Observing Small Planets with JWST: Capabilities and Challenges

Natasha Batalha - ExoPAG

Capabilities and Challenges:

Attaining high precision Detecting molecules Constraining composition

It is still possible to improve read out speeds in Cycle >1!

Batalha+ApJL 2018

It is still possible to improve read out speeds in Cycle >1!

Batalha+ApJL 2018

It is still possible to improve read out speeds in Cycle >1!

Batalha+ApJL 2018

NIRCam DHS could improve 1-2.22 µm efficiency on bright targets

NIRCam DHS could improve 1-2.22 µm efficiency on bright targets

High precision spectroscopy

Challenges

Attaining highest precision possible. Need to ensure DHS and faster readout mode in Cycle 2

High precision spectroscopy

What could we do with this precision??

Challenges

Attaining highest precision possible. Need to ensure DHS and faster readout mode in Cycle 2

Brief look at NIRSpec Prism TRAPPIST-1 in transmission.. More to come next with real models!

Wavelength (µm)

Brief look at NIRSpec Prism TRAPPIST-1 in transmission.. More to come next with real models!

- Temperature errors: **±75** K
- Mixing ratio errors:
 - ± 0.5 dex (best case)
 - ± 1 dex (most likely)
 - ± 2 dex (cloud coverage)

CO₂-rich

N₂-rich

Brief look at NIRSpec Prism TRAPPIST-1 in transmission.. More to come next with real models!

Always detect the dominant absorber!

Brief look at MIRI LRS TRAPPIST-1 in emission.. More to come next with real models!

Molecular detections are very difficult

High precision spectroscopy

Ability to detect dominant absorber

Challenges

Attaining highest precision possible. Need to ensure DHS and faster readout mode in Cycle 2

Emission and trace gasses

High precision spectroscopy

Ability to detect dominant absorber

Challenges

Attaining highest precision possible. Need to ensure DHS and faster readout mode in Cycle 2

Emission and trace gasses

What could impede robust constraints on dominant absorber?

Mass composition degeneracies exist

N. Batalha, E. Kempton, et al 2017 ApJL

No mass constraints impede our ability to robustly determine

N. Batalha, T. Lewis, J. Fortney, N. Batalha, E. Kempton, et al submission T-1 week

High precision spectroscopy

Ability to detect (sometimes constrain) dominant absorber

Simultaneous extreme precision RV

Challenges

Attaining highest precision possible. Need to ensure DHS and faster readout mode in Cycle 2

Emission and trace gasses

Need mass to get robust atmospheric composition