

# Micro-arcsecond Astrometry Small Satellite (MASS)

#### **To Discover and Measure Masses of Nearby Earth-like Exoplanets**

#### M. Shao (JPL), B. Nemati (UAH)

#### CL# 19-8215

© 2020 California Institute of Technology. Government sponsorship acknowledged.

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech

## How Can We Search for Exo-Earths around Nearby Stars?

- Radial Velocity Limitations:
  - Sensitive to small orbital radius
  - Also has  $(M \cdot \sin i)$  ambiguity
- Transit technique Limitations:
  - Sensitive to smaller orbital radius
  - Favorable planet orbit inclination

# • Astrometry more sensitive to large orbital radius



#### **MASS Overview**

- Goal is ~4uas (1 hr) astrometric precision
- Would enable a search for Earth mass planets
  - around ~20 'nearest' FGK stars for
    - ~ 5×1  $M_{\oplus}$  and
    - ~  $12 \times 2 M_{\oplus}$ planets in the mid Habitable Zone.
- Potential low cost possible taking advantage of low cost mass produced commercial Spacecraft.





| чтр    | Name    | Depth, | V   | Spect. | Dist., | signature | Ref   | hours to    | cumul. |
|--------|---------|--------|-----|--------|--------|-----------|-------|-------------|--------|
| 1111   |         | ME     | mag | Туре   | pc     | μas       | Stars | SNR=6       | hours  |
| 71683  | α Cen A | 1      | 0.0 | G2V    | 1.3    | 2.42      | 1228  | 59          | 59     |
| 71681  | α Cen B | 1      | 1.4 | K1V    | 1.3    | 1.71      | 1228  | 121         | 180    |
| 2021   | β Ηγί   | 1      | 2.8 | G2IV   | 7.5    | 0.55      | 105   | <b>9</b> 57 | 1136   |
| 3821   | η Cas   | 1      | 3.5 | G0V    | 6.0    | 0.53      | 488   | 1530        | 2667   |
| 77952  | β TrA   | 1      | 2.8 | F1V    | 12.3   | 0.44      | 999   | 1511        | 4178   |
| 99240  | δ Pav   | 2      | 3.6 | G8IV   | 6.1    | 0.99      | 119   | 444         | 4622   |
| 22449  | π3 Ori  | 2      | 3.2 | F6V    | 8.0    | 0.98      | 139   | 543         | 5164   |
| 27072  | γ Lep   | 2      | 3.6 | F6V    | 9.0    | 0.84      | 127   | 602         | 5766   |
| 746    | β Cas   | 2      | 2.3 | F2III  | 16.7   | 0.87      | 372   | 703         | 6469   |
| 96100  | σ Dra   | 2      | 4.7 | K0V    | 5.8    | 0.79      | 133   | 1236        | 7705   |
| 14632  | ι Per   | 2      | 4.1 | G0V    | 10.5   | 0.69      | 231   | 1377        | 9081   |
| 12777  | θ Per   | 2      | 4.1 | F8V    | 11.2   | 0.67      | 328   | 1591        | 10673  |
| 19849  | 40 Eri  | 2      | 4.4 | K1V    | 5.0    | 0.89      | 77    | 1652        | 12325  |
| 105858 | γ Pav   | 2      | 4.2 | F9V    | 9.2    | 0.72      | 94    | 1701        | 14026  |
| 8102   | τ Ceti  | 2      | 3.5 | G8V    | 3.6    | 1.31      | 28    | 1715        | 15741  |
| 108870 | ε Ind   | 2      | 4.7 | K5V    | 3.6    | 0.96      | 65    | 1950        | 17691  |
| 1599   | ζTuc    | 3      | 4.2 | G0V    | 8.6    | 1.10      | 68    | 1238        | 18929  |
| 78072  | γ Ser   | 3      | 3.9 | F6V    | 11.1   | 1.07      | 62    | 1340        | 20269  |
| 57757  | βVir    | 3      | 3.6 | F9V    | 10.9   | 1.14      | 41    | 1453        | 21722  |
| 64924  | 61 Vir  | 3      | 4.7 | G7V    | 8.5    | 0.97      | 121   | 1661        | 23383  |
| 15510  | e Eri   | 3      | 4.3 | G6V    | 6.1    | 1.28      | 51    | 1961        | 25344  |
| 64394  | β Com   | 3      | 4.2 | G0V    | 9.2    | 1.06      | 31    | 3419        | 28763  |

#### **MASS Flight System Basic Elements**

**MASS Flight System Context** 



#### MASS Flight System Preliminary Design

## **MASS Telescope & Focal Plane**

- Telescope: corrected RC
  - Modified version of the AOS AP-35
    - 35cm Telescope
    - > 0.5 deg FOV
    - Nyquist-sampled Focal Plane
    - SiC OTA



#### • Focal Plane: next gen sCMOS

- SONY IMX 411 large format sensor
  - 150 Mpix (14,208 x 10,656 pixels)
    - Pixel size 3.76 um
  - Backside illuminated
    - cover glass removed
  - ~90% peak QE
  - 1.5 e- Read noise
  - 40 ke- full well, 2 Hz full frame rate



#### Spacecraft

#### • Commercial ESPA class spacecraft from Blue Canyon



Similar to the S5 mission: ESPA using cubesat parts





#### **Sun-Synchronous Orbit Operational Concept**



## Single-Digit µas Astrometry

- $\lambda$ /D for a 35cm telescope ~ 0.35 arcsec
- 10uas  $\rightarrow$  centroiding to 1 part in 30,000.
- 3 major noise/error sources
  - 1. Photon noise (of ref stars)
    - Use wide FOV
  - 2. Optical distortion
    - Use crowded field of stars to calibrate
      - High degree of thermal stability so distortion calibration needed < 1/day
      - Prefer GEO or HEO altitude
  - 3. Detector imperfections
    - Use laser fringes to calibrate Pixel positions





## SubPixel detector calibration, centroid to $10^{-5}\lambda/D$

log<sub>10</sub> Upsampled Filtered Image -0.5 10 -1 20 -1.5 metrology 30 -2 metrology light CCD block Y, pixel 2 x N Pol. Adj. laser -2.5 fiber oscillating -3 phase 50 matrix fiber fringes  $\delta \varphi$ function -3.5 shifter switch 60 generator  $\delta \varphi$ 70 -4.5 80 10 20 30 50 60 70 Irregularity in pixel location, ∆ X<sub>ma</sub> (pixel) Irregularity in pixel locations,  $\Delta Y_{m}$  (pixel) X. pixel Astrometric Error after Averaging 10 Placements x 10<sup>-5</sup> Y : σ = 8.4e-06 λ/D Error as fraction of  $\lambda$  / D X : σ = 9.7e-06 λ/D 0.5 0 -0.5 10 20 30 40 50 60 -1 2.5 3.5 0.5 1.5 2 3 Average Position of Image, pixels

#### Preliminary tests on a Larger sCMOS detector

- Last fiscal year we did conduct some tests on a larger format backside sCMOS detector.
  - The sensor was a 2K\*2K backside sCMOS with 11um pixels.
- We found two issues
  - Like many sCMOS sensors it had two A/D converters (one with a high gain amplifier for low level signals, one with low gain that provide a large full well)
  - In this case the two 11 bit A/D were blended in the camera electronics to produce a 16 bit output. There were photometric errors >> 0.1% in the blended output. Fortunately the very large format 150Mpix sCMOS sensor we plan to use for MASS has a single 16 bit A/D. (the 1st sCMOS to feature a 16bit A/D)
  - We also saw geometric errors in the pixel positions, the left/right halves of the sensor had slightly different pixel spacing. (diff by ~0.2% (11um vs 11.02um) This was a discontinuity in the slope (not the position) and even at 1/1000 pixel would be modeled with a low order polynomial (as field distortion)
  - But at 1e-4 pixel this has to be measured and explicitely.

#### New setup with MASS sensor



## **Optics Field Distortion**

- Optics field distortion has several sources
  - Perfectly fabricated optics will have distortion. (part of design)
  - Optics are not perfectly manufactured. (I/20 errors 1/f3) to be expected
  - Possible chromatic errors when lenses are used.
- All in modeling, found distortion of the design can be modeled to < 5uas with 9<sup>th</sup> order poly.

- Also we found that λ/20 optical figure errors are also well modeld by the 9<sup>th</sup> order poly. (optic closes to focal has the most beam walk)
  - Made errors ~2X worse with I/20
- Chromatic errors were dealt with by limiting spectrum to 500~750nm. And designing the system accordingly.
  - What matters is shift in position when star's temperature changes. (offsets don't matter because we're looking for periodic motion)



#### **Bright Stars (and detector saturation)**

- The closest stars are very bright. (Alp Cen is ~0 mag) and even though the CMOS detectors have much higher frame rates than CCDs, saturation is an issue.
- Our approach is to use a technique that has been used on HST and planned for WFIRST (WFI) perform astrometry on the diff spikes of very bright stars.
- The diffracting aperture is on the primary mirror (oversized from the physical spider support)
  - The % of light diffracted was increased to ensure that the its photon noise was smaller than photon noise from reference stars, for the dimest target star whose central peak was saturated.
- This will be simulated and tested in the lab.



All diff apertures (spider and secondary) on primary mirror slightly enlarged so there is no beam walk over the ~0.5 deg FOV

#### **Astrometric Error Budget**

4 uas astrometry of a bright target star against 11~16 mag reference stars
100~200 ref stars



- We simulated a thermal control system (for flight)
  - turned out to be very capable.
- SSO orbit was chosen
  - few eclipses
- Examined 1 orbit in SSO
  - heating by Earth changed
- Detector stable to < 0.5 mK
- Telescope optics and structure stable to ~ 10mK.
  - SiC structure
- Detector stable to < 5uas (over field)
- Distortion stable to < 5uas (over field)



| Temperatures in $^\circ \text{C}$ | РМ       | SM       | Optics 1 | Optics 2 | Optics 3 | Detector |
|-----------------------------------|----------|----------|----------|----------|----------|----------|
| Mean Temp                         | -10.5174 | -10.5011 | -6.9487  | -6.5735  | -6.3522  | -4.9996  |
| Maximum Temp                      | -10.3406 | -10.4907 | -6.9462  | -6.5717  | -6.3409  | -4.9993  |
| Minimum Temp                      | -10.6589 | -10.5059 | -6.9617  | -6.5832  | -6.3542  | -5.0000  |
| ∆T overall                        | 0.3183   | 0.0152   | 0.0155   | 0.0115   | 0.0133   | 0.0007   |



# **Spacecraft capabilities needed/Orbit etc**

- The focal plane can be read out quickly (compared to CCDs) but because its so large, it does take time. (3 hz). The spacecraft attitude has to be stable to < I/D on the time scale to read the array. (ideally 0.25~ 0.5 I/D)</li>
- JPL's Asteria achieved ( on a cubesat budget) the type of pointing stability we want.
  - This may require a separate ~6cm telescope with sCMOS focal plane as a fine guidance camera.
- Default SSO orbit. Thermal design to aim for 1 digit mK sensor stability and < 10 mK telescope thermal stability. (SiC telescope thermal stability is slightly better at low Temp (<200K), reducing heater power needed to maintain thermal stability.
  - Sufficient battery energy to maintain thermal control during eclipse of S/C in SSO orbit for part of the year.

# Commercial Space Industry has dramatically lowered the cost of ESPA class spacecraft

- Dozens of ESPA class S/C now orbit the earth providing Earth sensing data for Business/Industry. Many of these are "mass produced" in quantities ~10. Mostly they use cubesat parts. (some eg reaction wheels, scaled up for microsats)
  - Mass produced satellites with 30~35cm telescopes and CMOS focal planes can be below \$10M/each.
  - One of a kind science missions will be more expensive, but affordable
- Unlike traditional NASA and DoD missions, the spacecraft bus for commercial satellites are bid "fixed price". Major components such as small (30~35cm telescopes and CCD/CMOS focal planes are also bid fixed price).
  - Reducing the mission cost risk.
- Life time (on their website) advertised as ~5 yrs. (very different from "student cubesat" projects of 10yrs ago)
  - The very low cost of cubesat components, lets one think of redundant components (eg reaction wheels, star trackers, solar panels) to ensure 3~5 yr mission life.
- BUT the cost of these commercial missions are NOT in the NASA/DoD data base. (in some cases historical costs are proprietary, (bid fixed price), NASA Centers and NASA costing may or may not accept these low costs.

# **Exoplanet Science / Mission Cost**

- 5 nearby stars down to 1 Mearth in 1 AU equiv orbit
- ~20 stars down to 2 Mearth in 1 AU equiv orbit
- JPL Team X costing exercise
  - ~3 cost numbers
    - Grass roots (based on ROM quotes)
      - ~ \$24M (all costs include 30% reserve)
    - 50% cost (based on historical data)
      - ~ \$40M
    - 70% cost
      - ~ \$44M: 70% prob mission will be completed within this cost

| ١ | цпр    | Name             | Depth, | V   | Spect. | Dist., | signature | Ref   | hours to | cumul. |
|---|--------|------------------|--------|-----|--------|--------|-----------|-------|----------|--------|
| l | THE    | INAILIC          | ME     | mag | Туре   | pc     | μas       | Stars | SNR=6    | hours  |
| L | 71683  | α Cen A          | 1      | 0.0 | G2V    | 1.3    | 2.42      | 1228  | 59       | 59     |
| L | 71681  | $\alpha  Cen  B$ | 1      | 1.4 | K1V    | 1.3    | 1.71      | 1228  | 121      | 180    |
| L | 2021   | β Hyi            | 1      | 2.8 | G2IV   | 7.5    | 0.55      | 105   | 957      | 1136   |
| L | 3821   | η Cas            | 1      | 3.5 | G0V    | 6.0    | 0.53      | 488   | 1530     | 2667   |
| L | 77952  | βTrA             | 1      | 2.8 | F1V    | 12.3   | 0.44      | 999   | 1511     | 4178   |
| L | 99240  | δ Pav            | 2      | 3.6 | G8IV   | 6.1    | 0.99      | 119   | 444      | 4622   |
| l | 22449  | π3 Ori           | 2      | 3.2 | F6V    | 8.0    | 0.98      | 139   | 543      | 5164   |
| l | 27072  | γ Lep            | 2      | 3.6 | F6V    | 9.0    | 0.84      | 127   | 602      | 5766   |
| l | 746    | β Cas            | 2      | 2.3 | F2III  | 16.7   | 0.87      | 372   | 703      | 6469   |
| l | 96100  | σ Dra            | 2      | 4.7 | K0V    | 5.8    | 0.79      | 133   | 1236     | 7705   |
| l | 14632  | ι Per            | 2      | 4.1 | G0V    | 10.5   | 0.69      | 231   | 1377     | 9081   |
| l | 12777  | θ Per            | 2      | 4.1 | F8V    | 11.2   | 0.67      | 328   | 1591     | 10673  |
| l | 19849  | 40 Eri           | 2      | 4.4 | K1V    | 5.0    | 0.89      | 77    | 1652     | 12325  |
| l | 105858 | γ Pav            | 2      | 4.2 | F9V    | 9.2    | 0.72      | 94    | 1701     | 14026  |
| l | 8102   | τ Ceti           | 2      | 3.5 | G8V    | 3.6    | 1.31      | 28    | 1715     | 15741  |
| l | 108870 | ε Ind            | 2      | 4.7 | K5V    | 3.6    | 0.96      | 65    | 1950     | 17691  |
| l | 1599   | ζTuc             | 3      | 4.2 | G0V    | 8.6    | 1.10      | 68    | 1238     | 18929  |
| l | 78072  | γ Ser            | 3      | 3.9 | F6V    | 11.1   | 1.07      | 62    | 1340     | 20269  |
| l | 57757  | βVir             | 3      | 3.6 | F9V    | 10.9   | 1.14      | 41    | 1453     | 21722  |
|   | 64924  | 61 Vir           | 3      | 4.7 | G7V    | 8.5    | 0.97      | 121   | 1661     | 23383  |
|   | 15510  | e Eri            | 3      | 4.3 | G6V    | 6.1    | 1.28      | 51    | 1961     | 25344  |
|   | 64394  | β Com            | 3      | 4.2 | G0V    | 9.2    | 1.06      | 31    | 3419     | 28763  |