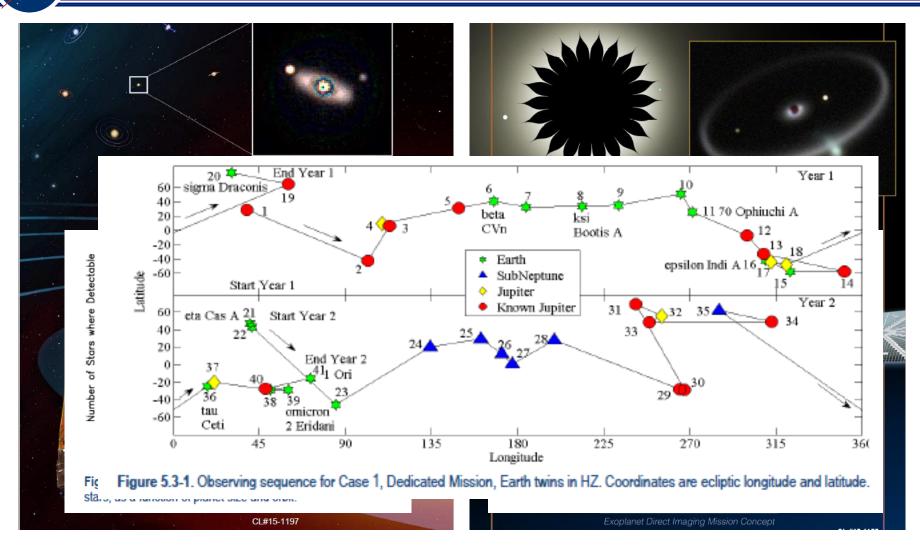


ExoPlanet Exploration Program

ExEP Yield Modeling with EXOSIMS


Dr. Rhonda Morgan Jet Propulsion Laboratory, California Institute of Technology

June 13, 2016

© 2016 California Institute of Technology. Government sponsorship acknowledged.

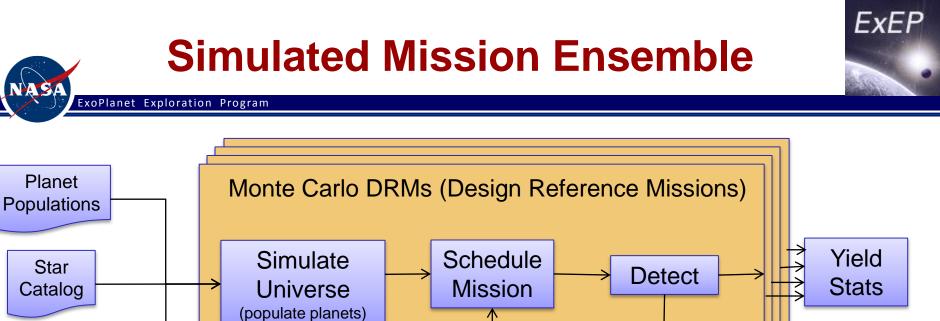
Exoplanet Probe Studies

ExoPlanet Exploration Program

ExEP

- The Decadal concept studies include two studies featuring exoplanet science. In light of this, the Exoplanet Exploration Program Office commissioned the development of a yield model to be the standard measure of performance for work within the Exoplanet Program
 - The yield model will be open source and distributable for use by the community
- APD is chartering a Standards Definition and Evaluation Team to provide **transparent**, **common** exoplanet science yield estimates for Decadal missions and probes.
 - Standards team promotes **standard and consistent** definitions of inputs and outputs for purposes of yield comparison
 - Draft charter: https://exep.jpl.nasa.gov/reportsAndDocuments/

Objective:


 A tool capable of the consistent comparison of the science performance of the full range of expected exoplanet mission concepts for the next Decadal Survey

Coronagraph starshade segmented aperture filled aperture

2. Validate the tool in a transparent manner to enable confidence in the tool

<u>Approach</u>: Utilize, expand, and validate the EXOSIMS framework:

- Modular
- Open Source
- Legacy

Characterize

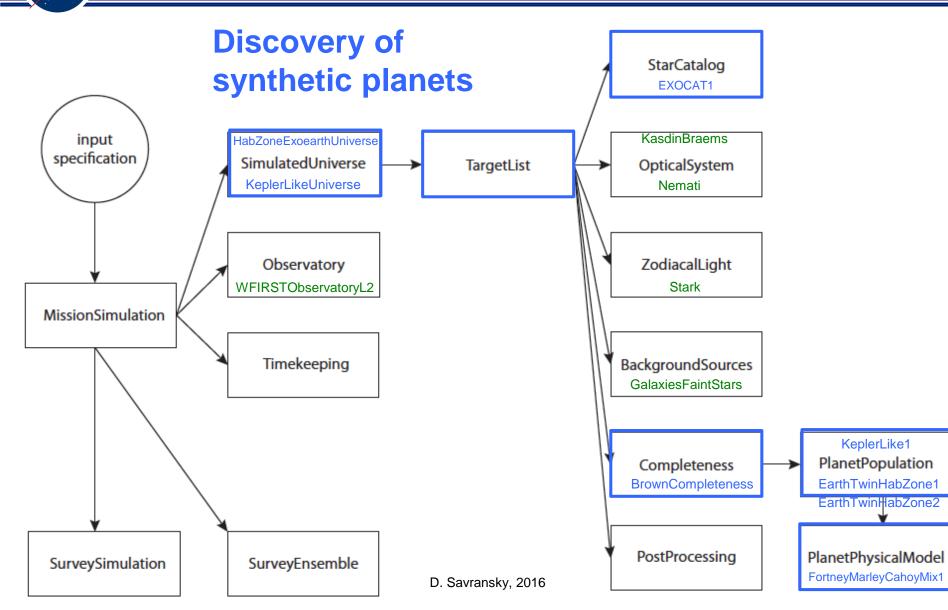
5

- Simulate a universe by sampling planet population distributions
- Schedule a mission using spacecraft and mission observing constraints ٠
 - Dynamically respond to detections

Planet

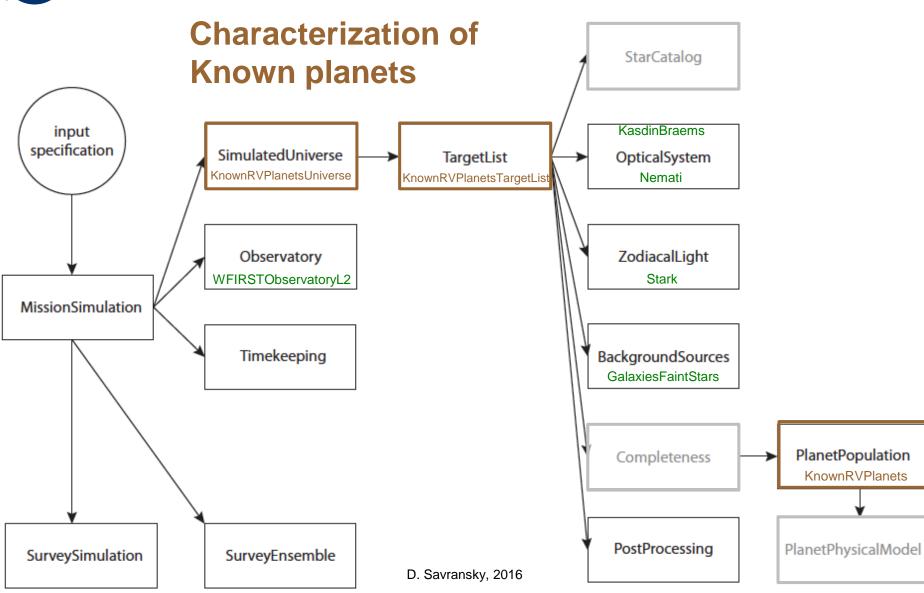
Star

Catalog


Instrument

Repeat with a new universe 1,000 times

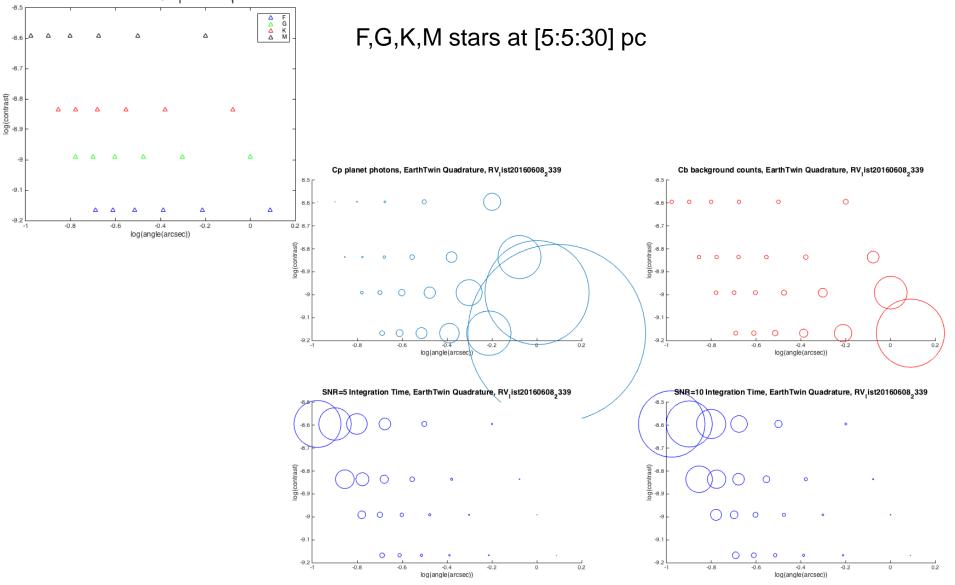
ExEP


ExoPlanet Exploration Program

NAS

ExEP

NAS



- Validate the science calculation
- Validate software function
 - 3150 lines of source code and 166 sub-functions
- 1. Unit Tests
 - Each sub-function of each module is tested
 - Write Python code to automatically verify expected values of test cases
 - Test code will be posted to github EXOSIMS repository
 - Unit tests are 75% complete.
 - Dozens of bugs identified and fixed
- 2. End-to-End Cross Validation
 - 1. Chris Stark's AYO code using standard inputs (ExoCat starlist, SAG13 occurrences) for Decadal Mission Concept Studies

Toy Universe for Point Checks

ExEP

EarthTwin Quadrature, RV, ist20160609, 205

Unit Testing is not Enough

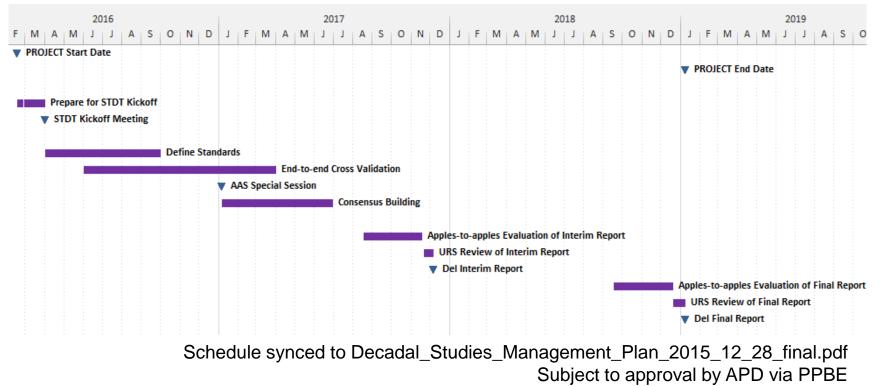
Yield Estimation for ExEP

- The Decadal concept studies include two studies featuring exoplanet science. In light of this, the Exoplanet Exploration Program Office commissioned the development of a yield model to be the standard measure of performance for work within the Exoplanet Program
 - The yield model will be open source and distributable for use by the community
- APD is chartering a Standards Definition and Evaluation Team to provide **transparent**, **common** exoplanet science yield estimates for Decadal missions and probes.
 - Standards team promotes standard and consistent definitions of inputs and outputs for purposes of yield comparison
 - Draft charter: https://exep.jpl.nasa.gov/reportsAndDocuments/

Exoplanet Standard Definitions and Evaluation Team

Team Member	Affiliation
Dr. Rhonda Morgan	Lead, NASA ExEP, JPL
Dr. Bruce Macintosh	Stanford University
Dr. Dmitry Savransky	Cornell University
Dr. Chris Stark	Space Telescope Science Inst.
Dr. Avi Mandell	NASA Goddard Space Flight Center
Dr. Ruslan Belikov	NASA Ames Research Center
Dr. John Krist	NASA Jet Propulsion Laboratory
STDT Liaisons	Study, Affiliation
Dr. Courtney Dressing	LUVOIR, California Institute of Technology
Dr. Karl Stapelfeldt	HabEx, NASA ExEP, JPL

- ExSDET will work with STDTs to adopt science metrics and common definitions and to iterate with the teams
- ExoTAC (Alan Boss, Chair) will perform independent review of the ExSDET deliverables, as they have for prior comparison studies


Deliverables

- Main deliverables
 - Interim Report apples-to-apples comparison
 - Final Report apples-to-apples comparison

- Enabling deliverables
 - Definition and Concurrence on
 - Inputs
 - Assumptions
 - Output Metrics

- Cross Validate EXOSIMS and AYO

Occurrence Inputs from SAG-13

ExoPlanet Exploration Program

NASA

List of final deliverables SAG-1 (end of 2016)

Proposed conventions for binning planet periods, sizes, and star temperatures (done)

- Living repository of occurrence rate datasets submitted by scientists (done)
- Code to visualize them and compute (first version done, evolving)
 - 3D matrix of SAG13 bin values representing a combination of all submissions [done, evolving]
 - 3D matricies showing variances and uncertainties in the values [done, evolving]
 - Some parameter related to eta Earth, but much simpler, e.g. eta [0.5-1.5] [237-860d] (or define actual eta. Earth in terms of a region in R, P, T space and compute that?)
 - Gamma Earth
- Analysis of variances and discrepancies between submissions, tracing the fundamental cause of each variance
- For regions where extrapolation is still necessary, recommended standard "pessimistic", "default", and "optimistic" assumptions for cases where an assumption has be made in mission studies.

With additional guidance for extrapolation to longer period, large radii planets

ExEP

Possible Metrics

Metrics should enable insight

ExoPlanet Exploration Program

Fidelity of Classes/Bins

- Metrics should be reported at the fidelity of
 - Planet class
 - Spectral type
 - Most likely in correspondence with the inputs, e.g. the SAG13 bins

Detection Statistics on a population:

• The widely used definition of Yield is

- Yield =
$$\eta \sum_{i}^{N} C_{i}$$

- We would like to provide additional information about the distribution of Probability of detection over the ensemble. Options include:
 - Providing Yield at the 95 percent confidence interval
 - $\sigma^2 = \sum_{i}^{N} \eta C_i (1 \eta C_i)$ variance of the Poisson Binomial distribution
 - Or a Poisson Binomial distribution histogram
 - And include the sample size (stars observed)
- Probability of Not detecting any planets (True Negative):

$$- P_{NOT_N} = (1 - \eta_E C_i) (1 - \eta_E C_j) \dots (1 - \eta_E C_N)$$

• The Probability of Detecting at least 1 planet is

$$P_{ATLEAST1} = 1 - P_{NOT_N}$$

• Yield with σ as a function of time (a plot), or in the first epoch, e.g. year.

Possible Metrics (cont.)

ExoPlanet Exploration Program

Characterization Metrics

- Number of planets characterized (to desired BW & SNR)
- Or the achieved SNR for key wavelengths for each planet
- The time resolution of spectral observations (e.g., # spectrally characterized as a function of integration time at some given wavelength, SNR, and R)
- Observing time spent on characterization
- The inclusion of revisits in the model can inform the probability of performing an orbital fit
 - Minimally, this metric is number of planets with orbital fits
 - Maximally, this metric address the goodness of fit as a function of number of revisits and epochs
 - Possibly how many detected planets' orbits can be constrained (e.g., # of planets detected > x times?)

Mission/Technology Figures of Merits

- Fraction of Time spent integrating on detection and on characterization
- Fuel use (for star shades)

BACKUP

17

Draft Input Parameter Request

ExoPlanet Exploration Program

ExEP Yield Input Parameters			
	Input	Default	Notes
Astrophysics			
type of planets		EarthTwin	uniform random, keplerLike, KnownRV
EarthTwin			
eta_earth		0.16	
planet radius		1 earth radius	
planet mass		1 earth mass	
geometric albedo		0.2	Lambert phase function is used
semi-major axis		[0.75, 1.5] AU	uniform random distribution
eccentricity		[0,0.35]	uniform random distribution
cos(inclination)		[-1, 1]	uniform random distribution
argument of perigree		[0, 360] degrees	uniform random distribution
ascension of the ascending node		[0, 360] degrees	uniform random distribution
Zodical Light model		Stark	local zodi, interpolates for longitude
exozodi mean and variance		22 mag/asec^2	no spatial variance. Variance is log normal star to star.

Telescope

- cicocope			
Diameter of pupil	study parm		
shape factor		pi/4	shapeFac * D^2 = Area
obscuration factor		0.2	due to spiders, secondary
throughput		0.57	Telescope only, not coronagraph
telescope keep out angle		45 degrees	sun avoidance
Detection lambda		550 nm	
detection bandwidth		0.2	delta_lambda/lambda
Spectra central lambda		550 nm	
spectral BW		R 70	
SNR detection		5	
SNR characterization		10	
limiting deltamagnitude		26	
minimum completeness		0.1	
integration time cutoff		30 days	maximum allowed integration time

integration time cuton	50 uays	maximum anowed integration time
Occulters		
Internal Coronagraph type	HLC	
IWA	2.5 lambda/D	
OWA	10 lambda/D	
Contrast		
Throughput for Coronagraph		
delta_mag limit	26	
DetectionTimeMultiplier	1	2 for polarizations, another 2 for RDI
CharacterizationTime Multiplier	1	2 for polarizations
Optical Overhead time	1 day	
starshade diameter tip to tip		
number of starshade distances		
starshade distance		km
starshade blue edge		nm
starshade red edge		nm

Detectors		
imaging or spectrometer		
dark current	0.00009 e-/s	defaults are for WFIRST EM-CCD
readNoise	3 e-	
exposure time per frame	1000 seconds	
QE	0.88	
R	70	
CIC	0.0013	
ENF	1.414	sqrt(2)
EM CCd gain	500	
Post Processing		

Post Processing			
post-processing contrast factor		1/10	input can be [0,1]. 1/10 and 1/30 are common
allowable false alarm probability		3.00E-05	
allowable missed detction probability		1.00E-03	

Mission			
mission lifetime		5 years	
fraction to exoplanets		0.5	
start date		January 1, 2036	
Observatory			
			after repointing, especially for occulter formation
settlingTime		1 day	flying
occulter slew thrust		450 mN	
occulter slew Isp		4160	specific impulse
occulter initial wet mass		6000 kg	
Telescope spacecraft mass		5800 kg	
occulter station keeping Isp		220	specific impulse
default burn portion for slew		0.05	

ExEP