Detecting and Characterizing Terrestrial Atmospheres in the TRAPPIST-1 System with JWST

Jacob Lustig-Yaeger

Victoria Meadows & Andrew Lincowski

Astronomy & Astrobiology, University of Washington

Virtual Planetary Laboratory

Image credit: NASA

The TRAPPIST-1 System is Observationally Favorable and a High Priority Target for JWST

- Seven known Earth-sized planets (Gillon et al. 2016; 2017; Luger et al. 2017)
- Transiting a small (0.12 $\rm R_{\odot}$) and cool (2500 K) late M dwarf (Van Grootel et al. 2018)
- Only 12.2 pc away
- Planets unlikely to have low mean molecular weight atmospheres (de Wit et al. 2016; 2018; Moran et al. 2018)

Terrestrial Exoplanet Characterization Big Picture Questions:

Terrestrial Exoplanet Characterization Big Picture Questions:

1. Does the planet have an atmosphere?

Terrestrial Exoplanet Characterization N₂ Big Picture Questions: co₂

- 1. Does the planet have an atmosphere?
- 2. What is the nature of the atmosphere?

liquid **Terrestrial Exoplanet Characterization** N_2 water **Big Picture Questions:** CO N_2 1. Does the planet have an liquid CO_2 atmosphere? water H_2O 2. What is the nature of the CO_2 atmosphere? N_2 3. Is the planet habitable? H_2O

liquid

water

 N_2

 CO_2

 N_2

Terrestrial Exoplanet Characterization N₂ Big Picture Questions: co₂

- 1. Does the planet have an atmosphere?
- 2. What is the nature of the atmosphere?
- 3. Is the planet habitable?
- 4. Does the planet have signs of life?

Observational tools for detecting and characterizing exoplanet atmospheres with JWST

- Transmission spectroscopy/photometry
- Eclipse spectroscopy/photometry
- {Thermal Phase curves, eclipse mapping, MIRI direct imaging, planetplanet occultations}

10/100 bar O₂-dominated desiccated

<u>Trace gasses</u>: 0.05 bar CO₂

10/100 bar O₂-dominated outgassing Earth geological

<u>fluxes</u>: H₂O, CO₂, SO₂, OCS, H₂S

10/100 bar O₂-dominated desiccated

<u>Trace gasses</u>: 0.05 bar CO₂

10/100 bar O₂-dominated outgassing

Earth geological <u>fluxes</u>: H₂O, CO₂, SO₂, OCS, H₂S

Earth geological <u>fluxes:</u> CO₂, SO₂, OCS, H₂S, CH₄

10/100 bar O₂-dominated desiccated

<u>Trace gasses</u>: 0.05 bar CO₂

10/100 bar O₂-dominated outgassing

<u>Earth geological</u> <u>fluxes</u>: H₂O, CO₂, SO₂, OCS, H₂S

1 bar N₂-dominated aqua planet

Earth geological <u>fluxes:</u> CO₂, SO₂, OCS, H₂S, CH₄

Venus-like CO₂-dominated <u>Venus-derived</u> <u>atmosphere</u>: 28 ppm SO₂ 30 ppm H₂O OCS, et al.

10/100 bar O₂-dominated desiccated

Trace gasses: 0.05 bar CO₂

10/100 bar O₂-dominated outgassing

<u>Earth geological</u> <u>fluxes</u>: H₂O, CO₂, SO₂, OCS, H₂S

1 bar N₂-dominated aqua planet

Earth geological <u>fluxes:</u> CO₂, SO₂, OCS, H₂S, CH₄

10/92 bar Venus-like CO₂-dominated <u>Venus-derived</u> <u>atmosphere</u>: 28 ppm SO₂ 30 ppm H₂O OCS, et al.

Recent ocean-loss

More outgassing over time

Can JWST tell if the TRAPPIST-1 planets have *atmospheres*?

e.g. Morley et al. (2017) Lustig-Yaeger et al. (2019)

e.g. Morley et al. (2017) Lustig-Yaeger et al. (2019)

e.g. Morley et al. (2017) Lustig-Yaeger et al. (2019)

e.g. Morley et al. (2017) Lustig-Yaeger et al. (2019)

e.g. Morley et al. (2017) Lustig-Yaeger et al. (2019)

e.g. Morley et al. (2017) Lustig-Yaeger et al. (2019)

e.g. Morley et al. (2017) Lustig-Yaeger et al. (2019)

e.g. Morley et al. (2017) Lustig-Yaeger et al. (2019)

Atmospheres

 Atmospheric detectability is driven by common CO₂ absorption

- Atmospheric detectability is driven by common CO₂ absorption
- NIRSpec Prism with partial saturation (Batalha et al. 2018) is optimal

- Atmospheric detectability is driven by common CO₂ absorption
- NIRSpec Prism with partial saturation (Batalha et al. 2018) is optimal
- Nominal NIRSpec Prism sub512s and NIRSpec G395 are comparable

Type of Atmosphere	- H2 -		—	—	13	—	—	—	
	1 bai 1040y -		_	_	23	—	—	_	
	~~ c0 ² -	2	4	2	7	7	7	7	
	10 Day -	2	4	2	8	7	7	7	
	02 Dar		18	15	30	12	9	8	
	10 bai Vents -		22	24	31	12	11	8	
	92 bat sains -	2	3	2	10	9	10	9	
	10 1000 -	2	4	2	7	5	4	4	
	100 12820 -	2	3	2	8	6	6	5	
	10 destor	2	4	2	11	9	8	6	
	100 Besich	v'	C	ہ TRA	° PPIS	<u></u> Т-1	ŝ	\$	

• Detect thick terrestrial atmospheres in roughly 2-10 transits *for all of the TRAPPIST-1 planets*

- Detect thick terrestrial atmospheres in roughly 2-10 transits *for all of the TRAPPIST-1 planets*
- Up to 30 transits may be required to detect atmospheres if they have clouds

- Detect thick terrestrial atmospheres in roughly 2-10 transits *for all of the TRAPPIST-1 planets*
- Up to 30 transits may be required to detect atmospheres if they have clouds

Detecting Atmospheres in Transmission should be much easier than Emission

TRAPPIST-1d: 10 bar CO₂ atmosphere

TRAPPIST-1e: 10 bar CO₂ atmosphere

Can JWST investigate the *nature* of the TRAPPIST-1 planet atmospheres?

Lustig-Yaeger et al. (2019)

 O_2-O_2 CIA can be used to discriminate between an O_2 -dominated and a CO_2 -dominated atmosphere

Lustig-Yaeger et al. (2019)

 O_2-O_2 CIA can be used to discriminate between an O_2 -dominated and a CO_2 -dominated atmosphere

Lustig-Yaeger et al. (2019)

 O_2-O_2 CIA can be used to discriminate between an O_2 -dominated and a CO_2 -dominated atmosphere

Lustig-Yaeger et al. (2019)

Lustig-Yaeger et al. (2019)

Lustig-Yaeger et al. (2019)

Lincowski, Lustig-Yaeger, & Meadows (2019)

Lincowski, Lustig-Yaeger, & Meadows (2019)

HDO bands at 2.4 and 3.7 μm have a nonnegligible effect on the observable spectrum

Lincowski, Lustig-Yaeger, & Meadows (2019)

Lincowski, Lustig-Yaeger, & Meadows (2019)

Detecting water in a habitable atmosphere

Lustig-Yaeger et al. (2019)

Detecting water in a habitable atmosphere

Lustig-Yaeger et al. (2019)

Detecting water in a habitable atmosphere may be difficult

Lustig-Yaeger et al. (2019)

Detecting water in a habitable atmosphere may be difficult, and will depend on clouds

Lustig-Yaeger et al. (2019)

Detecting water in a habitable atmosphere may be difficult, and will depend on clouds

Lustig-Yaeger et al. (2019)

Detecting Modern Earth levels of O₂

Lustig-Yaeger et al. (2019)

Detecting Modern Earth levels of O₂

Lustig-Yaeger et al. (2019)

Detecting Modern Earth levels of O₂ may be infeasible

300 transits are needed to reveal 20% O_2 in a 1 bar N_2 dominated atmosphere

Lustig-Yaeger et al. (2019)

Conclusions

- JWST should be able to detect different plausible terrestrial atmospheres for all of the TRAPPIST-1 planets in about 10 transits, but up to 30 transits may be required if clouds are present
- CO₂ is a strong spectroscopic indicator of a terrestrial atmosphere, but a weak discriminator between atmospheric compositions
- H₂O as a weak indicator of habitability may be detectable for TRAPPIST-1e if the terminator has << 100% cloud coverage
- O₂ as a biosignature is unlikely to be detectable with JWST, but O₄ (O₂-O₂ CIA) may be detectable and would indicate an O₂-dominated post-ocean-loss atmosphere

Detecting and Characterizing Terrestrial Atmospheres in the TRAPPIST-1 System with JWST

Jacob Lustig-Yaeger

Victoria Meadows & Andrew Lincowski

Astronomy & Astrobiology, University of Washington

Virtual Planetary Laboratory

Image credit: NASA

Detecting Atmospheres: Photometry vs. Spectroscopy

Do airless planets have featureless secondary eclipse spectra?

Approach: Transmission vs Emission for JWST observations of the TRAPPIST-1 planets

Approach: Transmission vs Emission for JWST observations of the TRAPPIST-1 planets

Approach: Transmission vs Emission for JWST observations of the TRAPPIST-1 planets

T-1b Emission : Detect Features with $\langle SNR \rangle = 5.0$											
at COr	- >100	>100	>100	>100	>100	29	>100	>100	>100	>100	>100
10 De 003	- >100	>100	>100	>100	>100	30	>100	>100	>100	>100	>100
02 Dr O2	- >100	>100	>100	>100	>100	27	>100	>100	>100	>100	>100
Other Or	- >100	>100	>100	>100	>100	47	>100	>100	>100	>100	>100
10 other Or 10 bar or	- >100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
dest Or de la cated	- >100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
The desite	522 ^{W2} 10 E	AAAM ec	alaphine C	2255th oc	23G5H AIR	LRS bot	in 156 rubs	jip96 ms	Joj 2 Mari	103125 N.116	^{fonb} o
AIRCAR AIRSON AIRSON AIRSON AIRSON AIRSON STATES OF STATES OF THE PROPERTIES OF THE											
Alt Ar Albert											
← JWST Instruments/Modes − →											

Atmospheres -

T-1b Emission : Detect Features with $\langle SNR \rangle = 5.0$											
at CO2	- >100	>100	>100	>100	>100	29	>100	>100	>100	>100	>100
10.005 10.005	- >100	>100	>100	>100	>100	30	>100	>100	>100	>100	>100
02 Dr O2	- >100	>100	>100	>100	>100	27	>100	>100	>100	>100	>100
O Date Or	- >100	>100	>100	>100	>100	47	>100	>100	>100	>100	>100
10 otto Or 10 baiccated	- >100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
baicated	- >100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
10 desite 322 N2 EAAN CLAPH CRAPH CR											
NRCant NRCan ARSpec ARSpec Masses Sossant ARSpec Prisman and Arter											
JWST Instruments/Modes											

- Atmospheres -

