Exoplanet Exploration Program Technology Update

Brendan Crill Deputy Program Chief Technologist Exoplanet Exploration Program Jet Propulsion Laboratory / California Institute of Technology

Nicholas Siegler Program Chief Technologist Exoplanet Exploration Program Jet Propulsion Laboratory / California Institute of Technology

Pin Chen Deputy Technology Development Manager Exoplanet Exploration Program Jet Propulsion Laboratory / California Institute of Technology

> ExoPAG 22 19 Jun 2020

Copyright 2020 California Institute of Technology. U.S. Government sponsorship acknowledged. Cleared for public release by JPL Document Review CL#20-2432 Image Credit: NASA/Ames/JPL-Caltech/T. Pyle astropix.ipac.caltech.edu

Technology Activities

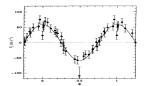
Technology Gaps

Wavefront control

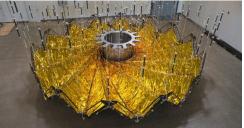
Extreme Precision Radial Velocity

Detectors

Ultra-Stable Coronagraph Testbeds

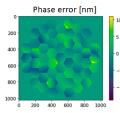


Deformable


Extreme

Mirror Survey

Starshade Technology **Development**



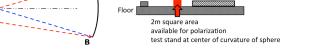
Segmented Coronagraph **Design & Analysis Study**

Zernike

Sensor

-30 | -30

rrated Field - Broadban -20 -10 0


Strategic Astrophysics Technology (1/2)

4 coronagraph masks/architectures

- Vortex Coronagraph (Serabyn/NASA-JPL)
- Phase Induced Amplitude Apodization Complex Mask Coronagraph (Belikov/NASA-ARC)
- Apodized Pupil Lyot Coronagraph (Soummer/STScl)
- Super-Lyot Coronagraph (Trauger/NASA-JPL)

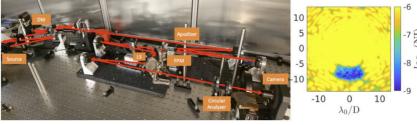
4 wavefront-control techniques

- Single mode fiber and optimization for spectroscopy (Mawet/Caltech)
- Multi-star wavefront control demos (Belikov/NASA-ARC)
- WFC using light outside the dark field (Guyon/UA)
- MEMS deformable mirrors (Bierden/BMC)
- Polarization & Coronagraphy (Breckinridge/UA)

3.75m spher 8.=25m

Breckinridge Final Report under review

Optical shop


Test stand

Camera ₁

PIAACMC in vacuum chamber now

EXPLORATIO PROGRAM

Mawet SAT-2018

8m aspheric segment

or GMT

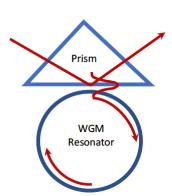
Vis-band rad-hard photon-INTEGRATING SPHERE

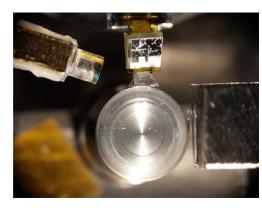
Ultra-stable mid-IR detector • array (Staguhn/JHU)

Extreme Precision Radial Velocity

Micro-resonator optical etalon for ۲ radial velocity measurements (Leifer/NASA-JPL)

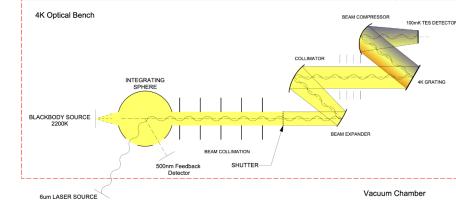
https://exoplanets.nasa.gov/exep/technology/TDEM-awards/


Strategic Astrophysics Technology (2/2)


Detectors

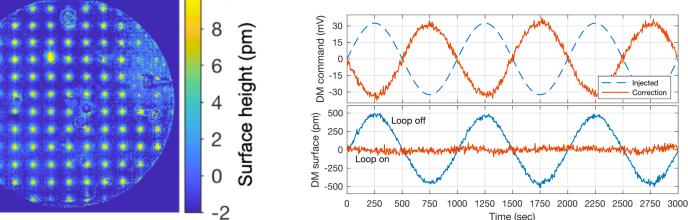
۲

counting detectors (Rauscher/NASA-GSFC)


Staguhn SAT2018

Leifer SAT2018

Coronagraph testbed specifically designed for opto-mechanical stability permitting demonstration of 10⁻¹⁰ contrast

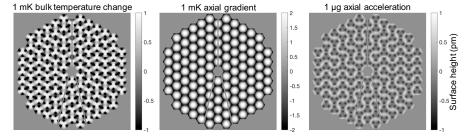

 Zernike wavefront sensor commissioned in DST, achieving picometer sensitivity, and available to investigators

10

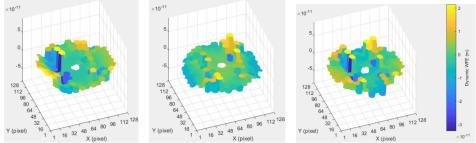
Single-bit actuator pokes

 Segmented pupil (static) will commence later in 2020, targeting large space telescope concepts; also installing EMCCD

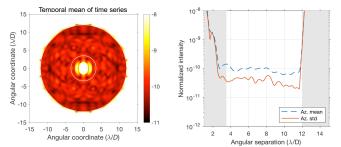
ExEP's HCIT-2 Vacuum Chamber and the DST at JPL


Decadal Survey Testbed (DST)

Segmented Coronagraph Design & Analysis



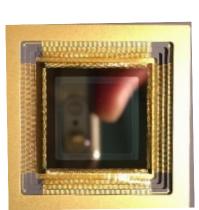
- 2020 Objectives:
 - Investigate sensitivity of science yield to telescope aberrations/instabilities
 - investigate how coronagraph requirements drive telescope requirements



Quasi-Static Segment Deformations (Coyle, East)

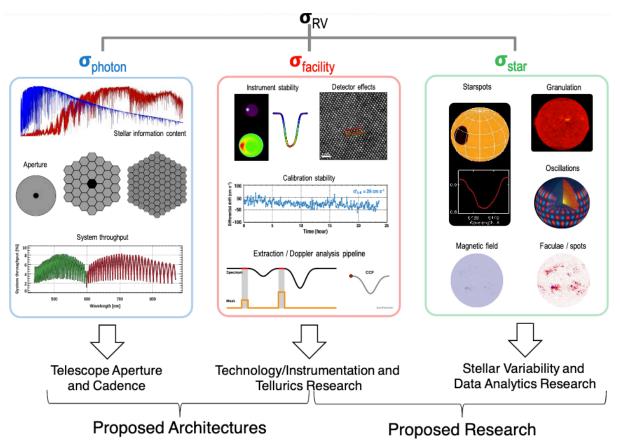
- Year-to-Date Accomplishments
 - Produced end-to-end propagation model
 - Incorporated quasi-static and dynamic telescope aberrations


Snapshots of Dynamic Wavefront Errors (Chopra, Dewell, Nordt)


Preliminary Contrast Result, APLC w/ Angular Differential Imaging (Ruane, JPL)

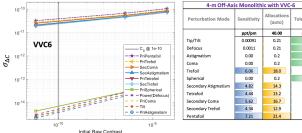
Deformable Mirror Survey

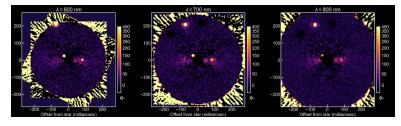
- Have we identified all candidate deformable mirrors that might be suitable for a future exoplanet direct imaging mission?
- A 1-year survey to assemble a Subject-Matter Expert team, define requirements, perform a global fact-finding effort, and write a report.
- Identify novel wavefront control technologies that could mature rapidly.
- Current Status: Defined requirements with Subject Matter Experts, fact finding ongoing with vendors.
- Report to be made public at the end of the year



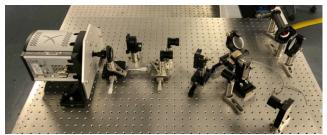
Extreme Precision Radial Velocity

- Extreme Precision Radial Velocity Initiative Plan delivered to NASA and NSF in March 2020
- See upcoming talk by Scott Gaudi and Jenn Burt for the details!

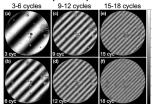



EPRV working group

Exoplanet Exploration Technology Colloquium Series



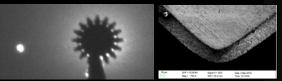
Telescope Stability + Coronagraph modeling



Workshop on Advanced Wavefront Sensing for Coronagraphy

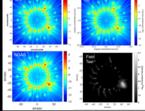


Update on Starshade Technology Development

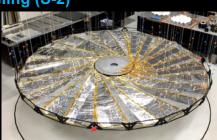


- Recordings and slides available here:
 - <u>https://exoplanets.nasa.gov/exep/technology/tech_colloquium/</u>

The Three Starshade Technology Gaps

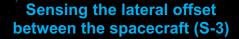

https://exoplanets.nasa.gov/exep/technology/starshade/

(1) Starlight Suppression


Suppressing scatted light off petal edges from off-axis Sunlight (S-1)

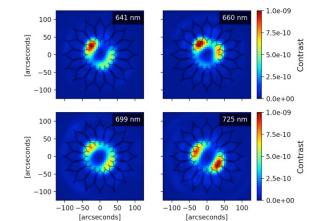
Suppressing diffracted light from on-axis starlight and optical modeling (S-2)

(3) Deployment Accuracy

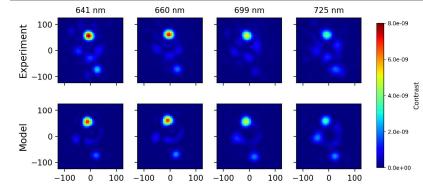

and Shape Stability

Positioning the petals to high accuracy, blocking on-axis starlight, maintaining overall shape on a highly stable structure (S-5)

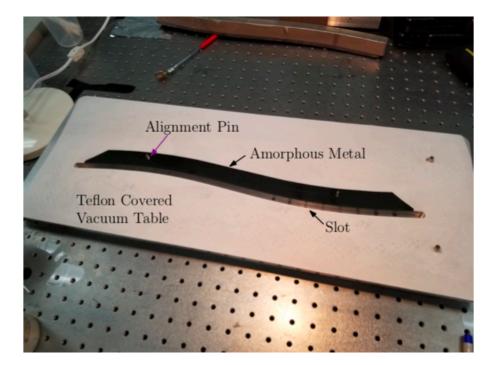
Fabricating the petals to high accuracy (S-4)

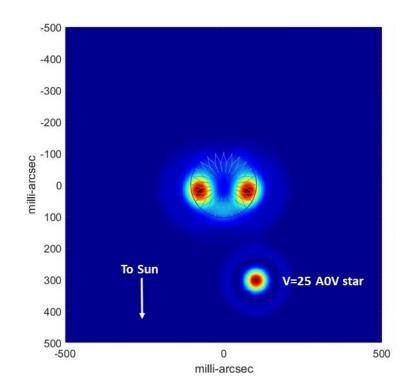


Starlight Suppression and Edge Scatter



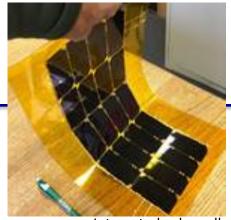
- Validate models of starshade performance
- Princeton testbed has been used to demonstrate starlight suppression to < 10⁻¹⁰ over a 10% band of sub-scale starshade


 Last step: measure deliberately misshapen subscale starshades and compare with model predictions

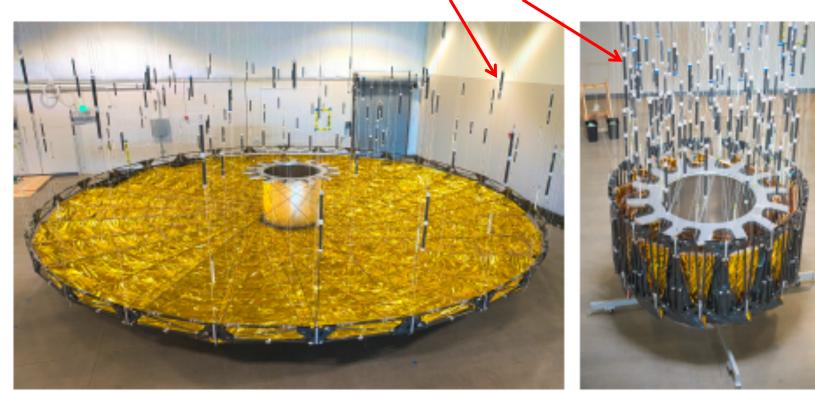


Starlight Suppression and Edge Scatter

 Demonstrated starshade optical edge limits Solar scatter performance to lobe dimmer than mag 25 and maintains performance after thermal cycling

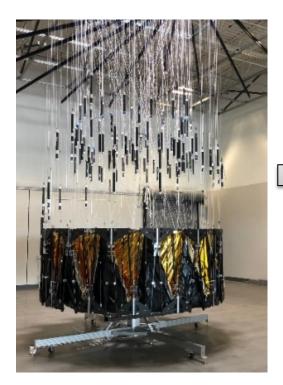

Shape Accuracy: Critical Features demonstrated

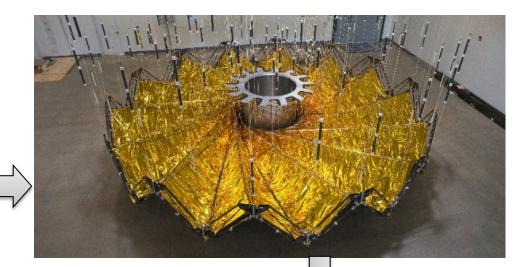
 Starshade Petal System successfully demonstrated to maintain prelaunch shape within +/- 70 μm after deploy and thermal cycles


Full Scale Inner Disk

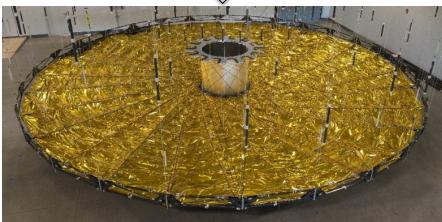
ASA EXOPLA EXPLORATION PROGRAM

Gravity offloading

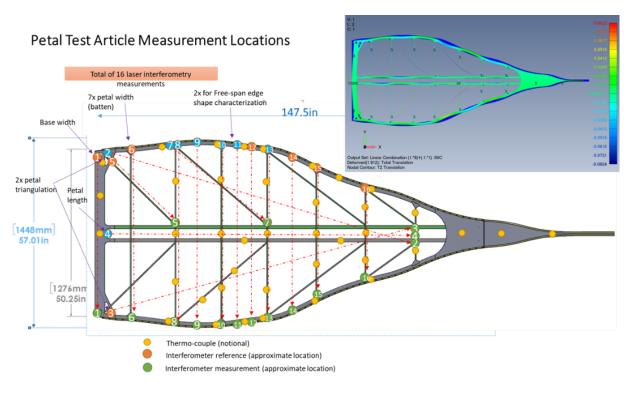

(a) Deployed

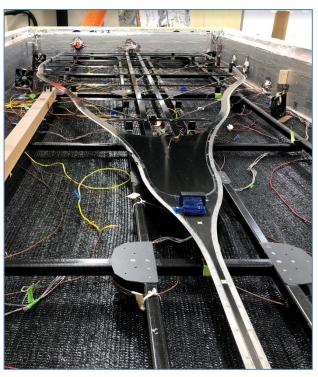

(b) Stowed

Shape Accuracy: Critical Features demonstrated



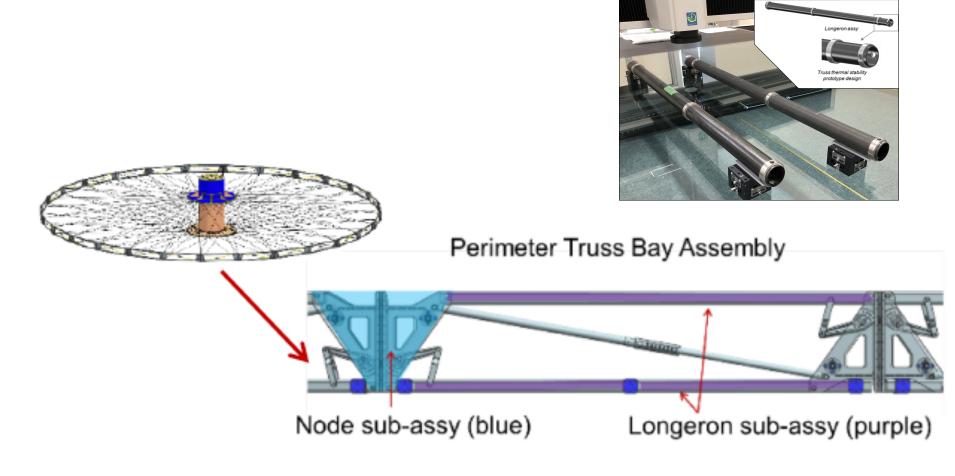
Full Scale Prototype Tested


 Inner disk deployment dimensional stability with thermal cycles and storage successfully demonstrated to +/- 300 μm



Starshade Shape Stability: critical components demonstrated

 On-orbit thermal stability on-orbit of petal critical dimensions demonstrated to +/- 80 μm through measurement and models

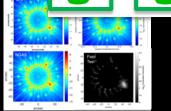


Starshade Shape Stability: critical components demonstrated

 Thermal stability on-orbit of critical parts of inner disk demonstrated to +/- 200 μm

Starshade Technology Gaps Scorecard

https://exoplanets.nasa.gov/exep/technology/starshade/


One milestone

remaining

(1) Starlight Suppression

Suppressing scatted light off petal edges from off-axis Sunlight (S-1)

Suppressing diffracted light from on-av starlight and optical modeling (S-2)

Remaining accuracy and stability milestones complete by 2023

Positioning the petals to high accuracy, blocking on-axis starlight, maintaining overall shape on a highly stable structure (S-5)

(3) Deployment Accuracy

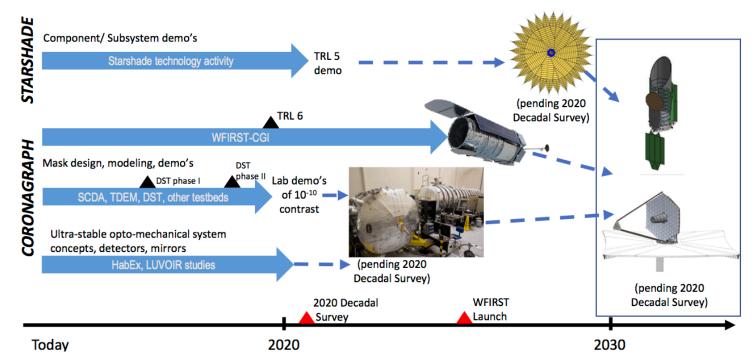
and Shape Stability

Sensing the lateral offset between the spacecraft (S-3)

(2) Formation Sensing

Fabricating the petals to high accuracy (S-4)

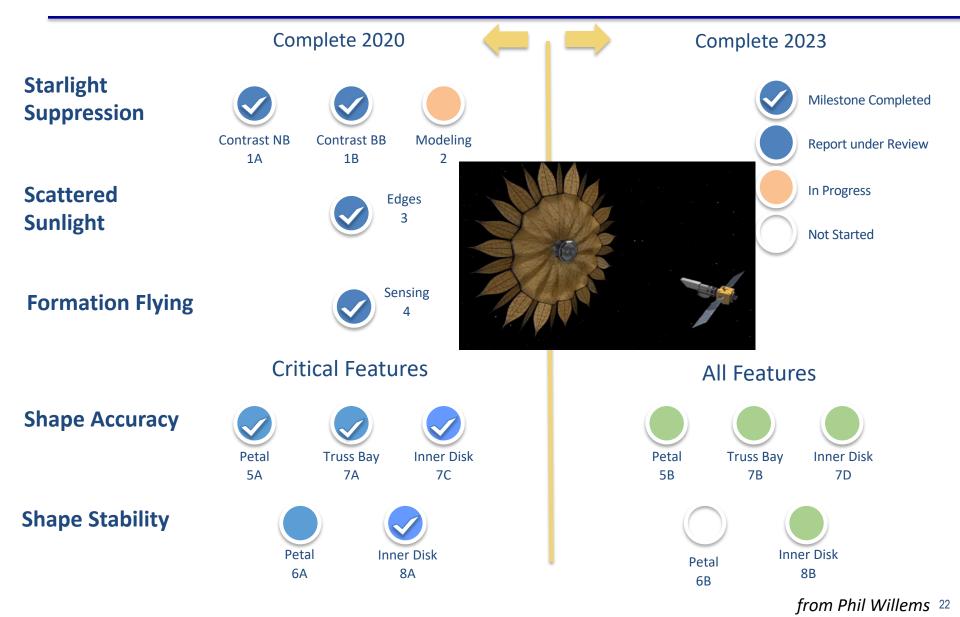
Looking ahead..



- SAT Results coming:
 - Final Reports on Polarization, MEMS DMs
 - Lab Coronagraph demonstrations of PIAACMC, Vortex, HLC
 - Further upgrades to DST segmented pupil, EMCCD
- Starshade work continues: subscale optical demos, deployment shape and stability demos
- Segmented Coronagraph Design and Analysis: telescope tolerancing results
- Roman/CGI: Zernike Wavefront Sensor and Multi-Star Wavefront Control masks in spare slots
- Extreme Precision Radial Velocity solicitation coming in August
- Astro2020 coming 2021

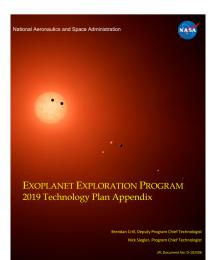
Want to get involved?

- Please contact me
- in July or August 2020, I plan to offer a 1-hour ExEP Technology Primer briefing: a deeper dive into our technology activities
 - look for an email on ExoPAGannounce



BACKUP

Starshade Technology Activity (S5) Technology Milestones Scorecard


Technology Gap List

Astrophysics Technology Gap List

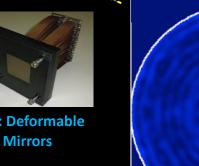
- Technology gaps for all three NASA Astrophysics Division (APD)'s programs
- Database of technology activities:
 - o http://astrostrategictech.us/
- Update coming in 2021, post-decadal

Exoplanet Technology Gap List

- Subset of APD gap list corresponding to exoplanet science:
 - o <u>https://exoplanets.nasa.gov/exep/technology/gap-lists/</u>

V-NIR Coronagraph/Telescope Technology Gaps

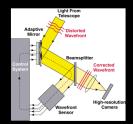
Contrast



CG-2: Coronagraph Architecture

CG-3: Deformable

CG-4: Data **Post-Processing**

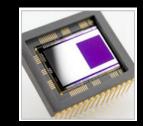


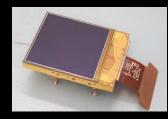
CG-1: Large Monolith Mirrors

> **CG-1: Segmented** Mirrors

Contrast Stability

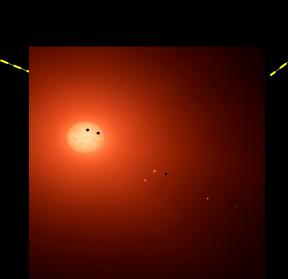
CG-5: Wavefront Sensing and Control




CG-6: Mirror Segment Phasing

CG-7: Telescope Vibration Sensing and Control or Reduction

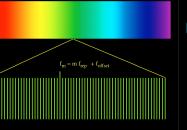
Detection Sensitivity

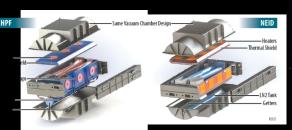

Ultra-low Noise Visible (CG-8) and Infrared (CG-9) Detectors

Other Technology Gaps

UV Contrast

CG-10 UV/V/NIR Mirror Coatings

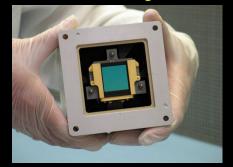

UV Detection Sensitivity



CG-12: Ultra-low Noise UV Detectors

Stellar Reflex Motion Sensitivity

M-2: Laser Frequency Combs for Space-based EPRV



M-1: Ground-based Ultra-high Precision Radial Velocity

M-3: Astrometry

Transit Spectroscopy Sensitivity

M-4: Ultra-stable Mid-IR Detectors for Transit Spectroscopy