Starshade Field Testing and Optical Model Validation

6/11/2016

Megan Novicki Stuart Shaklan Anthony Harness Philip Dumont

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

Starshade Basics

- Starshades are an external occulter used in conjunction with a space telescope
- The light from the star is blocked by the starshade, while the light from the nearby exoplanet is not
- Starshades are extremely large (35m+ in diameter) and therefore cannot be tested at the full flight-like scale
- Scaled down field testing can help validate optical models of starshade effects

NORTHROP GRUMMAN

Field Testing a Starshade

NORTHROP GRUMMAN

Field Testing 2014/15

NASA JPL / **Light Sources** Northrop Grumman 100th Scale Starshade

Approved for public release; NGAS Case 15-2567 dated 12/21/15.

Best Contrast Ratio – Desert Field Tests

- Planet LEDs are Standard LEDs with ND filters in front.
 - ND4 planet ~8E-9 below main source
- Light Scatter from dust is modelled and subtracted from the image
- Slight vertical variation between images due to air disturbances.
 - Images collocated using Planet LEDs

3σ Standard Deviation in box closest to the starshade = **9.09E-10**

Starshade to Telescope Separation	Starshade Diameter	Telescope Aperture	Resolution	Resolution Elements	Inner Working Angle	Fresnel Number
1km	0.5m	0.04m	3.8 arcsec	26.8	51 arcsec	210
80,000km	50m	2.4m	0.063 arcsec	2	0.065 arcsec	13

Approved for public release; NGAS Case 15-2567 dated 12/21/15.

Testing Engineering Sensitivities – Flawed Starshade Performance

- 6 families of flaw each applied to Hypergausian and Numerically Determined Starshades
 - Simulations predict patterns field test optical lengths

Model Verification

Approved for public release; NGAS Case 15-2567 dated 12/21/15.

Model Predictions vs. Measurements: January 2016

NORTHROP GRUMMAN

NORTHROP GRUMMAN

Optical Models of Starshades

- Four groups are collaborating to investigate the differences in model predictions for field testing scenarios
 - JPL
 - CU
 - Princeton
 - Northrop Grumman
- Previous comparisons between the different models for flight-like systems were in agreement to within 5%
- Field testing scenarios require a **different treatment**
 - Higher Fresnel numbers
 - Expanding beam

- Each group has a model with a slightly different design based on the same optical principles.
- Each model has two separate components
 - Propagating the light from the star past the starshade and to the pupil of the telescope
 - Propagating the light through the telescope and to a detector
- Two types of starshades used: Hypergaussian (HG) and IZ5
 - HG edges defined by the equation: $A(r) = e^{\left(-\left(\frac{r-a}{b}\right)^n\right)}$
 - IZ5 is a numerically determined shape optimized by JPL for the Fresnel numbers and distances used in the desert tests.
- Model comparisons done at multiple wavelengths and a large range of distances between the source and the starshade
 - Distances ranged from 1km to 10¹⁷ km
 - Distance between starshade and telescope kept constant at 1km

• The total field at the aperture of the telescope in the presence of a starshade is given by the Fresnel-Kirchhoff diffraction integral:

$$\psi_{S1} = \frac{1}{2i\lambda} \iint_{S1} \frac{e^{ikd}}{d} \frac{e^{ikr}}{r} \left(\vec{n}_s \cdot \frac{\vec{r}}{r} + \vec{n}_s \cdot \frac{\vec{d}}{d} \right) d\sigma_{\xi\eta\zeta}$$

Babinet's Principle

The entire plane is transparent. The field ψ is from a source propagating through the plane without diffraction

What we really want to calculate is ψ_{S2} , that is equal to

RTHROP GRUMMAN

$$\psi_{S_2} = \psi_{inc} - \psi_{S_1}$$

so we can calculate ψ_{S1} instead

- Each group takes a different approach to evaluating the diffraction integral:
 - Princeton integrates over two dimensions using a gray pixel approximation
 - JPL applies Stokes' theorem to solve the double integral as a single integral over the boundary of the starshade
 - CU uses the Dubra-Ferrari method to reduce the double integral to a single integral
 - NG uses a Taylor expansion to calculate the integral over the radius analytically and then numerically over θ using Chebychev integration
- Convergence of all the models using different approaches to evaluating the diffraction integral increases the robustness of the solution

Telescope Model

- Telescope aperture: 2cm in radius
- Focal length: 2.032m
- Pixel size of 0.25 arcsec
- Diffraction limit: 3.77 arcsec
- Actual pixel size for observations: 0.5487 arcsec

- All groups had bugs that needed to be resolved over the course of our work since January
 - Focus location
 - Pixel resolution
 - Capability of the model to handle a large range of distances
 - Consistent valley depths
- Use of the exact same petal edge for the flaws
 - Different model inputs makes this challenging
- Number of points along the edge required:
 - Perfect starshade
 - Capture the impact of the flaws
- Comparing peak values vs. integrated energy from individual flaws

Pupil Plane Comparison Example: IZ5 at 1km

- Wavelength 600nm
- From left to right: JPL pupil plane, CU pupil plane, and NG pupil plane
- Qualitative comparisons over the entire pupil look good
 - Same morphology
 - Similar values

Pupil Plane Comparison Example – HG at 2km

Image Plane Comparison

- Broadband images of the perfect HG starshade at a distance of 2km from the source
- All images shown on the same scale

Image Plane Comparison Examples

- Above left is a comparison of a horizontal cut through the image plane for a source placed at infinity and using a HG starshade
- Below left is a comparison of a horizontal cut through the image plane for a source placed at 20km and using an IZ5 starshade
- Models agree well
 amongst all the groups

- 6 types of flaws were defined for use in desert testing:
 - Truncated valleys
 - Truncated tips
 - Lateral in plane rotation of the petals (petal clocking)
 - Shrunk petals petals narrower than expected
 - Sines on edges sine wave added on top of the nominal edge shape
 - Displaced edges a section of the petal displaced outward from the nominal edge
- More complete description of the flaws (size, placement, etc.) is available in our 2012 TDEM Final Report
- Modeling of all flaws in progress
- We present our findings here for truncated tips, shrunk petals, and sines

Flawed Starshade – Tip Truncation

-6

-7

60

JPL

-60

-40

-20

20

0

arcsec

40

60

/S.U

37.5

CU

-7.5

-8

Flawed Starshade – Sines on Edges

/5.0

TIP TRUNCATION	JPL	CU	NGAS	JPL/CU	JPL/NGAS	CU/NGAS
	1.28E-07	1.31E-07	1.40E-07	0.98	0.91	0.94
	7.56E-07	7.72E-07	8.73E-07	0.98	0.87	0.88
	3.42E-06	3.49E-06	4.11E-06	0.98	0.83	0.85
	1.36E-08	1.36E-08	1.09E-08	1.00	1.25	1.25
SINES on EDGES						
	8.48E-08	1.06E-07	1.12E-07	0.80	0.76	0.95
	1.91E-07	2.40E-07	2.52E-07	0.80	0.76	0.95
	2.29E-08	2.47E-08	2.59E-08	0.93	0.88	0.95
	4.66E-08	5.18E-08	5.23E-08	0.90	0.89	0.99
SHRUNK PETAL						
	1.18E-06	1.17E-06	1.16E-06	1.01	1.02	1.01
	6.14E-07	6.07E-07	5.93E-07	1.01	1.04	1.02
	2.87E-06	2.84E-06	2.86E-06	1.01	1.00	0.99
	1.94E-06	1.92E-06	1.92E-06	1.01	1.01	1.00

- Different flaws show different levels of agreement between the groups
- Work is ongoing investigating the cause of these differences

- Resolve differences in phase
 - We need to have a clear understanding of the differences
- Point to point comparison of the entire image plane
- Run all the flaws at higher wavelength resolution and combine to compare with results from October 2015 campaign.
 - Current results are at 50nm resolution, 25nm resolution desired
 - Add blurring effects to match PSF of observations
 - Detailed comparison for each flaw
 - Make measurements of as-built starshades to input into models
- Study the effects of misalignment between the source and the starshade
- Simulation of Princeton tube test mask
- Simulation of McMath observations
- Modelling of flaws same relative scale as flight flaws to inform flight error budget

- Optical models have been tested using a variety of scenarios
 - Different distances
 - Single wavelengths and broadband
 - Two starshade designs
 - 6 different flaw types
- The last 6 months has brought the differences between the different optical models from an order of magnitude down to less than 20%
- Goal is to get the models to agree with each other to within 5%
- Still have additional work to do comparing model predictions with field testing observations

