

Exoplanet Exploration Program Update

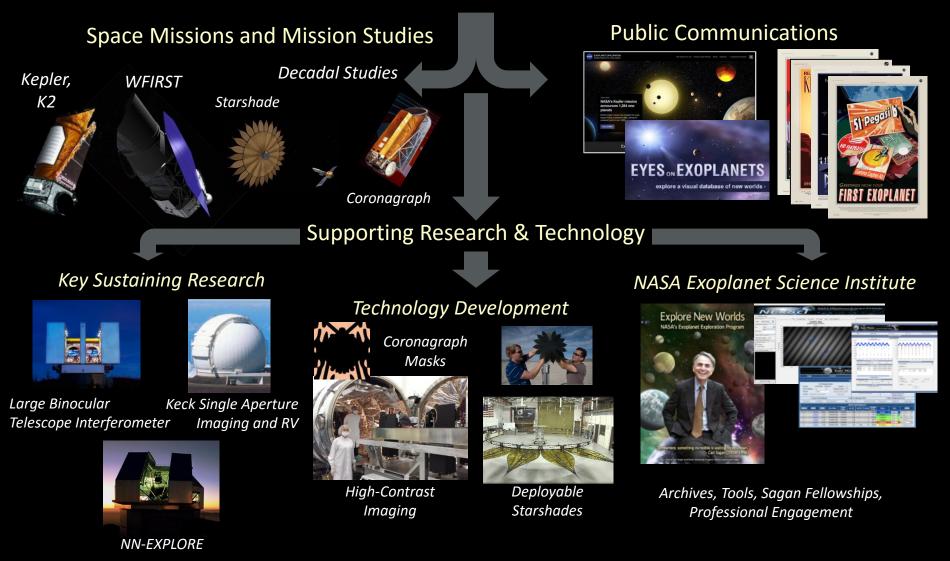
Dr. Gary Blackwood, Program Manager Dr. Karl Stapelfeldt, Program Chief Scientist Jet Propulsion Laboratory California Institute of Technology CL#17-0014

January 02, 2017 Exoplanet Exploration Program Analysis Group Meeting (ExoPAG 15) Grapevine, TX © 2017 All rights reserved

NASA Exoplanet Exploration Program

Astrophysics Division, NASA Science Mission Directorate

NASA's search for habitable planets and life beyond our solar system


Program purpose described in 2014 NASA Science Plan

- 1. Discover planets around other stars
- 2. Characterize their properties
- 3. Identify candidates that could harbor life

ExEP serves the science community and NASA by implementing NASA's space science vision for exoplanets

https://exoplanets.nasa.gov

NASA Exoplanet Exploration Program

https://exoplanets.nasa.gov

New Leadership in ExEP Projects

Dr. Natalie Batalha, Kepler Project Scientist (ARC)

Dr. Jessie Dotson, K2 Project Scientist (ARC)

Dr. Margaret (Peg) Frerking WFIRST Coronagraph Instrument Manager (JPL)

Dr. Feng Zhao WFIRST Deputy Coronagraph Instrument Manager (JPL)

New Leadership in Exoplanet Program Office

Dr. Eric Mamajek, Deputy Program Chief Scientist (JPL)

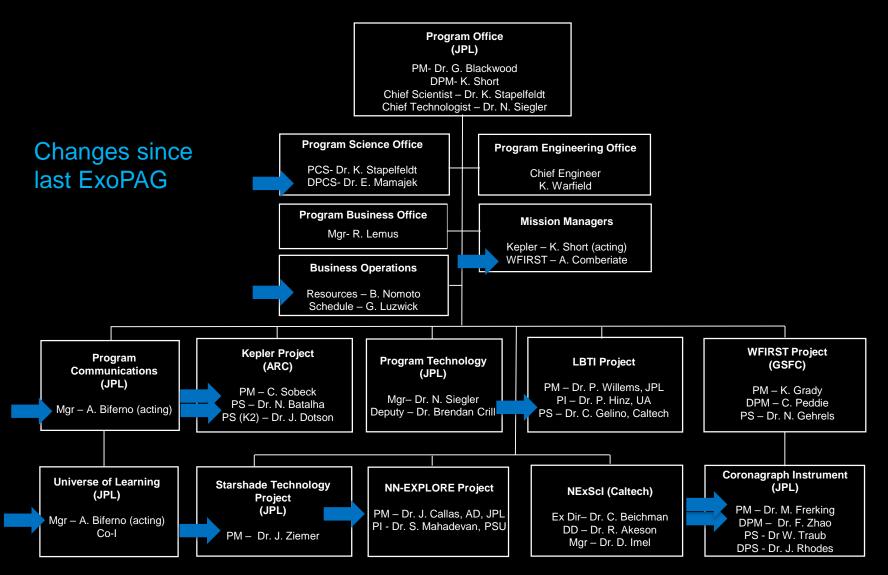
Tony Comberiate, WFIRST Mission Manager (JPL)

Anya Biferno, ExoComm Manager (JPL), acting

Dr. John Callas, NN-EXPLORE Manager (JPL)

Dr. John Ziemer, Starshade Technology Manager (JPL)

Bruce Nomoto, Resource Analyst (JPL)


Dr. Chris Gelino, LBTI Project Scientist (NExScl)

Dr. Brendan Crill, Deputy Technology Development Manager (JPL) 5

NASA Exoplanet Exploration Program

Astrophysics Division, Science Mission Directorate

Astrophysics Division, NASA Science Mission Directorate

Deseurse Menorement	Director		Programs / Missions & Projects			
Resource Management Omana Cawthon+	Paul Hertz		Programs / Missions & Projects			
Clemencia Gallegos-Kelly+	Deputy Director Andrea Razzaghi			Program Scientist	Program Execut	<u>ive</u>
Lead Secretary: Ke Secretary: Kyle Ne	lly Johnson	_	Exoplanet Explo Program Keck Kepler/K2 LBTI	Doug Hudgins Hashima Hasan Mario Perez* Doug Hudgins	John Gagosian Mario Perez* Jeff Hayes Mario Perez*	·
	s Cutting		NN-EXPLORE WFIRST	Doug Hudgins Dominic Benford*	John Gagosian John Gagosian	
Technology Lead: Billy Lightse; Education POC: Hashima Hasa Public Affairs Lead: Kartik Shet Information Manager: Lisa Wai Strategic Planning: Rita Sambr	an (Lead <u>Comm</u> Team) h nio*		Cosmic Origins Program Herschel Hubble James Webb [^]		Shahid Habib* Jeff Hayes Jeff Hayes Ray Taylor ^A	
	ics Research		SOFIA Spitzer	Hashima Hasan Kartik Sheth*	Shahid Habib* Jeff Hayes	
Program Manager: Linda Sparke Program Support: Ingrid Farrell* Astrophysics Data Analysis: Doug Hudgins			Physics of the C Program	Cosmos (PCOS) Rita Sambruna	Shahid Habib*	
Astrophysics Data Analysis: Doug Hudgins Astrophysics Theory: Keith MacGregor*, Theresa Brandt* Exoplanet Research: Martin Still* APRA lead: Michael Garcia* Cosmic Ray, Fund Physics: Thomas Hams*, Vernon Jones, Keith MacGregor*, Rita Sambruna		Athena Chandra Euclid Fermi Planck	Michael Garcia* Stefan Immler* Linda Sparke Stefan Immler* Rita Sambruna	Jeanne Davis Jeff Hayes Shahid Habib* Jeff Hayes Jeff Hayes		
Gamma Ray/X-ray: Da Im	an Evans, Michael Garcia*, Stefan mler*, Lou Kaluzienski, Rita		ST-7/LPF XMM-Newton	Rita Sambruna Stefan Immler*	Shahid Habib* Jeff Hayes	
Optical/Ultraviolet: Mi Ma	ambruna, Wilt Sanders chael Garcia*, Hashima Hasan, ario Perez*, Martin Still*		Astrophysics Ex Program Hitomi	Wilt Sanders Lou Kaluzienski	Jeanne Davis Jeanne Davis	
Ka	ominic Benford*, Doug Hudgins, artik Sheth, Eric Tollestrup*		NICER NuSTAR	Rita Sambruna Lou Kaluzienski	Jeanne Davis Jeff Hayes	
Lab Astro: Do Theory & Comp Astro Net: Ke Roman Tech Fellows: Bil Data Archives: Ha	eith MacGregor* Ily Lightsey*		Swift TESS	Martin Still* Doug Hudgins	Jeff Hayes Mark Sistilli	
Astrophysics Sounding Rockets			* Detailee, IPA, or co	ources Management Divi ntractor t of the JWST Program (D 00 0040
			James Webb is par	to be on or rogram o	annae.	Dec, 06 2016

Kepler / K2

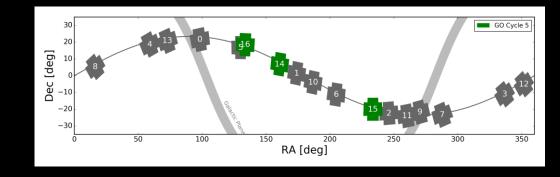
Progress towards 2010 Decadal Survey Priorities

Program Updates

What's Coming Up

Kepler Close Out

Delivering Kepler's Legacy


- Kepler closeout and final data processing continues steadily within overall schedule margin
 - The final reprocessing of the Kepler Q0-Q17 short cadence light curves has been completed, and the files are online at MAST (8/8/16)
 - Held Successful Documentation Completeness Review (10/26/2016)
 - SOC 9.3 Final Occurrence Rate Products on track (April 2017)

Kepler K2

Extending the Power of Kepler to the Ecliptic

• Since last ExoPAG:

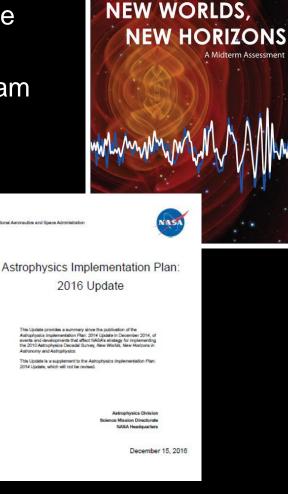
- The C3, C4, and C5 short cadence data have been reprocessed and made available through MAST (Aug 16)
- The Campaign 1 data has been reprocessed and is available on-line (Nov 16)
- Processed Data released through Campaign 10 (Dec 16)
- Spacecraft remains fully operational, completed downlink of all Campaign 11 data via the DSN and is taking data on Campaign 12 field.
- Changed the position of the field for Campaign 16 Kepler will observe in the forward-facing direction. Significant fraction of pixels dedicated to supernova science.

Kepler / K2

Progress towards 2010 Decadal Survey Priorities

Program Updates

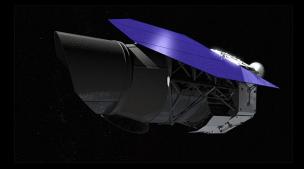
What's Coming Up


Astrophysics Division: Driving Documents

Results of NWNH:

- WFIRST is top large-scale recommended activity
- NWNH technology program is top medium-scale recommended activity

The National Academies of SCIENCES • ENGINEERING • MEDICINE


http://science.nasa.gov/astrophysics/documents

WFIRST

Dark Energy, Alien Worlds, Infrared Astrophysics

- Completed Acquisition Strategy Meeting in August 2016
- Began Wide Field Instrument Industry 6-month Concept Study with Ball Aerospace and Lockheed Martin ATC
- WFIRST Project and the Formulation Science Working Group are finalizing trades and requirements in preparation for SRR/MDR in June 2017
- Preliminary starshade assessment indicates spacecraft accommodation is feasible
- Look ahead: Key Decision Point (KDP)-B in October 2017. Allen Bacskay (MSFC) appointed chair of Standing Review Board.

WFIRST Technology Milestones

NIR Detector

- Milestone 4: Completed. Full arrays demonstrate a yield of >20% (and meet derived requirements)
- Milestone 5: Environmental tests of flight-like sensor chip assembly complete, report in preparation
- Coronagraph
 - Milestone 7: Completed. Spectrograph dark current <0.001 e/pix/s and read noise <1e/pix/frame
 - Milestone 8: Not met. PIAACMC <10⁻⁸ raw contrast 10% broadband in static environment
 - Milestone 9: In progress. OMC <10⁻⁸ raw contrast at 10% broadband in dynamic environment. Now resolving GSE limit (factor of ~2) to meet requirement

Large Binocular Telescope Interferometer

Measuring HZ Exozodiacal Dust, Informing Designs of Future Missions

- Termination Review held July 12 after year with only 1 HOSTS star measured. APD decision to continue HOSTS survey subject to binding NASA review at conclusion of 2017A semester: 35-star HOSTS survey delivery planned for September 2018
- 2016B Progress:
 - Three stars of HOSTS survey measured in November, and partial measurements on two more – bringing the HOSTS total to ~8 stars
 - HOSTS Survey prevented in (3 of 6) runs by problems with LBT adaptive secondary mirror, and in (1 of 6) runs by problems with LBTI slow pathlength corrector
- LBT planned to return to binocular operation for final 2016B run (January). ExEP will conduct Project Assessment Review in February 2017 to evaluate progress on HOSTS survey

LBTI instrument (green structure) mounted between the two LBT primary mirrors

NN EXPLORE

Partnership for Exoplanet Discovery and Characterization.

- Motivation
 - 2010 Decadal Survey calls for precise ground-based radial-velocity spectrometer for exoplanet discovery and characterization
 - Follow-up & precursor science for current missions (K2, TESS, JWST, WFIRST)
- Scope:
 - Extreme precision radial velocity spectrometer (<0.5 m/s) for WIYN telescope development is underway
 - Instrument planned to be commissioned by Aug 2019
 - Ongoing Guest Observer program using NOAO share of telescope time for exoplanet research. Please propose!
- Status
 - Held Instrument Detailed Design Review, and PDR for port adapter
 - Next steps: Disposition of Board recommendations, DDR for port adapter

NN-Explore Exoplanet Investigations with Doppler Spectroscopy

PI: S. Mahadevan

NOAO 3.5m WIYN Telescope Kitt Peak National Observatory Arizona

Strategic Astrophysics Technology - TDEM

Reports for completed and active TDEMs: <u>https://exoplanets.nasa.gov/technology/</u> Reviewed and approved by ExoTAC, Alan Boss (chair)

- TDEMs pending final reports (by year of ROSES call in December):
 - 2010
 - (Bierden) Environmental Testing of MEMs DMs
 - (Helmbrecht) Environmental Testing of MEMs DMs
 - 2012
 - (Kasdin) Optical and Mechanical Verification of External Occulter
 - 2013
 - (Bendek) Enhanced Direct Imaging with Astrometric Mass
 - (Cash) Development of Formation Flying Sensors
 - 2014
 - (Bolcar) Next Generation Visible Nulling
 - (Serabyn) Broadband Vector Vortex Coronagraph
 - 2015
 - (Breckinridge) Polarization in Coronagraphs

ExEP Technology Gap Lists

New Process for 2017 Technology Gap List

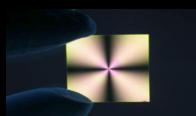
- ExEP solicited input from the community, in particular from large mission STDTs
- ExoTAC reviewed selection and prioritization of Technology Gaps

Starshade Technology Gap List

Table A.4 Starshade Technology Gap List

ID	Title	Description	Current	Required
S-1	Control Edge- Scattered Sunlight	Limit edge-scattered sunlight with optical petal edges that also handle stowed bending strain.	Graphite edges meet all specs except sharpness, with edge radius ≥10 µm.	Optical petal edges manufactured of high flexural strength material with edge radius ≤ 1 µm and reflectivity ≤ 10%.
S-2	Contrast Performance Demonstration ar Optical Model Validation	Experimentally validate the equations that predict the contrasts achievable with a starshade.	Experiments have validated optical diffraction models at Fresnel number of ~500 to contrasts of 3×10 ⁻¹⁰ at 632 nm.	Experimentally validate models of starlight suppression to ≤ 3×10 ⁻¹¹ at Fresnel numbers ≤ 50 over 510- 825 nm bandpass.
S-3	Lateral Formation Flying Sensing Accuracy	Demonstrate lateral formation flying sensing accuracy consistent with keeping telescope in starshade's dark shadow.	Centroid accuracy ≥ 1% is common. Simulations have shown that sensing and GN&C is tractable, though sensing demonstration of lateral control has not yet been performed.	Demonstrate sensing lateral errors ≤ 0.20m at scaled flight separations and estimated centroid positions ≤ 0.3% of optical resolution. Contro algorithms demonstrated with lateral control errors ≤ 1m.
5-4	Flight-Like Petal Fabrication and Deployment	Demonstrate a high- fidelity, flight-like starshade petal and its unfurling mechanism.	Prototype petal that meets optical edge position tolerances has been demonstrated.	Demonstrate a fully integrated petal, including blankets, edges, and deployment control interfaces. Demonstrate a flight-like unfurling mechanism.
S-5	Inner Disk Deployment	Demonstrate that a starshade can be autonomously deployed to within the budgeted tolerances.	Demonstrated deployment tolerances with 12m heritage Astromesh antenna with four petals, no blankets, no outrigger struts, and no launch restraint.	Demonstrate deployment tolerances with flight-like minimum half-scale inner disk, with simulated petals, blankets, and interfaces to launch restraint.

Appendix to be published Mid-January 2017


https://exoplanets.nasa.gov/technology/

Coronagraph Technology Gap List

Table A.3 Coronagraph Technology Gap List.

ID	Title	Description	Current	Required	
C-1	Specialized Coronagraph Optics	Masks, apodizers, or beam-shaping optics to provide starlight suppression and planet detection capability.	A linear mask design has yielded 3.2×10^{-10} mean raw contrast from $3-16 \lambda/D$ with 10% bandwidth using an unobscured pupil in a static lab demonstration.	Circularly symmetric masks achieving $\leq 1 \times 10^{-10}$ contrast with IWA $\leq 3\lambda/D$ and $\geq 10%$ bandwidth on obscured or segmented pupils.	
C-2*	Low-Order Wavefront Sensing & Control	Beam jitter and slowly varying large-scale (low- order) optical aberrations may obscure the detection of an exoplanet.	Tip/tilt errors have been sensed and corrected in a stable vacuum environment with a stability of $10^{-3} \lambda$ rms at sub-Hz frequencies.	Tip/tilt, focus, astigmatism, and coma sensed and corrected simultaneously to $10^{-4} \lambda$ (-10° s of pm) rms to maintain raw contrasts of $\leq 1 \times 10^{-10}$ in a simulated dynamic testing environment.	
C-3*	Large-Format Ultra-Low Noise Visible Detectors	Low-noise visible detectors for faint exoplanet characterization with an Integral Field Spectrograph.	Read noise of < 1 e-/pixel has been demonstrated with EMCCDs in a 1k × 1k format with standard read- out electronics	Read noise < 0.1e ⁻ /pixel in a 2 4k × 4k format validated for a space radiation environment and flight-accepted electronics	
C-4*	Large-Format Deformable Mirrors	Maturation of deformable mirror technology toward flight readiness.	Electrostrictive 64x64 DMs have been demonstrated to meet ≤ 10-9 contrasts in a vacuum environment and 10% bandwidth.	≥ 64x64 DMs with flight-like electronics capable of wavefront correction to ≤ 10 ⁻³ contrasts. Full environmental testing validation.	
C-5	Efficient Contrast Convergence	Rate at which wavefront control methods achieve 10 ⁻¹⁰ contrast.	Model and measurement uncertainties limit wavefront control convergence and require many tens to hundreds of iterations to get to 10 ⁻¹⁰ contrast from an arbitrary initial wavefront.	Wavefront control methods that enable convergence to 10 ⁻¹⁰ contrast ratios in fewer iterations (10-20).	
C-6*	Post-Data Processing	Techniques are needed to characterize exoplanet spectra from residual speckle noise for typical targets.	Few 100x speckle suppression has been achieved by HST and by ground-based AO telescopes in the NIR and in contrast regimes of 10-5 to 10-4, dominated by phase errors.	A 10-fold improvement over the raw contrast of ~10 ⁹ in th visible where amplitude errors are expected to no longer be negligible with respect to phase errors.	

*Topic being addressed by directed-technology development for the WFIRST/AFTA coronagraph. Consequently, coronagraph technologies that will be substantially advanced under the WFIRST/AFTA technology development are not eligible for TDEMs.



18

Strategic Astrophysics Technology - TDEM

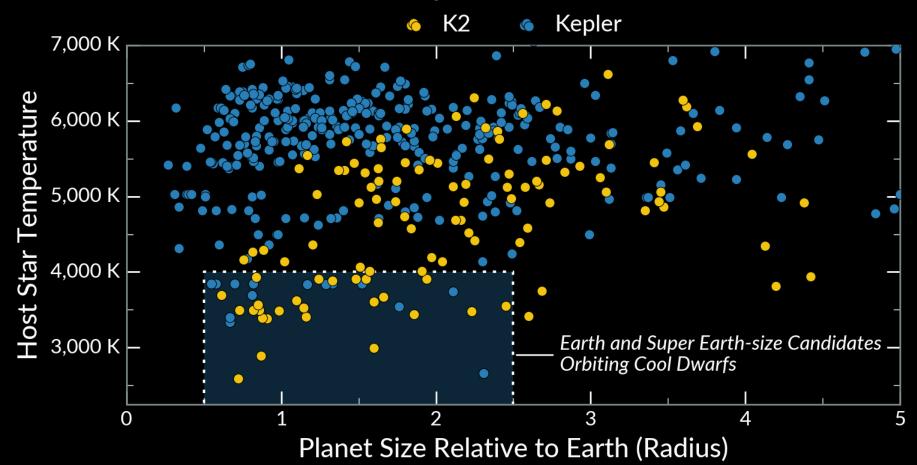
Advancing Technology Readiness towards next Decadal Survey

- Tuesday morning talks:
 - 9:00 am: Brendan Crill on how ExEP technology needs are identified and prioritized
 - 9:30 am Brendan Crill and Nick Siegler: discussion of ExEP's technology gap list

Appendix to be published Mid-January 2017

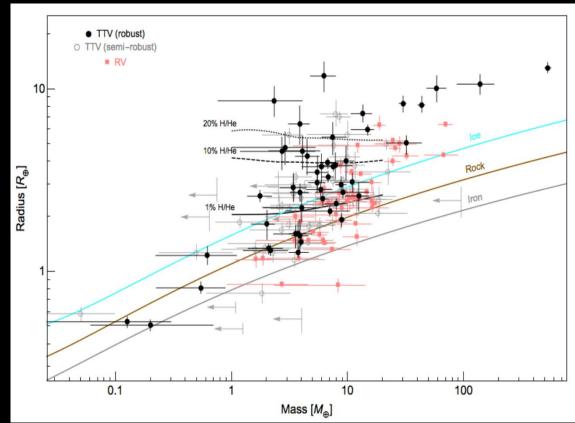
Kepler / K2

Progress towards 2010 Decadal Survey Priorities


Program Updates

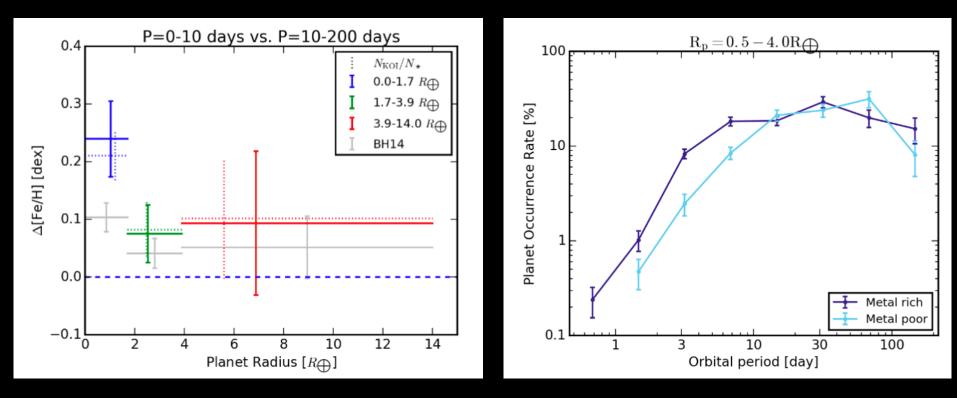
What's Coming Up

Planet Candidates for Atmospheric Characterization (Ks < 11)



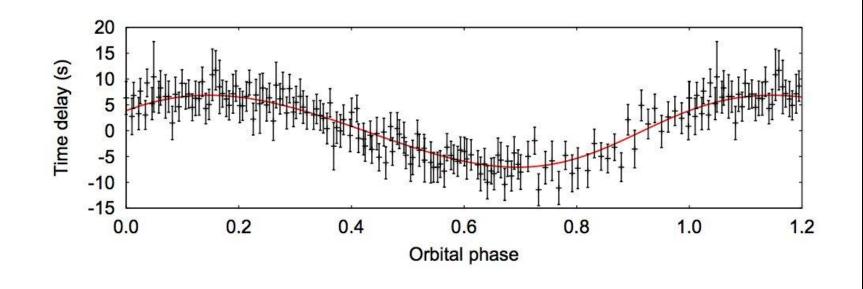
K2 / TESS splinter session: Wednesday 1/4 @7:30pm

Kepler Planet Masses and Eccentricities from Analysis of Latest TTV Catalog


Hadden & Lithwick 2016 arXiv:1611.03516

- 145 mass measurements,
 80 of which are new
- 49 masses are robustly constrained, 12 of which are new
- 54 multi-planet systems; periods 10-100 days
- Low eccentricities in general but a few nonzero measured
- Presentation at AAS

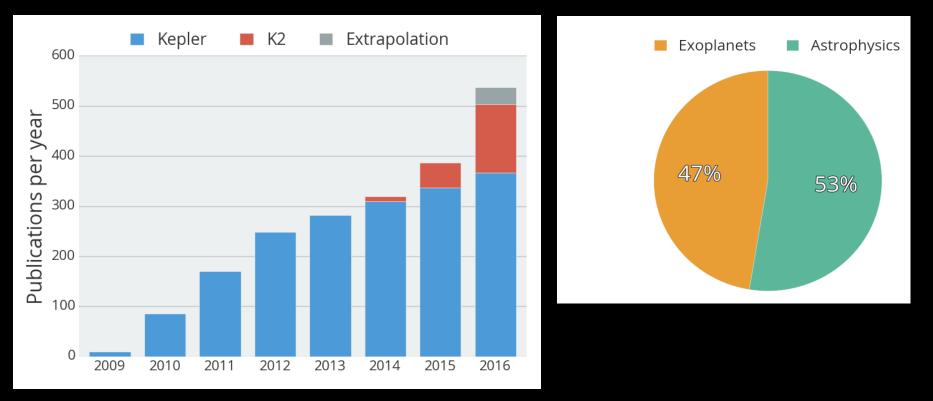
A Super-Solar Metallicity for Stars with Rocky Exoplanets


Mulders et al. 2016 AJ 152, 187, arXiv:1609.05898

Host stars of short-period rocky planets (P < 10 days, R < 1.7 R_{Earth}) have enhanced metallicity (Δ [Fe/H]=0.25 \pm 0.07 dex) compared to mean planet host population (4 σ difference in distributions via K-S test). **Metal-rich stars have 3x higher occurrence rate of small planets** (<4 R_{Earth}) in short-period orbits (P < 10 days).

Planet Orbiting A-type Main Sequence Star

Murphy & Bedding 2016 arXiv:1608.02945 (accepted)


Planets orbiting A stars are hard to find via RV and transits due to rapid rotation, larger stellar radii, and pulsations.

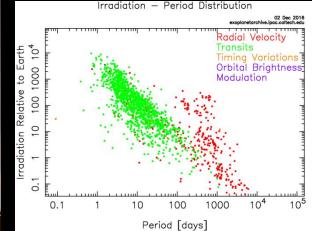
This planet identified via "light travel-time": tiny delays in pulsation arrival times. Only 14 second drift in 2.5yrs!

Kepler/ K2 Publication Statistics

2037 Publications, 1778 Peer-reviewed

as of 12/7/16

- The publication count for Kepler is 1838, that of K2 is 199
- Of the total, 965 relate to exoplanets (47%), 1071 to other areas of astrophysics (53%)


NASA Exoplanet Science Institute (NExScl) Update

- Sagan Summer School July 2016: "Is there a Planet in my Data?"
- Sagan Summer School August 2017: "Microlensing in the Era of WFIRST"
- NASA/Keck times (90 nights/yr) supports Exoplanets, Cosmic Origins, Physics of the Cosmos and Solar System science
- Exoplanet Archive tracks exoplanet population and Kepler pipeline products
- ExoFOP supports Kepler
 & K2 sources follow-up

Exoplanet Communications

Data Visualization tools and new thematic exoplanet hub

exoplanets.nasa.gov

Replaced exoplanets.jpl.nasa.gov Exoplanet-thematic content featuring content across NASA. 3D, interactive planet renderings Custom planet textures can be created for press releases. (contact the Comm team in advance)

The Starshade Readiness Working Group (SSWG)

https://exoplanets.nasa.gov/exep/studies/sswg/

- Require a risk reduction plan for technology validation of starshades to enable starshade flight science missions to be considered in 2020 Decadal Survey
- Chartered to answer these questions and deliver recommendation:
 - How to go from TRL 5 to ~TRL6,7?
 - Do we need a tech demo, and if so, what is it?
- Adopted the Exo-S probe "Starshade Rendezvous" as representative motivation of technology requirements
- Broad participation; Chairs: G. Blackwood (ExEP/JPL), S. Seager (MIT)
- Final report delivered to APD Director 11/9/2016
- Among the findings:
 - 1. A ground-only development strategy exists to enable a starshade science flight mission such as WFIRST Starshade Rendezvous
 - 2. A prior flight technology demonstration is not required prior to KDP-C of WFIRST Rendezvous

Full briefing at link above, and on Friday Jan 6 starshade splinter session

The Starshade Technology Development Activity

Starshade to TRL 5 (S5)

- Purpose: achieve TRL5 to support future exoplanet missions with significant progress for consideration by the 2020 Decadal Survey
- Currently developing a technology development plan as a recommendation to the Astrophysics Division in late 2017
- Held an all-day public Starshade Technology Workshop in Pasadena, CA on December 1, 2016
 - Broad institutional participation over 80 local and remote participants from NASA, industry, and academia
 - Discussed the technology development needs and opportunities for future planning and prioritization
- Next steps: three follow-on workshops in late Feb-April for major technical themes and trades identified in the December workshop

Support for Decadal Large Mission Studies

- Charter signed for Exoplanet Standards and Definition Team
 - Completed ExoSIMS science planning and yield tool for large mission studies (Savransky, Morgan)
- Considered inputs from LUVOIR, HabEx, and OST in updated definition of Program Technology Gap list
- Made presentations to all four flagship study STDTs:
 - Keith Warfield (PCE) on lessons learned from prior decadal surveys
 - Gary Blackwood on Architecture trade methods
- High Contrast Imaging technology initiatives:
 - Segmented Coronagraph Design & Analysis: program-funded study to evaluate coronagraph designs suitable to segmented apertures. See Stuart Shaklan's recent online colloquium: <u>https://exoplanets.nasa.gov/exep/technology/tech_colloquium/</u>
 - Planning for Experimental demonstration of 10⁻¹⁰ raw broadband contrast in HCIT. Goal of 2019 completion.

Standard Definitions and Evaluation Team Update

- Charter Signed
 - Generalized to include FIRS for direct imaging
 - Does not include transit spectroscopy
 - <u>https://exoplanets.nasa.gov/exep/resources/documents/</u>
- EXOSIMS 1.0 is complete and validated (unit & integration tests)
- Inputs:
 - SAG13 Occurrence Rates nearing completion
 - Developing an EXOSIMS module for parameterized distribution
 - Chris Stark leading poll and discussion to select nominal HZ and earth-like radii
 - Avi Mandell leading draft definition of characterization metrics
 - Near Term open issues: albedo, eccentricity

Rhonda Morgan Bruce Macintosh Dmitry Savransky Chris Stark Avi Mandell Ruslan Belikov John Krist Eric Nielson

<u>STDT Liaisons:</u> Courtney Dressing Karl Stapelfeldt Klaus Pontoppidan

Kepler / K2

Progress towards 2010 Decadal Survey Priorities

Program Updates

What's Coming Up

What's Coming Up

• AAS Sessions of Note:

- New Methods for Teaching about Exoplanets Wed. Jan 4, 12:30-2:00 PM in Dallas 1
- Science Opportunities with K2 & TESS, Wed. Jan 4, 7:30-9:00 PM in Texas C
- WFIRST Status and Science Opportunities, Thurs Jan. 5, 7:30-9:00 PM Grapevine B
- Starshade Development for Direct Imaging of Exoplanets, Friday Jan. 6, 2:00-3:30 PM in Appaloosa 1

• Upcoming conferences

- 21st Microlensing Conference, February 1-3 Pasadena CA
- 2017 Astrobiology Science Conference, Apr 24-28 Mesa AZ
- Kepler/K2 SciCon IV, June 18-22 Mountain View CA
- Astronomy in the 2020s: Synergies with WFIRST, June 26-30 Baltimore MD

Discussion topics : now and 11:30 Tuesday

- Radial velocity provides key precursor and follow-up data. NASA is funding NEID for WIYN. What should be the priorities for additional RV capabilities in support of NASA missions ?
- ExEP will be organizing a workshop in the spring on telescope stability issues for high contrast imaging. We invite your suggestions on topics that should be covered.

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Acknowledgements

- This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. © 2017 All rights reserved.
- Work was also carried out at NASA's:
 - Goddard Space Flight Center
 - Ames Research Center
- Work was carried out as well under contracts with the National Aeronautics and Space Administration and:
 - Princeton University
 - University of Arizona
 - Northrop Grumman Aerospace Systems
 - National Optical Astronomy Observatory (NOAO)
 - Massachusetts Institute of Technology
 - Pennsylvania State University