Modeling Exoplanetary Atmospheres in Nearby Systems

Emily Rauscher

Disclaimers

- 1 year ≈ 25 minutes
 - also means I'm not necessarily crediting originators of ideas

This is not a pedagogical talk

- see Fortney's "Modeling Exoplanetary Atmospheres: An Overview", arXiv:1804.08149
- (also related Atmospheric Physics and Observing Techniques reviews by Grassi and Sing, respectively)
- I'm biased

Disclaimers

- 1 year ≈ 25 minutes
 - also means I'm not necessarily crediting originators of ideas

This is not a pedagogical talk

- see Fortney's "Modeling Exoplanetary Atmospheres: An Overview", arXiv:1804.08149
- (also related Atmospheric Physics and Observing Techniques reviews by Grassi and Sing, respectively)
- I'm biased
- Feel free to "and a comment" during the Q&A, to promote papers I've left out

Modeling Exoplanetary Atmospheres in Nearby Systems

Emily Rauscher

not observations my 3D bias

Modeling Exoplanetary Atmospheres in Nearby Systems

Emily Rauscher

near-photospheric pressures, ~1 mbar – 1 bar NOT tenuous, evaporating layers

Modeling Exoplanetary Atmospheres in Nearby Systems

Emily Rauscher

nod to observations bias: gaseous, hot, transiting

Modeling Exoplanetary Atmospheres in Nearby Systems

Emily Rauscher

Hot Jupiters, ["Normal"] Jupiters, Young Jupiters, Non-Jupiters ...

Questions:

- Do we have the "standard" hot Jupiter circulation correct?
 - What is the dynamical mechanism at work? (Hammond & Pierrehumbert 2018)
 - What about sub-grid physics (shocks, dissipation)? (Ryu et al. 2018)
- Do the "standard" equations work for warm, slowly rotating mini-Neptunes/super-Earths? (Mayne et al. 2018)
- How does dynamical mixing depend on all the things? (Zhang & Showman 2018a,b; Menou 2018)
- Dynamical variability/oscillations in brown dwarfs and Jupiter-like planets? (Showman et al. 2018)

Stellar-ish atmospheres

Featureless spectra: H⁻ opacity

Stellar-ish atmospheres

- Dissociated H, metals, and Fe are important opacities
 - Create temperature inversions (too hot for TiO/VO)

Kitzmann et al. (2018) ... and see Hoeijmakers et al. (2018)

Day-night H differences

MHD atmospheres

log₁₀(magnetic timescale) 3000 3.29 5.92 8.55 11.18 13.81 16.44 19.07 2500 Temperature [K] 2000 1500 1000 500 10⁻³ 10-8 10-7 10-6 **10**⁻⁵ 10-4 Density [cgs] Rauscher & Menou (2013)

Rogers (2017)

Disequilibrium, photo-ionization

Multi-dimensional mixing in convective atmospheres

Bolton et al. (2017)

Multi-dimensional mixing in convective atmospheres

Bordwell et al. (2018)

Mendonça et al. (2018)

Mendonça et al. (2018)

Steinrueck et al. (2018)

Detailed cloud microphysics

Comparing predictions to data

1D microphysics from **3D** profile

Powell et al. (2018)

Cloud feedback \rightarrow L/T variability?

Tan & Showman (2018)

Clouds in 3D w/feedback

Roman & Rauscher (2018)

Clouds in 3D w/feedback

Lab measurements of haze formation

He et al. (2018)

Lab measurements of haze formation

Lab measurements of haze formation

He et al. (2018)

Smaller and/or cooler planets

Marching toward "Earth-like"

Longer orbits \rightarrow wider distribution of eccentricity, rotation, obliquity

Longer orbits → wider distribution of eccentricity, rotation, obliquity

* But maybe hot Jupiters too?

thermal tides: Auclair-Desrotour & LeConte (2018a,b) empirical constraints: Flowers et al. (2018)

Obliquities of warm Jupiters

Rauscher (2017)

Rotation and synchronoization of terrestrial planets

Broad parameter surveys

Around a Sun-like host (another table for M dwarf host)

Simulation parameters	Global-average T [K]	Eq-pole ΔT [K]	TOA net SW $[Wm^{-2}]$	TOA net LW [Wm ⁻²]	Albedo
Reference:		10			
Earth parameters (1 AU)	231.79	139.37	151.72	154.96	0.55
Varying rotation period:					
0.5 days	220.85	128.37	123.29	129.30	0.64
2 days	218.86	109.45	116.61	121.50	0.66
4 days	217.63	97.76	114.74	119.82	0.66
8 days	220.89	93.93	118.13	123.00	0.65
16 days	222.41	75.04	118.96	123.96	0.65
Varying surface pressure:					
0.25 bars	234.89	149.20	164.29	167.07	0.52
0.5 bars	235.19	147.19	162.10	164.44	0.52
2 bars	211.24	96.06	106.43	111.27	0.69
4 bars	211.49	85.36	102.07	108.28	0.70
Varying incident stellar flux:					
$0.544 \ F_{\oplus} \ (1.36 \ \mathrm{AU})$	182.42	94.29	58.09	63.04	0.69
$0.667 \ F_{\oplus} \ (1.22 \ \mathrm{AU})$	191.93	104.31	70.81	75.68	0.69
0.816 F_{\oplus} (1.11 AU)	200.81	108.22	86.24	91.02	0.69
$1.225 \ F_{\oplus} \ (0.904 \ \mathrm{AU})$	268.85	110.27	225.97	227.70	0.46
Varying planetary radius:					
$0.5~R_\oplus$	239.06	112.42	168.21	171.52	0.51
$0.707 \ R_{\oplus}$	216.89	104.15	113.50	118.27	0.67
1.414 R_{\oplus}	236.09	147.65	158.47	161.42	0.53
$2~R_\oplus$	244.65	161.95	171.02	173.62	0.50
Varying surface gravity:					
$0.5 g_\oplus$	236.72	118.03	148.98	152.10	0.56
$0.707 g_\oplus$	232.49	130.18	147.36	151.02	0.57
$1.414 g_{igoplus}$	231.23	142.14	153.37	156.94	0.55
Varying liquid cloud particle radius:					
$7 \ \mu \mathrm{m}$	213.05	110.93	107.31	113.41	0.69
$21 \ \mu m$	239.22	138.15	167.46	170.33	0.51

Komacek & Abbot (2019)

A modeling year in review

- Understanding dynamical regimes
- Ultra-hot Jupiters
- Chemistry
- Clouds
- Smaller and/or cooler planets

 Feel free to "and a comment" during the Q&A, to promote things I've missed

