ExoPAG SAG13:

 Exoplanet Occurrence

 Exoplanet Occurrence Rates and Distributions

Ruslan Belikov
on behalf of SAG13

Note: some results in this presentation are still preliminary

SAG13 members

Belikov, Ruslan (Chair, rulsan.belikov@nasa.gov) Stark, Christopher (Co-chair) Batalha, Natalie (Steering Committee) Burke, Chris (Steering Committee)		
Angerhausen, Daniel	Gaudi, Scott	
Apai, Daniel	Ge, Jian	Savransky, Dmitry
Bendek, Eduardo	Gould, Andy	Serabyn, Gene
Bennett, David	Hogg, David W	Shabram, Megan
Blackwood, Gary	Howard, Andrew	Shao, Mike
Boss, Alan	Kane, Stephen	Solmaz, Arif
Brown, Robert	Kasting, Jim	Sparks, William
Bryden, Geoff	Kopparapu, Ravi	Stahl, Philip
Bryson, Stephen	Macintosh, Bruce	Stapelfeldt, Karl
Cahoy, Kerri	Mandell, Avi	Still, Martin
Catanzarite, Joe	Mendez, Abel	Suzuki, Daisuke
Ciardi, David	Meyer, Michael	Swain, Mark
Clanton, Christian	Morgan, Rhonda	Traub, Wes
Cowan, Nick	Mulders, Gijs	Turnbull, Margaret
Danchi, William	Nielsen, Eric	Unwin, Stephen
Domagal-Goldman, Shawn	Petigura, Erik	Vanderbei, Bob
Dressing, Courtney	Ragozzine, Darin	Walkowicz, Luzianne
Farr, Will	Roberge, Aki	Weiss, Lauren M.
Foreman-Mackey, Daniel	Rogers, Leslie	Wolfgang, Angie

Fressin, Francois

Charter

Over 5000 exoplanets and exoplanet candidates have been discovered to date. Many studies have been published and are on-going to determine exoplanet occurrence rates and distributions, particularly for potentially habitable worlds. These studies employ different statistical and debiasing methods, different definitions of terms such as eta_Earth and habitable zone, different degrees of extrapolation, and present distributions in different units from each other. The primary goal of this SAG is to evaluate what we currently know about planet occurrence rates, and especially eta Earth, by consolidating, comparing, and reconciling discrepancies between different studies. A secondary goal is to establish a standard set of occurrence rates accepted by as much of our community as possible to be used for mission yield estimates for missions to be considered by the decadal survey.

Key objectives and questions:

1. Propose standard nominal conventions, definitions, and units for occurrence rates/distributions to facilitate comparisons between different studies.
2. Do occurrence estimates from different teams/methods agree with each other to within statistical uncertainty? If not, why?
3. For occurrence rates where extrapolation is still necessary, what values should the community adopt as standard conventions for mission yield estimates?

From Burke et al. 2015

"We generally find higher planet occurrence rates and a steeper increase in planet occurrence rates towards small planets than previous studies of the Kepler GK dwarf sample"

Comparison of $\Gamma_{\text {earth }}$ from dififerent publications

$\Gamma_{\text {Earth }}$ Estimates Affected by Extrapolation, Small Number Statistics, and Systematics

Courtesy of Leslie Rogers

- Initially, it appears that the possible range of $\Gamma_{\text {earth }}$ spans 2-3 orders of magnitude
- This is true, but extremely conservative: only the middle ~couple of octaves are "likely"

Comparison of $\Gamma_{\text {eath }}$ from dififerent publications

- Initially, it appears that the possible range of $\Gamma_{\text {earth }}$ spans 2-3 orders of magnitude
- This is true, but extremely conservative: only the middle ~couple of octaves are "likely"

Standardized eta grid

Kepler candidates from Q1-Q17, dr24

12 community sourced occurrence tables

Batalha, Natalie (2)
Belikov, Rus
Burke, Chris
Catanzarite, Joe
Dressing, Courtney*
Farr, Will
Foreman-Mackey, Daniel*
Kopparapu, Ravi
Mulders, Gijs
Petigura, Erik*
Traub, Wes*

*dataset was based on prior publications and re-integrated across SAG13 bins by Burke

All datasets and documents can be found on SAG13 repository:
https://drive.google.com/drive/folders/0B520NCfkP 4aOQUJYdmUzQTJkdkE

$\eta_{\text {habSol,SAG13 }}$

- $\mathrm{R}=[0.5-1.5], \mathrm{P}=[237860]$ (Kopparapu optimistic HZ for Sol twin)
- This is not exactly $\eta_{\text {Earth }}$, just a tentative rough representation of

NASA
 Example: submitted occurrence rates for G-dwarfs

Closer look at G-dwarf average

Note: this is a simple average across submissions

More sophisticated combination methods are being explored, such as weighting by quoted uncertainties and/or accounting for dependencies
$\eta_{\text {habSol, SAG13 }} \sim 0.58$
(based on best power law fit)

Plots and analysis are generated with the make_plots.py script in the SAG13 Google drive, code by Gijs Mulders.

Coefficient of Variation

(aka relative standard deviation $=$ std $/$ mean)

Sensitivity of occurrence rates to methodologies and assumptions

- Completeness curves and catalog seem to make the largest systematic differences
- More recent completeness curves and catalogs seem to lead to systematically higher numbers
- Other things (estimation method, details of the code, extrapolation) usually result in occurrence rates that are consistent to better than a factor of 2 , usually much better

Extrapolation and importance of 0.5-1.0 $R_{\text {Earth }}$ bin

NAGA \square (T)

$$
\frac{\partial^{2} N(R, P)}{\partial \ln R \partial \ln P}=\Gamma_{i} R^{\alpha_{i}} P^{\beta_{i}}
$$

in region $R_{i-1} \leq R<R_{i}$

(R in Earth radius, P in years)

	i	Γ_{i}	α_{i}	β_{i}	R_{i}
Two-piece	$\mathbf{1}$	$\mathbf{0 . 3 8}$	$-\mathbf{0 . 1 9}$	$\mathbf{0 . 2 6}$	$\mathbf{3 . 4}$
broken power law	2	0.73	-1.18	0.59	Inf

Submission average

Parameteric fit (integrated across bins)

Calculations of habitable occurrence rates

Integrating SAG13 parametric fit

		$H Z$ (from Kopparapu 2013)	
		Conservative	Optimistic
Planet	$1.0-1.5$	$\mathbf{0 . 1 4}$	$\mathbf{0 . 2 0}$
radius range	$0.5-1.5$	$\mathbf{0 . 4 0}$	$\mathbf{0 . 5 8}$

Using Burke et al. 2015 posterior tool https://github.com/christopherburke/KeplerPORTs
$\left.\begin{array}{|c|c|c|c|}\hline & & \mathrm{HZ} \text { (from Kopparapu 2013) } \\ \hline & & \text { Conservative } & \text { Optimistic } \\ \hline \begin{array}{l}\text { Planet } \\ \text { radius } \\ \text { range }\end{array} & 1.0-1.5 & \mathbf{0 . 2 1} & \text {-0.08 }\end{array}\right]$

Converting between Mass and Radius

(focus group led by Angie Wolfgang and Lauren Weiss)

'Previous M-R relations in the literature:
wide variety of radius, mass ranges and datasets used

Preliminary estimate of M-R correlation

- Purpose: enable SAG13 occurrence rate submissions based on RV planets
- M-R relationship is fundamentally not a 1-1 map (e.g. $M=f(R)$), but a correlation (e.g. density function $\mathrm{C}(\mathrm{M}, \mathrm{R})$)
- M-R focus group deliverables
- an estimate of this correlation based on open community input
- analysis of uncertainties and dependency on period and other parameters
- Notes about plots / methods
- TTV data is included
- Black dots: MC posterior simulation accounting for uncertainties on currently known M-R planets
- Color map: estimate of the 2D correlation density function (using Gaussian kernel density estimator)

Linking to results from non-Transit techniques (Christian Clanton)

Conclusions

- $\eta_{\text {Earth }}$ may be significantly higher than many older estimates, especially if going down to 0.5 Earth size ($\eta_{\text {habSol, SAG13 }} \sim 0.6$)
- Cannot yet rule out lower values (e.g. < ~0.3), but values >1 appear to be more likely than < 0.3
- Burke $2015 \eta_{\text {Earth }}$ is even higher
- Caveat: SAG13 products are not formal scientific results, but rather a meta-analysis to achieve consensus on "most likely" assumptions for mission studies. The upcoming Kepler closeout will yield a formal scientific result.
- Although many orders of magnitude of $\Gamma_{\text {Earth }}$ (or $\eta_{\text {Earth }}$) are possible, only a small range ($\sim 1-2$ octaves) within that is "likely"
- Tentative parametrized distributions are available from SAG13 to use with mission yield calculation codes (or any other purpose)
- Based on input from the entire exoplanet community
- See slide 14

Backup slides

Occurrence rates for new proposed planet classification

(from Kopparapu, Domagal-Goldman, et al., in prep) Numbers based on integrating SAG13 parametric fit

Analysis of variations in submissions (for G-dwaris)

Maso Importance of 0.5-1.0 Earth size bin

$\mathrm{dN} / \mathrm{dln}(\mathrm{R})$ (marginalized across 237-860d periods)

Unknown extrapolation for G-dwarfs
 (better constrained for M-dwarfs)

Peer-reviewed power law fit coefficients ~ 0.5-1.0

- Any estimate of eta_Earth should always very clearly specify:
- Whether 0.5-1.0 bin is included or not
- What extrapolation assumption was made
- Many discrepancies in eta_Earth estimates can be traced to inclusion or exclusion of 0.5-1.0 bin
- Mission study teams may want to consider the possibility of a large number of potentially habitable planets in the 0.5-1.0 bin

Small ($<2 \mathrm{R}_{\mathrm{e}}$) Planets in the HZ: 4 yr

Note: for planet size range of $0.5-1.6 R_{e}$, expected \# of planets may be a factor of $\sim 2-3$ higher (based on extrapolation)

Variances between individual parameterized distributions
dN/dlog(SMA)

dN/dlog(R)

Current edge of planet candidates

[potential slide, meant to show actual planets and thus better visualize Poisson uncertainty]
Shorter periods, more reliable Longer periods, less reliable

0.5-1.5 Earth size

237-860 days (Kopparapu extended HZ for Sun)

Variance in submissions

Slide which shows any key correlations we found between variances / outliers and submission parameters (catalog, method, etc.)
[Goal is to show status and any key preliminary patterns we found in the most clear and concise way but emphasize that this is still a work in progress]

Rough idea for visualization:

Value of $\Gamma_{\text {earth }}$	catalog	Completenes s?	Methodology $?$
Lowest value	Early catalog ?		
Highest value	More recent catalog ?		

[Note - for now, table entries are purely illustrative, not necessarily ones that we will have in the final slide]

	Catalog	Filters	Completen ess model	Vetting efficiency	Reliability	Methodology	Value of Гearth
Batalha, Natalie (2)							
Belikov, Rus							
Burke, Chris							
Catanzarite, Joe							
Dressing, Courtney*							
Farr, Will							
Foreman- Mackey, Daniel*							
Kopparapu, Ravi							
Mulders, Gjs							
Petigura, Erik*							
Traub, Wes**							

ROUGH DRAFT / SLIDE IDEA

Closer look at G-dwarf average

$\mathrm{NA}_{A} \rightarrow$

How do we combine different submissions into one occurrence table?

Full accounting:
Only "independent" submissions are averaged

Accounting for "dependency" between submissions

No accounting:
Simply average all submissions

- Best for producing an actual scientific measurement
- Measuring "dependency" is not trivial (and may be impossible in principle)
- Consensus on method can be challenging
- Psychological biases are challenging to identify and control
- Will not generate a scientific measurement, but possibly best for predictions?
- Simple method
- Easier consensus: all submissions are automatically fairly represented
- Crowdsourcing / Prediction market philosophy: psychological biases are in theory averaged out

The question of which method is "correct" is possibly philosophical
Will probably do both, explicitly describe the process, and leave interpretation to the reader
Feedback on our strategy is welcome and encouraged

