Exoplanet Exploration Program Technology Update

Brendan Crill Deputy Program Chief Technologist Exoplanet Exploration Program Jet Propulsion Laboratory / California Institute of Technology

Nicholas Siegler Program Chief Technologist Exoplanet Exploration Program Jet Propulsion Laboratory / California Institute of Technology

Pin Chen

Deputy Technology Development Manager Exoplanet Exploration Program Jet Propulsion Laboratory / California Institute of Technology

> ExoPAG 23 05 Jan 2021

Copyright 2021 California Institute of Technology. U.S. Government sponsorship acknowledged. Cleared for public release by JPL Document Review CL#21-0099 Image Credit: NASA/Ames/JPL-Caltech/T. Pyle astropix.ipac.caltech.edu

Technology Activities (in a snapshot)

Technology Gaps

Strategic Astrophysics Technology Grants

- Extreme Precision

Coronagraph

architectures: modeling

and demonstrations

Wavefront control

- Radial Velocity
- **Detectors**

Ultra-Stable Coronagraph Testbeds

Deformable **Mirror Survey**

Extreme Precision Radial Velocity

Starshade Technology **Development**

Segmented Coronagraph **Design & Analysis Study**

Roman/CGI

Decadal Survey

2010 Decadal Survey

TABLE ES.4 Space: Recommended Activities—Medium-Scale (Priority Order)

Recommendation	Science	Appraisal of Costs ^a
I. New Worlds Fechnology Development Program	Preparation for a planet-imaging mission beyond 2020, including precursor science activities	\$100M to \$200M
2. Inflation Probe Technology Development Program	Cosmic microwave background (CMB)/ inflation technology development and preparation for a possible mission beyond 2020	\$60M to \$200M

2020 Decadal Survey expected in spring 2021

Technology Gaps

www.astrostrategictech.us

Tier 1 Technology Gaps

Angular Resolution (UV/Vis/NIR) Coronagraph Contrast Coronagraph Contrast Stability Cryogenic Readouts for Large-Format Far-IR Detectors Fast, Low-Noise, Megapixel X-Ray Imaging Arrays with Moderate Spectral Resolution High-Efficiency X-Ray Grating Arrays for High-Resolution Spectroscopy High-Resolution, Large-Area, Lightweight X-Ray Optics Large-Format, High-Resolution, UV/Vis Focal Plane Arrays Large-Format, High-Spectral-Resolution, Small-Pixel X-Ray Focal-Plane Arrays Large-Format, Low-Noise and Ultralow-Noise Far-IR Direct Detectors Large-Format, Low-Noise, High-QE Far-UV Detectors Next-Generation, Large-Format, Object Selection Technology for Multi-Object Spectrometers for LUVOIR Vis/NIR Detection Sensitivity

Tier 2 Technology Gaps

Advanced Millimeter-Wave Focal-Plane Arrays for CMB Polarimetry Detection Stability in Mid-IR Heterodyne FIR Detector Arrays and Related Technologies High-Efficiency Object Selection Technology for UV Multi-Object Spectrometers High-Performance Spectral Dispersion Component/Device High-Reflectivity Broadband FUV-to-NIR Mirror Coatings High-Throughput Bandpass Selection for UV/Vis Large-Format Object Selection Technology for Multi-Object Spectrometers for HabEx Starshade Deployment and Shape Stability Starshade Starlight Suppression and Model Validation Stellar Reflex Motion Sensitivity - Astrometry Stellar Reflex Motion Sensitivity - Extreme Precision Radial Velocity

Tier 3 Technology Gaps

Advanced Cryocoolers High-Performance, Sub-Kelvin Coolers Large Cryogenic Optics for the Mid-IR to Far-IR Long-Wavelength-Blocking Filters for X-Ray Micro-Calorimeters Low-Noise, High-QE UV Detectors Low-Stress, Highly Stable X-Ray Reflective Coatings Photon-Counting, Large-Format UV Detectors Polarization-Preserving Millimeter-Wave Optical Elements **UV** Coatings UV Detection Sensitivity UV/Vis/NIR Tunable Narrow-Band Imaging Capability Warm Readout Electronics for Large-Format Far-IR Detectors

Tier 4 Technology Gaps

Compact, Integrated Spectrometers for 100 to 1000 µm Optical-Blocking Filters Rapid Readout Electronics for X-Ray Detectors Short-Wave UV Coatings

Tier 5 Technology Gaps

Advancement of X-Ray Polarimeter Sensitivity Far-IR Spatio-Spectral Interferometry High-Precision Low-Frequency Radio Spectrometers and Interferometers Mid-IR Coronagraph Contrast Ultra-High-Resolution Focusing X-Ray Observatory Telescope Very-Wide-Field Focusing Instrument for Time-Domain X-Ray Astronomy Wide-Bandwidth, High-Spectral-Dynamic-Range Receiving System for Low-Radio-Frequency Observations on the Lunar Far Side

Technology Gap List to be updated by September 2021, responsive to Astro2020 recommendations -> See Joint PAG talk by Nick Siegler & Thai Pham Friday Jan 8

Strategic Astrophysics Technology

Coronagraph masks/architectures

- Vortex Coronagraph (Serabyn/NASA-JPL)
- Phase Induced Amplitude Apodization Complex Mask Coronagraph (Belikov/NASA-ARC)
- Super-Lyot Coronagraph (Trauger/NASA-JPL)

 Apodized Pupil Lyot Coronagraph (Soummer/STScI) *HiCAT testbed at STScI: Soummer SAT-2018*

Polarization and coronagraphy (Breckinridge/UA)

• Final report completed and posted

Wavefront-control Techniques

Single mode fiber and optimization for spectroscopy (Mawet/Caltech)

- Enables wide bandwidth at high contrast
- Next Step: demonstrate 20% bandwidth at 10⁻⁸ contrast in air

Mawet SAT-2018

7.33e-06 3.44e-06

Avg. Contrast: 5.92e-7

LDFC-corrected Image Perturbed Image Flat Image (50th iteration)

6e-4 speckle; Avg. Contrast: 7.74e-6

Milestone #1 achieved (pending ExoTAC review):

Uses signal changes in bright region of

that corrects speckles in the dark hole

Demonstration of the technique on an in-air testbed at NASA ARC (Currie et al 2020)

Bright field (BF) speckles

Miller & Guyon 2017

Avg. Contrast: 7.69e-7

Next steps: demos in SCExAO, HCIT

2.48e-04

1.24e-04

6.17e-05

3.07e-05

1.52e-05

1.47e-06

5.00e-07

PI Olivier Guyon (UA)

Linear Dark Field Control Milestone

Multi-Star Wavefront Control in Vacuum

• Demonstrated wavefront control in the vacuum testbed at JPL to create a dark hole at 50 λ /D using diffraction orders of source.

PI Rus Belikov (NASA/ARC)

• Next step: full multi-star (dark hole with two sources) in vacuum.

detectors (Rauscher/NASA-GSFC)

Vis-band rad-hard photon-counting

 Ultra-stable mid-IR detector array (Staguhn/JHU)

Detectors

Extreme Precision Radial Velocity

 Micro-resonator optical etalon for radial velocity measurements (Leifer/NASA-JPL)

https://exoplanets.nasa.gov/exep/technology/TDEM-awards/

Detectors and EPRV

Leifer SAT2018

High Contrast Imaging Testbed Facility

MEMS Deformable Mirrors

- 50x50 Deformable Mirror demonstrations in vacuum
 - MEMS DM narrowband demo in Decadal Survey Testbed contrast $8x10^{-10}$ from 3.5 to 13.5 λ /D narrowband at 516 nm; $2x10^{-9}$ 10% band

- Two 2000-actuator MEMS DM's to undergo launch-level
 vibrations
 Test Mount
 - one not coated (to allow IR microscopy)
 - one coated
- Next step: deliver DM units to JPL for pre-test performance characterization

Deformable Mirror Survey

Goals:

- 1. Survey and document viable DM technologies across the world to inform future exoplanet space missions
- 2. Make recommendations for DM technologies
- 3. Identify new technologies that could be matured rapidly for flight

<u>Status</u>

- Evaluation criteria determined by a group of DM Subject Matter Experts
- Fact finding completed
 - 13 DM vendors from 6 different countries
- DM options have been scored relative to each other
 - Scores to be reviewed and concurred by SMEs
- Final report expected by 5/2021

	вмс	Xinetics		Cilas
Technology	Electro static force between pin and membrane	Electrostrictive (PMN) material	Electromagnetic	Bimorph piezoelectric actuation
Control type	Voltage	Voltage	Current	Voltage
Membrane contact	None	Yes	None	Yes
Actuator pitch	0.3 - 0.45 mm	1.0 - 2.5 mm	0.8 – 20.6 mm	≥ 2 mm
Actuator stroke	1 to 2 µm	0.5 μm	8 – 25 μm	20 µm (OTOS)
Actuator count	4096 (64x64)	4356 (66x66)	3228 (64 across)	188(OTOS has 63)
Capability	Up to 9216 (96x96)	Up to 9216 (96x96)	Up to 12912 (128 across)	Few hundreds
Actuator resolution	15 pm	20 pm measured	120 pm	~300 pm
Capability	15 pm	8 pm	15 pm	50 pm
Key limitations for flagship mission	Surface Quilting, actuator count	Actuator pitch , stability	Actuator pitch	Actuator count, pitch and resolution
Company information	U.S. Based DMs are the main business Independent company	U.S. Based DMs are the main business Parent: Northrop Grumman, strategic business unit	France DMs 70% of \$4M revenue Parent: Eveon	France DM's 10% of revenue Ariane group and AREVA

Segmented Coronagraph Design & Analysis

Year-to-Date Accomplishments

- Incorporated quasi-static and dynamic telescope aberrations (by Ball Aerospace and Lockheed Martin) in simulations of contrast performance
- Produced coronagraph performance data for exoEarth yield computations

• Next Steps:

- Understanding requirements on telescope dynamics to enable 10⁻¹⁰ coronagraph contrast performance
- Science yield analysis per coronagraph architecture

The Three Starshade Technology Gaps

https://exoplanets.nasa.gov/exep/technology/starshade/

(1) Starlight Suppression

Suppressing scatted light off petal edges from off-axis Sunlight (S-1)

Suppressing diffracted light from on-axis starlight and optical modeling (S-2)

(3) Deployment Accuracy

and Shape Stability

Positioning the petals to high accuracy, blocking on-axis starlight, maintaining overall shape on a highly stable structure (S-5)

Fabricating the petals to high accuracy (S-4)

(2) Formation Sensing

Gap #1: Starlight Suppression and Edge Scatter

- Subscale Starshade optical tests and model validation continues
 - Tests of subscale starshades with deliberate shape errors show contrast changes in agreement with model predictions
 - See Harness et al. SPIE 2020 proceedings

Edge Scatter:

 Antireflection coating on starshade edge provides large margin on solar glint requirement

Fig 8: Before and after SAS measurements of a 50 cm AM edge segment which was coated with 450:800-2 at an angle of 45°. Also included in this plot is the representative uncoated coupon B27, as well as the coupon B33 which was coated in the same manner as the segment.

Gap #3: Shape Stability

- Starshade Petal System successfully demonstrated to maintain prelaunch shape within +/- 70 μm after deploy and thermal cycles
 - Modeling of results have been upgraded to include epoxy joints to achieve agreement with measurements

Starshade Technology Gaps Scorecard

https://exoplanets.nasa.gov/exep/technology/starshade/

(1) Starlight Suppression (2) Formation Sensing Suppressing scatted light off petal edges from off-axis Sunlight (S-1) Sensing the lateral offset between the spacecraft (S-3) (3) Deployment Accuracy and Shap Stabili Suppressing diffracted light from on-axis starlight and optical modeling (S-2)

Positioning the petals to high accuracy, blocking on-axis starlight, maintaining overall shape on a highly stable structure (S-5)

Fabricating the petals to high accuracy (S-4)

Status of the Coronagraph Instrument (CGI) on the Roman Space Telescope, Feng Zhao (JPL)

 Status of MEMS Deformable Mirror Development in the HCIT, Eduardo Bendek and Garreth Ruane (JPL)

- Recordings and slides available:
 - <u>https://exoplanets.nasa.gov/exep/technology/tech_colloquium/</u>

Exoplanet Exploration Technology Colloquium Series

Stellar Astrometry

- If Astro2020 recommends a direct imaging mission, will eventually need Earth-mass measurement capability that complements or is an alternative to EPRV
- Astrometry technology is already on the Technology Gap List but may add new, more focused Technology Gaps: for example, detector calibration, optical field distortion

Nulling Interferometry

- ExEP kicking off an assessment of technical status and science prospects for mid-IR direct-imaging/spectral characterization of exo-Earths
- Will include lessons learned since TPF-I from Keck, Palomar, LBT, and the VLT
- Identification of potential Technology Gaps to add to the gap list
- Astro2020 recommendations will set prioritization of this approach

BACKUP

Starshade Technology Activity (S5) Technology Milestones Scorecard

Starshade petal thermal tests meet requirements ۲

- Bowing in the petal investigated; traced to thermal expansion of epoxy in the petal joints

Batten-Edge Joint

Starlight Suppression and Edge Scatter

- Validate models of starshade performance
- Princeton testbed has been used to demonstrate starlight suppression to < 10⁻¹⁰ over a 10% band of sub-scale starshade

 Last step: measure deliberately misshapen subscale starshades and compare with model predictions

Starlight Suppression and Edge Scatter

 Demonstrated starshade optical edge limits Solar scatter performance to lobe dimmer than mag 25 and maintains performance after thermal cycling

Technology Gap List

Astrophysics Technology Gap List

- Technology gaps for all three NASA Astrophysics Division (APD)'s programs
- Database of technology activities:
 - o http://astrostrategictech.us/
- Update coming in 2021, post-decadal

Exoplanet Technology Gap List

- Subset of APD gap list corresponding to exoplanet science:
 - o <u>https://exoplanets.nasa.gov/exep/technology/gap-lists/</u>

V-NIR Coronagraph/Telescope Technology Gaps

Contrast

CG-2: Coronagraph Architecture

CG-3: Deformable

CG-4: Data **Post-Processing**

CG-1: Segmented Mirrors

Contrast Stability

CG-5: Wavefront Sensing and Control

CG-7: Telescope Vibration Sensing and Control or Reduction

Detection Sensitivity

Ultra-low Noise Visible (CG-8) and Infrared (CG-9) Detectors

Other Technology Gaps

UV Contrast

CG-10 UV/V/NIR Mirror Coatings

UV Detection Sensitivity

CG-12: Ultra-low Noise UV Detectors

Stellar Reflex Motion Sensitivity

M-2: Laser Frequency Combs for Space-based EPRV

M-1: Ground-based Ultra-high Precision Radial Velocity

M-3: Astrometry

Transit Spectroscopy Sensitivity

M-4: Ultra-stable Mid-IR Detectors for Transit Spectroscopy

Mid-IR Technology Gaps

Mid-IR Coronagraph Contrast

CG-10 UV/V/NIR Mirror Coatings

Transit Spectroscopy Sensitivity

M-4: Ultra-stable Mid-IR Detectors for Transit Spectroscopy