

Technology Needs and Prioritization Process

Nick Siegler ExEP Program Chief Technologist Jet Propulsion Laboratory/Caltech

ExoPAG San Diego

06/12/16

Copyright 2016 California Institute of Technology. U.S. Government sponsorship acknowledged.

- 1. How ExEP Technology needs are identified and prioritized
- 2. Current technology needs

ExEP Technology Development Team

Nick Siegler Program Chief Technologist

Brendan Crill Technology Development Manager

David Breda TDEM Systems Engineer

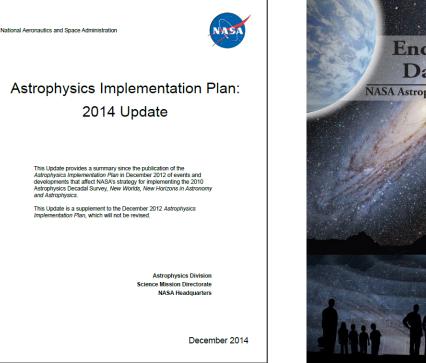
Rhonda Morgan Senior Optical Engineer

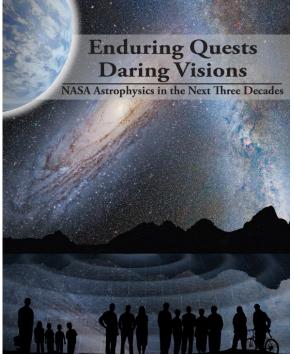
Stuart Shaklan SME for coronagraphs and starshades; task lead for the Segmented Coronagraph Design & Analysis

Hong Tang HCIT Manager

Karl Stapelfeldt Program Chief Scientist

Doug Hudgins Program Scientist


How Technology Needs are Identified and Prioritized

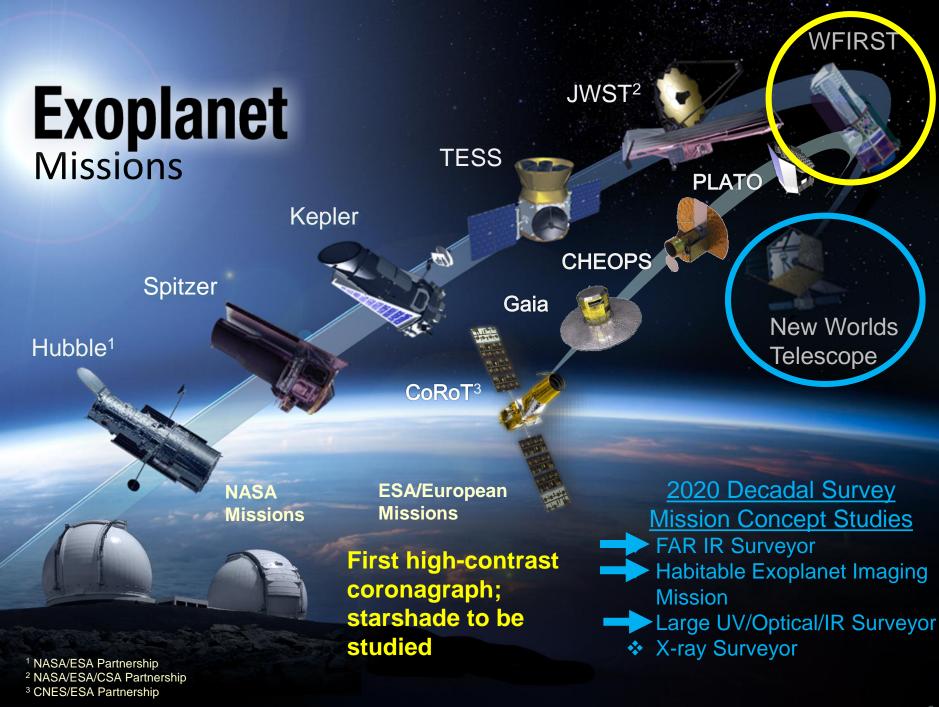

Driving Documents

Exoplanet Exploration Program

- Confirms WFIRST as #1 Division priority after JWST
- Commissions Exo-C and Exo-S probe-class studies

- LUVOIR Surveyor
- Far-IR Surveyor
- X-Ray Surveyor
- Earth Mapper (interferometer)

 #1 large-scale recommendation: WFIRST


NATIONAL RESEARCH COUNCIL

New Worlds,

New Horizons

in Astronomy and Astrophysics

 #1 medium-scale recommendation:
 Preparation for a planet imaging mission (HabEx)

Enabling the science capability to directly image and spectrally characterize exo-Earths in the HZ and beyond of Sun-like stars .

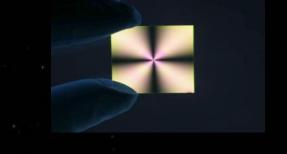
 most other valuable exoplanet science goals can be achieved along the way (study of larger planets, disk science, planetary orbits, etc)

ExEP Technology Gap Lists

Enabling Technologies Only

Starshade Technology Gap List

Table A.4 Starshade Technology Gap List


ID	Title	Description	Current	Required
S-1	Control Edge- Scattered Sunlight	Limit edge-scattered sunlight with optical petal edges that also handle stowed bending strain.	Graphite edges meet all specs except sharpness, with edge radius ≥10 µm.	Optical petal edges manufactured of high flexural strength material with edge radius ≤ 1 µm and reflectivity ≤ 10%.
S-2	Contrast Performance Demonstration ar Optical Model Validation	Experimentally validate the equations that predict the contrasts achievable with a starshade.	Experiments have validated optical diffraction models at Fresnel number of ~500 to contrasts of 3×10 ⁻¹⁰ at 632 nm.	Experimentally validate models of starlight suppression to $\leq 3 \times 10^{-11}$ at Fresnel numbers ≤ 50 over 510- 825 nm bandpass.
S-3	Lateral Formation Flying Sensing Accuracy	Demonstrate lateral formation flying sensing accuracy consistent with keeping telescope in starshade's dark shadow.	Centroid accuracy ≥ 1% is common. Simulations have shown that sensing and GN&C is tractable, though sensing demonstration of lateral control has not yet been performed.	Demonstrate sensing lateral errors \$ 0.20m at scaled flight separations and estimated centroid positions \$ 0.3% of optical resolution. Control algorithms demonstrated with lateral control errors \$ 1m.
S-4	Flight-Like Petal Fabrication and Deployment	Demonstrate a high- fidelity, flight-like starshade petal and its unfurling mechanism.	Prototype petal that meets optical edge position tolerances has been demonstrated.	Demonstrate a fully integrated petal, including blankets, edges, and deployment control interfaces. Demonstrate a flight-like unfurling mechanism.
S-5	Inner Disk Deployment	Demonstrate that a starshade can be autonomously deployed to within the budgeted tolerances.	Demonstrated deployment tolerances with 12m heritage Astromesh antenna with four petals, no blankets, no outrigger struts, and no launch restraint.	Demonstrate deployment tolerances with flight-like minimum half-scale inner disk, with simulated petals, blankets, and interfaces to launch restraint.

Catheron remove of Samelogy

EXOPLANET EXPLORATION PROGRAM Technology Plan Appendix 2016

Nick Singler NASA Excelanet Exploration Program Chief Technologist Jet Propulsion Laboratory, California Institute of Technology

Coronagraph/Telescope Technology Gap List

ID	Title	Description	Current	Required		
C-1	Specialized Coronagraph Optics	Masks, apodizers, or beam-shaping optics to provide starlight suppression and planet detection capability.	A linear mask design has yielded 3.2×10 ⁻¹⁰ mean raw contrast from 3–16 J/D with 10% bandwidth using an unobscured pupil in a static lab demonstration.	Circularly symmetric masks achieving ≤ 1×10 ⁻¹⁶ contrast with IWA ≤ 3λ/D and ≥ 10% bandwidth on obscured or segmented pupils.		
C-2*	Low-Order Wavefront Sensing & Control	Beam jitter and slowly varying large-scale (low- order) optical aberrations may obscure the detection of an exoplanet.	Tip/tilt errors have been sensed and corrected in a stable vacuum environment with a stability of $10^{-3}\lambda$ rms at sub-Hz frequencies.	Tip/tilt, focus, astigmatism, and coma sensed and corrected simultaneously to $10^{4} \lambda$ (-10° s of pm) rms to maintain raw contrasts of $\leq 1 \times 10^{-10}$ in a simulated dynamic testing environment		
0-3*	Large-Format Ultra-Low Noise Visible Detectors	Low-noise visible detectors for faint exoplanet characterization with an Integral Field Spectrograph.	Read noise of < 1 e-/pixel has been demonstrated with EMCCDs in a 1k × 1k format with standard read- out electronics	Read noise < 0.1er/pixel in a ≥ 4k × 4k format validated for a space radiation environmen and flight-accepted electronic		
0-4*	Large-Format Deformable Mirrors	Maturation of deformable mirror technology toward flight readiness.	Electrostrictive 64x64 DMs have been demonstrated to meet ≤ 10-9 contrasts in a vacuum environment and 10% bandwidth.	≥ 64x64 DMs with flight-like electronics capable of wavefront correction to ≤ 10 ⁻¹ contrasts. Full environmental testing validation.		
>5	Efficient Contrast Convergence	Rate at which wavefront control methods achieve 10 ⁻¹⁰ contrast.	Model and measurement uncertainties limit wavefront control convergence and require many tens to hundreds of iterations to get to 10-18 contrast from an arbitrary initial wavefront.	Wavefront control methods that enable convergence to 10 ⁻¹⁰ contrast ratios in fewer iterations (10-20).		
C-6*	Post-Data Processing	Techniques are needed to characterize exoplanet spectra from residual speckle noise for typical targets.	Few 100x speckle suppression has been achieved by HST and by ground-based AO telescopes in the NIR and in contrast regimes of 10-5 to 10-5, dominated by phase errors.	A 10-fold improvement over the raw contrast of ~10% in th visible where amplitude error are expected to no longer be negligible with respect to phase errors.		

http://exep.jpl.nasa.gov/technology/

ExEP Technology Spinoffs

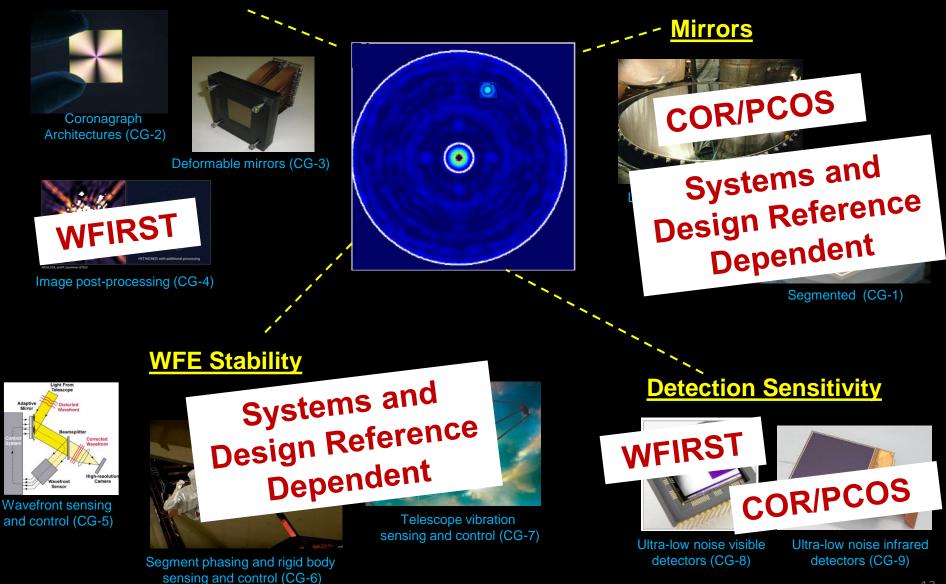
Starshade Technology Project

WFIRST Coronagraph Instrument

Technology Needs and Prioritization Process

ID	Activity	Date
1	Technology Needs Input Window Opens	06/08/16
	with email to the ExoPAG: Technology Gap Lists, Input Forms, process explanation	
	presentation at June ExoPAG	06/12/16
2	Technology Window Closes	08/26/16
3	Prioritization Criteria Concurred by the ExEP	09/15/16
4	Technology Gaps Prioritized by the ExEP	10/20/16
5	Technology Gap Lists Inform TDEM Amendment	mid-Nov
	Technology Amendment released through NSPIRES	mid-Dec
6	ExEP Technology Plan Appendix Updated and Posted	12/22/16
	Presentation at Winter ExoPAG	01/02/17
7	TDEM Proposal Deadline	03/17/17
8	TDEM Awards Selected	Aug 2017

- <u>Enabling technologies</u> only requires ExEP iteration with community members
- PCOS/COR Technology team involved in every step; ExEP involved in their prioritization process



Current Technology Needs

Coronagraph/Telescope Technology Gaps

Starlight Suppression

Starshade Technology Gaps

Starlight Suppression

Controlling Sunlight scattering

off petal edges (S-2)

Formation Sensing and Control

Deployment Accuracy and Shape Stability

Suppressing starlight and validating optical model (S-1)

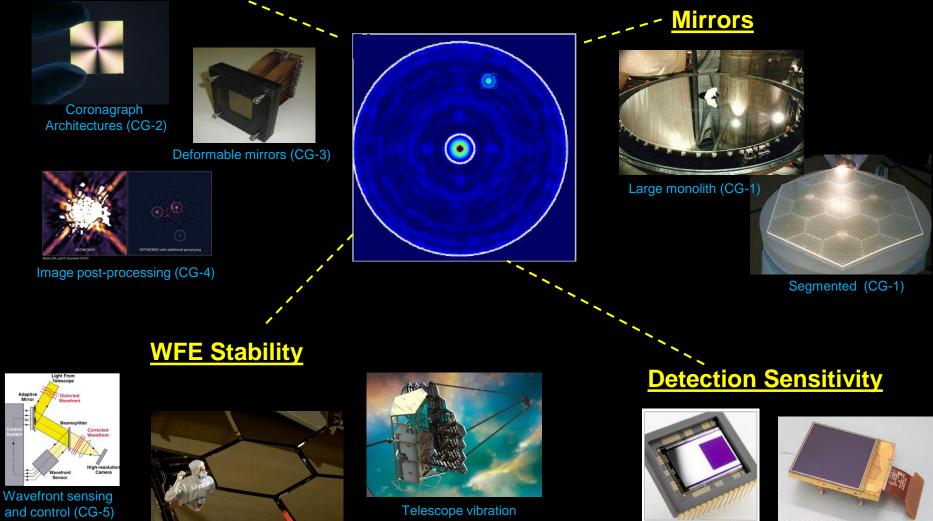
Positioning the petals to high precision, blocking on-axis starlight, maintaining overall shape on a highly stable structure (S-5)

Fabricating the petal to high precision (S-4)

Focus has been on technologies enabling the direct imaging of exoplanets.

Other?

- warp drives
- correlated-line spectral technique (Mawet)
- 10 cm/s RV
- polarization
- interferometry



Additional Slides

Coronagraph Technology Gaps

Starlight Suppression

Ultra-low noise infrared detectors (CG-9)

Ultra-low noise visible detectors (CG-8)

Segment phasing and rigid body sensing and control (CG-6)

Starshade Technology Gaps

Starlight Suppression

Controlling Sunlight scattering

off petal edges (S-2)

Formation Sensing and Control

Maintaining lateral offset requirement between the spacecrafts (S-3)

Deployment Accuracy

Suppressing starlight and validating optical model (S-1)

Positioning the petals to high precision, blocking on-axis starlight, maintaining overall shape on a highly stable structure (S-5)

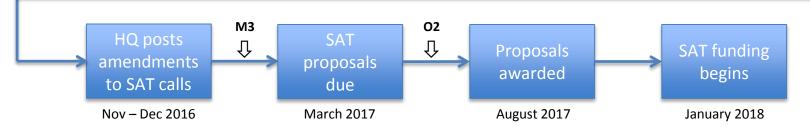
and Shape Stability

Fabricating the petal to high precision (S-4)

Technology Needs and Prioritization Process **Timeline**

xopla	net Exi	oloratior	n Prograi	m

							TDEM	Year						
Activity	Resp	J	F	М	Α	М	J	J	Α	S	0	N	D	J
ExEP Technology Needs and														
Prioritization Process														
TNPP and TGL Presented to ExoPAG EC	TDM						1st Tue							
TGL Window Opens	TDM						day after							
TGL Presented at Summer ExoPAG	TDM						mid-							
THE Presented at Summer ExoPAG	TDIVI						month							
TGL Window Closes									last Fri					
TGL Prioritization Criteria Concurred	TDM	EC	Exec	utive Coun	cil	<u> </u>				2nd				
TGET Horitization enterna concurret		Ex	EP Exop	lanets Expl	loration Pro	ogram		-		week				
TGL Prioritization	TDM	Ex		lanet Progr ram Chief E		is Group					mid-			
		PC		ram Chief S							month			
Present Final TGL to ExoPAG EC and	TDM	PC	-	ram Chief 1		st						1st Tue		
	PCT,	PN		ram Manag								mid-		
Provide Input to TDEM Amendment	PS,	PS		ram Scienti										
	TDM						olanet Missi	ions				month		
Hadata Taska alam Dian Amandia	TDM	TD TG		nology Dev nology Gap	-	wanager		-					mid-	
Update Technology Plan Appendix	TDM			nology Nee		oritization	Process						month	
	TDM	I			1	1								1st
TGL Presented at Winter ExoPAG	TDM													week



TDEM Timeline

						Т	DEM Yea	r										TDEM Ye	ar plus 1	
Activity	Resp	F	М	Α	М	J	J	Α	S	0	Ν	D	J	F	М	Α	М	J	J	Α
TDEM Process																				
Solicitation Released	PS	mid- month																		
Amendment Posted	PS											mid- month								
Pre-Proposal Briefing Telecon	PS												mid- month							
Proposal Due															mid- month					
Proposals Selected	PS																			by month end

Astrophysics Technology Gap Process ExEP and 2016 SAT Timeline ExoPlanet Exploration Program **Organized/Prioritized by** Published in O1 tech gaps deliverable (optional) from Gaps due Jun 30, 2016 and Aug 26, 2016 (see below) COR PO/TMB **FIR Surveyor STDT** COR PATR August 2016 October 2016 HabEx Imaging STDT **ExEP** Tech Plan **EXEP PO** Programmatic Decisions LUVOIR Surveyor STDT October 2016 December 2016 Nov - Dec 2016 PCOS PO/TMB PCOS PATR X-ray Surveyor STDT August 2016 October 2016

- Non-Exoplanet-related gaps due June 30, 2016; Exoplanet-related gaps due August 26, 2016.
- Community technology gap inputs are also provided to the respective Program Offices (POs) to be prioritized each year by the Programs' Technology Management Boards (TMBs) for COR and PCOS and by the ExEP PO.
- Program Chief Technologists participate in each other's technology prioritization processes.
- Current Program Annual Technology Reports (PATRs) and Technology Plan are available on respective Program websites.
- Gaps identified in M3 (2/2017) and O2 (6/2017) Study Deliverables can also influence the 2016 SAT funding or directed funding decisions.
- SAT funding nominally starts in January but could be ±3 months depending on receiving organization.

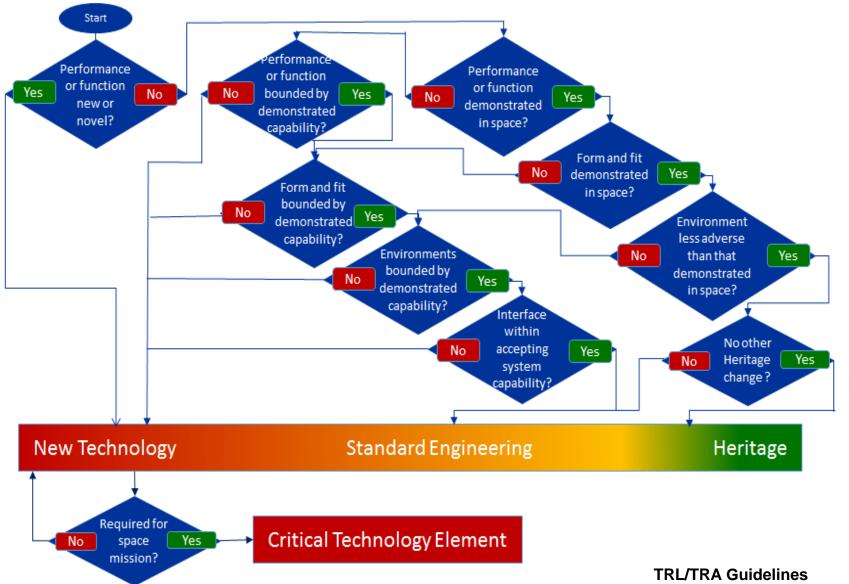
Proposed 2017 Coronagraph Technology Gap List (1/2

	ID	Title	Description	Current Capabilities	Needed Capabilities
Contrast	CG-2	Coronagraph Optics and Architecture	Coronagraph optics and architecture that suppress diffracted starlight by a factor of ≤ 10 ⁻⁹ at visible and infrared wavelengths.	6x10 ⁻¹⁰ raw contrast at 10% bandwidth across angles of 3-16 λ/D demonstrated with a linear mask and an <u>unobscured</u> pupil in a static vac lab env't (Hybrid Lyot) < 8.8x10 ⁻⁹ raw contrast at 10% bandwidth across angles of 3-9 λ/D demonstrated with a circularly-symmetric mask and obscured pupil in a static vacuum lab	Coronagraph masks and optics capable of creating circularly symmetric dark regions in the focal plane enabling raw contrasts $\leq 10^{-9}$, IWA $\leq 3 \lambda$ /D, throughput $\geq 10\%$, and bandwidth $\geq 10\%$ on obscured/segmented pupils in a simulated dynamic vacuum lab environment.
Angular Resolution (plus sensitivity, integration time, and planet yield)	CG-1	Large Aperture Primary Mirrors	Large monolith and multi- segmented mirrors that meet tight surface figure error and thermal control requirements at visible wavelengths.	Monolith: 3.5m sintered SiC with < 3 um SFE (Herschel) 2.4m ULE with ~ 10 nm SFE (HST) Depth: Waterjet cutting is TRL 9 to 14", but TRL 3 to >18". Fused core is TRL 3; slumped fused core is TRL 1. Segmented: 6.5m Be with 25 nm SFE (JWST) Non-NASA: 6 dof, 1-m class SiC and ULE, 20 nm SFE, and < 5 nm wavefront stability over 4 hr with thermal control	Aperture: 4m - 12m; SFE < 10 nm rms (wavelength coverage 400 nm - 2500 nm) Wavefront stability better than 10 pm rms per wavefront control time step. Segmented apertures leverage 6 DOF or higher control authority meter-class segments for wavefront control. Environmentally tested.
Detection Sensitivity	CG-8	Ultra-Low Noise, Large Format Visible Detectors	Low-noise visible detectors for faint exoplanet characterization with an Integral Field Spectrograph	1kx1k silicon EMCCD detectors provide dark current of 8x10 ⁻⁴ e-/px/sec; effective read noise < 0.2 e- rms (in EM mode) <u>after</u> irradiation when cooled to 165.15K (WFIRST). 4kx4k EMCCD fabricated but still under development.	Effective read noise < 0.1e- rms; CIC < 3x10 ⁻³ e-/px/fram; dark current < 10 ⁻⁴ e-/px/sec tolerant to a space radiation environment over mission lifetime. ≥ 2kx2k format
Detection Sensitivity	CG-9	Ultra-Low Noise, Large Format Near Infrared Detectors	Near infrared wavelength (900 nm to 2.5 μm), extremely low noise detectors for exo- earth spectral characterization with Integral Field Spectrographs.	HgCdTe photodiode arrays have read noise <~ 2 e- rms with multiple non- destructive reads; dark current < 0.001 e- /s/pix; very radiation tolerant (JWST). HgCdTe APDs have dark current ~ 10-20 e- /s/pix, RN << 1 e- rms, and < 1kx1k format Cryogenic (superconducting) detectors have essentially no read noise nor dark current; radiation tolerance is unknown.	Read noise << 1 e- rms, dark current < 0.001 e-/pix/s, in a <u>space radiation environment</u> over mission lifetime. ≥ 2kx2k format

Proposed 2017 Coronagraph Technology Gap List (2/2

Exoplanet Explorati								
	ID	Title	Description	Current Capabilities	Needed Capabilities			
Contrast Stability	CG-6	Segment Phasing Sensing and Control	Multi-segment large aperture mirrors require phasing and rigid-body sensing and control of the segments to achieve tight static and dynamic wavefront errors.	6 nm rms rigid body positioning error and 49 nm rms stability (JWST error budget) SIM and non-NASA: nm accuracy and stability using laser metrology	Systems-level considerations to be evaluated but expect will require less than 10 pm rms accuracy and stability.			
Contrast Stability	CG-7	Telescope Vibration Control	Isolation and damping of spacecraft and payload vibrational disturbances	80 dB attenuation at frequencies > 40 Hz (JWST passive isolation) Disturbance Free Payload demonstrated at TRL 5 with 70 dB attenuation at "high frequencies" with 6-DOF low-order active pointing.	Monolith: 120 dB end-to-end attenuation at frequencies > 20 Hz. Segmented: 140 dB end-to-end attenuation at frequencies > 40 Hz. End-to-end implies isolation between disturbance source and the telescope.			
Contrast	CG-3	Deformable Mirrors	Environment-tested, flight- qualified large format deformable mirrors	Electrostrictive 64x64 DMs have been demonstrated to meet ≤ 10 ⁻⁹ contrasts and < 10 ⁻¹⁰ stability in a vacuum environment and 10% bandwidth; 48x48 DM passed random vibe testing.	4 m primary: ≥ 96x96 actuators 10 m primary: ≥ 128x128 actuators Enable raw contrasts of ≤ 10 ⁻⁹ at ~20% bandwidth and IWA ≤ 3 λ /D Flight-qualified device and drive electronics (radiation hardened,environmentally tested, life-cycled including connectors and cables) Large segment DM needs possible for segmented telescopes.			
Contrast Stability	CG-5	Low-Order Wavefront Sensing and Control	Sensing and control of line of sight jitter and low-order wavefront drift	< 0.5 mas rms per axis LOS residual error demonstrated in lab with a fast-steering mirror attenuating a 14 mas LOS jitter and reaction wheel inputs; ~ 100 pm rms sensitivity of focus (WFIRST). Higher low-order modes sensed to 10-100 nm WFE rms on ground-based telescopes.	Sufficient fast line of sight jitter (< 0.5 mas rms residual) and slow thermally-induced (≤ 10 pm rms sensitivity) WFE sensing and control to maintain closed-loop < 10 ⁻⁹ raw contrast with an obscured/segmented pupil and simulated dynamic environment.			
Contrast	CG-4	Post-Data Processing	Post-data processing techniques to uncover faint exoplanet signals from residual speckle noise at the focal-plane detector.	Few 100x speckle suppression has been achieved by HST and by ground-based AO telescopes in the NIR and in contrast regimes of 10 ⁻⁴ to 10 ⁻⁵ , dominated by phase errors.	A 10-fold contrast improvement in the visible from 10 ⁻⁹ raw contrast where amplitude errors are expected to be important (or a demonstration of the fundamental limits of post-processing)			

	ID	Title	Description	Current Capabilities	Needed Capabilities
Optical Performance and Model Validation	S-2	Optical Performance Demonstration and Validated Optical Model	Experimentally validate the equations that predict the contrasts achievable with a starshade.	3x10 ⁻¹⁰ contrast at 632 nm, 5 cm mask, and ~500 Fresnel #; validated optical model 9x10 ⁻¹⁰ contrast at white light, 58 cm mask, and 210 Fresnel #	Experimentally validate models predicting contrast to $\leq 10^{-10}$ just outside petal edges in scaled flight-like geometry with Fresnel numbers ≤ 20 across a broadband optical bandpass.
Optical Perform	S-1	Controlling Scattered Sun Light	Limit edge-scattered sunlight and diffracted starlight with optical petal edges that also handle stowed bending strain.	Machined graphite edges meet all specs but edge radius (10 um); etched metal edges meet all specs but in-plane shape tolerance (Exo-S design).	Integrated petal optical edges maintaining precision in-plane shape requirements after deployment trials and limiting contrast contribution of solar glint to < 10 ⁻ ¹⁰ at petal edges.
Formation Sensing and Control	S-3	Lateral Formation Sensing	Demonstrate lateral formation flying sensing accuracy consistent with keeping telescope in starshade's dark shadow.	Centroid star positions to ≤ 1/100 th pixel with ample flux. Simulations have shown that sensing and GN&C is tractable, though sensing demonstration of lateral control has not yet been performed.	Demonstrate sensing lateral errors ≤ 0.30 m accuracy at scaled flight separations (±1 mas bearing angle). Estimated centroid positions to ≤ 1/40 th pixel with limited flux from out of band starlight. Control algorithms demonstrated with scaled lateral control errors corresponding to ≤ 1 m.
and Shape Stability	S-5	Petal Positioning Accuracy and Opaque Structure	Demonstrate that a starshade can be autonomously deployed to within its budgeted tolerances after exposure to relevant environments.	Petal deployment tolerance (≤ 1 mm) verified with low fidelity 12m prototype and no optical shield; no environmental testing (Exo-S design).	Deployment tolerances demonstrated to ≤ 1 mm (in-plane envelope) with flight-like, minimum half-scale structure, simulated petals, opaque structure, and interfaces to launch restraint after exposure to relevant environments.
Deployment Accuracy and Shape Stability	S-4	Petal Shape and Stability	Demonstrate a high-fidelity, flight-like starshade petal meets petal shape tolerances after exposure to relevant environments.	Manufacturing tolerance (≤ 100 μm) verified with low fidelity 6m prototype and no environmental tests. Petal deployment tests conducted but on prototype petals to demonstrate rib actuation; no shape measurements.	Deployment tolerances demonstrated to ≤ 100 µm (in-plane envelope) with flight-like, minimum half-scale petal fabricated and maintains shape after multiple deployments from stowed configuration.



	r Technology Gap Prioritization
Impact:	4: Critical and key enabling technology - required to meet mission concept objectives; without this technology, applicable missions would not launch
	3: Highly desirable - not mission-critical, but provides major benefits in enhanced science capability reduced critical resources need, and/or reduced mission risks; without it, missions may launch, but science or implementation would be compromised
	2: Desirable - not required for mission success, but offers significant science or implementation benefits; if technology is available, would almost certainly be implemented in missions
	1: Minor science impact or implementation improvements; if technology is available would be considered for implementation in missions
Urgency:	4: In time for the Decadal Survey (2019); not necessarily at some TRL but reduced risk by 2019
	3: Possible launch date < 10 yr (< 2025)
	2: Possible launch date < 15 yr (< 2030)
	1: Possible launch date > 15 yr (> 2030)
Trend:	4: Very large perceived risk of not being ready in time: (a) no ongoing current efforts (b) little or n funding allocated
	3: Large perceived risk of not being ready in time: (a) others are working towards it but little result or their performance goals are very far from the need, (b) funding unclear, or (c) time frame not clear
	2: Medium perceived risk of not being ready in time: (a) others are working towards it with encouraging results or their performance goals will fall short from the need, (b) funding may be unclear, or (c) time frame not clear
	1: Small perceived risk of not being ready in time: (a) others are actively working towards it with encouraging results or their performance goals are close to need, (b) it's sufficiently funded, and (c time frame clear and on time

Frerking et al (JPL) in review 25