Starshade Field Testing and Optical Model Validation

6/11/2016

Megan Novicki Stuart Shaklan Anthony Harness

Philip Dumont

Starshade Basics

- Starshades are an external occulter used in conjunction with a space telescope
- The light from the star is blocked by the starshade, while the light from the nearby exoplanet is not
- Starshades are extremely large ($35 \mathrm{~m}+$ in diameter) and therefore cannot be tested at the full flight-like scale
- Scaled down field testing can help validate optical models of starshade effects

Field Testing a Starshade

Field Testing 2014/15

- Planet LEDs are Standard LEDs with ND filters in front.
- ND4 planet $\sim 8 \mathrm{E}-9$ below main source
- Light Scatter from dust is modelled and subtracted from the image
- Slight vertical variation between images due to air disturbances.
- Images collocated using Planet LEDs

Combined Image (Planet Based) - IZ5 Etched
April 17, 2015 - set11 (112 Images)

3o Standard Deviation in box closest to the starshade $=\mathbf{9 . 0 9 E} \mathbf{- 1 0}$

Starshade to Telescope Separation	Starshade Diameter	Telescope Aperture	Resolution	Resolution Elements	Inner Working Angle	Fresnel Number
1 km	0.5 m	0.04 m	3.8 arcsec	26.8	51 arcsec	210
$80,000 \mathrm{~km}$	50 m	2.4 m	0.063 arcsec	2	0.065 arcsec	13

Testing Engineering Sensitivities -

Flawed Starshade Performance
Petal Width Variation

- 6 families of flaw each applied to Hypergausian and Numerically Determined Starshades
- Simulations predict patterns field test optical lengths

Model Verification

Model Predictions vs. Measurements: January 2016

Optical Models of Starshades

Modeling Challenge

- Four groups are collaborating to investigate the differences in model predictions for field testing scenarios
- JPL
- CU
- Princeton
- Northrop Grumman
- Previous comparisons between the different models for flight-like systems were in agreement to within 5\%
- Field testing scenarios require a different treatment
- Higher Fresnel numbers
- Expanding beam

Modeling Approach

- Each group has a model with a slightly different design based on the same optical principles.
- Each model has two separate components
- Propagating the light from the star past the starshade and to the pupil of the telescope
- Propagating the light through the telescope and to a detector
- Two types of starshades used: Hypergaussian (HG) and IZ5
- HG edges defined by the equation: $A(r)=e^{\left(-\left(\frac{r-a}{b}\right)^{n}\right)}$
- IZ5 is a numerically determined shape optimized by JPL for the Fresnel numbers and distances used in the desert tests.
- Model comparisons done at multiple wavelengths and a large range of distances between the source and the starshade
- Distances ranged from 1 km to $10^{17} \mathrm{~km}$
- Distance between starshade and telescope kept constant at 1 km

Wave Propagation Model

- The total field at the aperture of the telescope in the presence of a starshade is given by the Fresnel-Kirchhoff diffraction integral:

$$
\psi_{S 1}=\frac{1}{2 i \lambda} \iint_{S 1} \frac{e^{i k d}}{d} \frac{e^{i k r}}{r}\left(\vec{n}_{s} \cdot \frac{\vec{r}}{r}+\vec{n}_{s} \cdot \frac{\vec{d}}{d}\right) d \sigma_{\xi \eta \zeta}
$$

- Babinet's Principle

Evaluating the Diffraction Integral

- Each group takes a different approach to evaluating the diffraction integral:
- Princeton integrates over two dimensions using a gray pixel approximation
- JPL applies Stokes' theorem to solve the double integral as a single integral over the boundary of the starshade
- CU uses the Dubra-Ferrari method to reduce the double integral to a single integral
- NG uses a Taylor expansion to calculate the integral over the radius analytically and then numerically over θ using Chebychev integration
- Convergence of all the models using different approaches to evaluating the diffraction integral increases the robustness of the solution
- Telescope aperture: 2 cm in radius
- Focal length: 2.032m
- Pixel size of 0.25 arcsec
- Diffraction limit: 3.77 arcsec
- Actual pixel size for observations: 0.5487 arcsec

Model Challenges and Bug Fixes

- All groups had bugs that needed to be resolved over the course of our work since January
- Focus location
- Pixel resolution
- Capability of the model to handle a large range of distances
- Consistent valley depths
- Use of the exact same petal edge for the flaws
- Different model inputs makes this challenging
- Number of points along the edge required:
- Perfect starshade
- Capture the impact of the flaws
- Comparing peak values vs. integrated energy from individual flaws

Pupil Plane Comparison Example: IZ5 at 1km

Amplitude at Pupil Plane (Log Scale)

- Wavelength 600nm
- From left to right: JPL pupil plane, CU pupil plane, and NG pupil plane
- Qualitative comparisons over the entire pupil look good
- Same morphology
- Similar values

Pupil Plane Comparison Example - HG at 2km

- Wavelength 600nm
- Horizontal slice through the center of the aperture
- Top panel is the amplitude component of the field
- Bottom panel is the phase component of the field
- Phase overall morphology matches well, but values are offset between the different groups

- Broadband images of the perfect HG starshade at a distance of 2 km from the source
- All images shown on the same scale

Image Plane Comparison Examples

- Above left is a comparison of a horizontal cut through the image plane for a source placed at infinity and using a HG starshade
- Below left is a comparison of a horizontal cut through the image plane for a source placed at 20km and using an IZ5 starshade
- Models agree well amongst all the groups
- 6 types of flaws were defined for use in desert testing:
- Truncated valleys
- Truncated tips
- Lateral in plane rotation of the petals (petal clocking)
- Shrunk petals - petals narrower than expected
- Sines on edges - sine wave added on top of the nominal edge shape
- Displaced edges - a section of the petal displaced outward from the nominal edge
- More complete description of the flaws (size, placement, etc.) is available in our 2012 TDEM Final Report
- Modeling of all flaws in progress
- We present our findings here for truncated tips, shrunk petals, and sines

Flawed Starshade - Tip Truncation

Flawed Starshade - Shrunk Petals

Flawed Starshade - Sines on Edges

Flaw Peak Comparison

TIP TRUNCATION	JPL	CU	NGAS	JPL/CU	JPL/NGAS	CU/NGAS
	1.28E-07	1.31E-07	1.40E-07	0.98	0.91	0.94
	7.56E-07	7.72E-07	8.73E-07	0.98	0.87	0.88
	$3.42 \mathrm{E}-06$	3.49E-06	4.11E-06	0.98	0.83	0.85
	$1.36 \mathrm{E}-08$	1.36E-08	1.09E-08	1.00	1.25	1.25
SINES on EDGES						
	8.48E-08	1.06E-07	1.12E-07	0.80	0.76	0.95
	1.91E-07	2.40E-07	2.52E-07	0.80	0.76	0.95
	2.29E-08	2.47E-08	2.59E-08	0.93	0.88	0.95
	4.66E-08	5.18E-08	5.23E-08	0.90	0.89	0.99
SHRUNK PETAL						
	1.18E-06	1.17E-06	1.16E-06	1.01	1.02	1.01
	6.14E-07	6.07E-07	5.93E-07	1.01	1.04	1.02
	2.87E-06	2.84E-06	2.86E-06	1.01	1.00	0.99
	1.94E-06	1.92E-06	1.92E-06	1.01	1.01	1.00

- Different flaws show different levels of agreement between the groups
- Work is ongoing investigating the cause of these differences

Future Work

- Resolve differences in phase
- We need to have a clear understanding of the differences
- Point to point comparison of the entire image plane
- Run all the flaws at higher wavelength resolution and combine to compare with results from October 2015 campaign.
- Current results are at 50 nm resolution, 25 nm resolution desired
- Add blurring effects to match PSF of observations
- Detailed comparison for each flaw
- Make measurements of as-built starshades to input into models
- Study the effects of misalignment between the source and the starshade
- Simulation of Princeton tube test mask
- Simulation of McMath observations
- Modelling of flaws same relative scale as flight flaws to inform flight error budget
- Optical models have been tested using a variety of scenarios
- Different distances
- Single wavelengths and broadband
- Two starshade designs
- 6 different flaw types
- The last 6 months has brought the differences between the different optical models from an order of magnitude down to less than 20%
- Goal is to get the models to agree with each other to within 5%
- Still have additional work to do comparing model predictions with field testing observations
the value of performance.
NORTHROP GRUMMAN

