaging post-processing. Dashed ellipses trace the respective orbits of the two planets.

« The CGI HLC data simulations (left and middle) are based on WFIRST OS6 STOP model time series; these
include various sources of time-varying wavefront errors and spacecratft jitter.

« Starshade data simulations (right) based on JPL’'s model for a starshade design with 26-m diameter, 24 petals
(spinning), stationed 37,000 km from the WFIRST spacecraft, including effects of line-of-sight jitter and solar
glint.

» Detector model is a photon-counting EMCCD with lifetime degradation.



& Radial Velocity Pre-Cursor Observations: Known RV Targets+Blind Search

NASA Keck time & Key Projects
NASA NEID time
NASA time on southern facilities (MINERVA, CHIRON)

Automated Planet Finder

Blind Search:
* Instrumental error: 27 cm/s

e 45 FGK stars, 150 nights
over 5 years will sample
terrestrial planets to P~100

days




‘g Determining Optimal Timing of NEID Observations
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@ Participating Scientists Program (PSP)

y "/__\\ )

#247.37 (Rhodes)
Notional PSP Program, to be confirmed by HQ and project in Phase B

* Core PSP members selected via peer review well before launch
* Makeup of PSP informed by CGI team needs

* PSP fully partners with CGl team during ‘tech demo’ phase (first 1.5 years of mission)

» Proposed PSP Stages:
» Stage 1: Pre- PSP: Keep current SITs through ~2021

» Stage 2: Compete for small PSP in ~2021 that will be in place

through first 18 months of mission; must justify selection 5 years
ahead of launch

» Stage 3: If warranted, augment the PSP for years 1.5-2.5

» Stage 4: If warranted, augment the PSP or open CGI to GO
science (or both) for 2.5-end of mission

"warranted = CGI can do compelling science; PSP will be critical in
helping demonstrate this



@ Conclusions
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» WEFIRST coronagraph still has an important science role to play

» Learning how to do reflected-light spectroscopy will lay groundwork for later
Imaging missions

» Measuring zodiacal scattered light at ~5-10x solar levels

» Science Investigation Teams are working to maximize the utility of the mission
both as a technology demonstration and for science

» Science capability could be enhanced by strategically targeted investments

Grab this presentation at: https://goo.gl/1hj2Bg
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@ Science Opportunity: Small Exoplanets in Blind Searches
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ﬁ Example CGIl Imaging Challenge Planet Parameters
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Planets (fictitious) b c
semi-major axis 2.5AU 5.5 AU
period 3.95yr 12.89 yr
radius 1.0 jupiterRad 1.0 jupiterRad
albedo 0.3 0.4
wavelength 575 nm 575 nm
eccentricity 0.10 0.05
arg periastron 155.0 deg 50.0 deg
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long. ascending node 300.0 deg 300.0 deg




& RV Precursor Observations: Error Budget with NEID
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