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As planning for the next generation of high contrast imaging instruments (e.g. WFIRST, HabEx,              

and LUVOIR, TMT-PFI, EELT-EPICS) matures, and second-generation ground-based extreme         

adaptive optics facilities (e.g. VLT-SPHERE, Gemini-GPI) are halfway through their large main            

surveys, it is imperative that the performance of different designs, post-processing routines,            

observing strategies, and survey results be compared in a consistent, statistically robust            

framework. SAG19, exoplanet imaging signal detection theory and rigorous contrast metrics, is            

overarching to all direct imaging instrument, strategies, and methods. The scope of SAG19 is: 

 

1- To go back to the basics of Bayesian Signal Detection Theory (SDT).  

Bayesian SDT implies H0:signal absent / H1:signal present hypothesis testing, and invokes            

well-known concepts such as: the confusion/contingency matrix, false positive (type I error),            

false negative (type II error), true positive, and true negative fractions, and useful combinations              

of these quantities such as sensitivity (or completeness) and specificity. 

 

2- To rebuild a solid set of usual definitions used for or in lieu of “contrast” in different contexts,                   

such as astrophysical contrast or ground truth, instrumental contrast used for           

coronagraph/instrument designs, and the measured on-sky data-driven contrast. 

 

Bayesian, hypothesis testing SDT will automatically force our community to be inclusive of all              

possible aspects of exoplanet detection, and signal-to-noise ratio (SNR) metrics, including           

signal-related parameters: planet-star contrast, SED, polarization, variability; instrument        

parameters: throughput, bandwidth, Strehl ratio/encircled energy, background (sky/thermal, or         

astrophysical), detector characteristics; noise characteristics as affected by the starlight          

suppression technique (in a very broad sense): mean intensity, RMS pixel intensities, RMS             

resolution element (resel, of characteristic size wavelength/telescope diameter) intensities, the          

probability density function (PDF) computed over pixels, the same PDF computed over resels,             

their nature and higher order moments, the sample zone and size, outlier management, etc. 

 

3- To identify what we can learn and apply from communities outside our field (e.g. medical                

imaging). A good example is the widespread use of receiver operating characteristic curve             

(ROC) and area under the curve (AUC). ROC plots the true positive fraction against the false                

positive fraction, and is useful to capture the true performance of a given high contrast imaging                



SAG19 Motivation and Goals

• The term “contrast” falls short as a general purpose 
performance metric

• SAG19 Goal #1: Create a unifying figure of merit that 
can represent the performance of direct imaging 
testbeds, ground-based observations, space-based 
observations, post-processing algorithms, internal and 
external occultors, and surveys

• SAG19 Goal #2: Provide user-friendly code to the 
community for generating this new figure of merit

• SAG19 Goal #3: Provide a standard dataset for the 
consistent comparison of new post-processing 
algorithms
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What is the definition of contrast?

• We can all agree that “contrast” has something to 
do with a planet-to-star brightness ratio

• However, we disagree on the computation of the 
contrast. Specifically, whether and how to include:

– Telescope throughput

– Coronagraph throughput

– Post processing algorithm throughput

– Speckle noise

– Small sample statistics
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What’s wrong with our contrast definitions?

• Example #1: a low-throughput testbed
– We define a raw contrast that’s related to the variance 

of the counts inside of a half dark hole and the 
throughput of the coronagraph

– If we only report the contrast values, and not the 
details of the calculation, readers may not understand 
which throughput issues were taken into account 
(e.g., field and time dependent corrections)

– Dividing the noise by the throughput artificially 
increases the number of false positives
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What’s wrong with our contrast definitions?

• Example #2: an optimistic survey
– We define a post-processed contrast that’s based on 

the variance of counts at a given separation and the 
throughput losses from KLIP.

– We decide to follow up any blobs that exceed a 
detection threshold of 3σ, to set the false positive 
fraction to 0.1% assuming white noise

– Because we didn’t have complete knowledge of the 
noise distribution, we spend much more than 0.1% of 
the survey time on false positive follow-up
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What do we want from a high contrast 
imaging performance metric? 

• We want a noise measurement that is sensitive to 
both poisson and speckle noise. 

• This is challenging due to:
– Limited sampling

– Unknown statistics (not Gaussian!)

• Such a noise measurement would enable:
– Follow-up decision/risk mitigation

– Management of telescope time/resources
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What do we want from a high contrast 
imaging performance metric? 

• We want to measure the fraction of real 
planets that a system will correctly identify 
(i.e. the completeness).

• Such a measurement will allow us to:

– Set more meaningful detection thresholds 

– Place statistically significant constraints on 
exoplanet population demographics
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The definition of contrast is corrupted 

• It currently has too many different meanings in 
different contexts (simulation, lab tests, telescope 
data)

• The only true, unambiguous definition of contrast is 
astrophysical planet/star brightness ratio

• Raw irradiance (flux) and noise variance do not fully 
describe relevant signal detection metrics such as FPF 
and TPF

• The goal of SAG19 is to identify and supply code for an 
alternative performance metric
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True Positive

False Negative

False Positive

True Negative

The Confusion Matrix

H1: Signal Present H0: Signal Absent

Detection

Null Result

True Positive Fraction
= TP/(TP+FN)

False Positive Fraction
= FP/(FP+TN)
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The Noise and the Signal
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The Noise and the Signal
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The False Positive Fraction (FPF)

H0: Signal Absent

Detection False Positive

Null Result True Negative

FPF = FP/(FP+TN)
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0.1% of the area 
of a normal 

distribution falls 
above x=3, so
FPF = 0.001

The False Positive Fraction (FPF)
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The True Positive Fraction (TPF)

H1: Signal Present

Detection True Positive

Null Result False Negative

TPF = TP/(TP+FN)
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The True Positive Fraction (TPF)

95% of the area 
of a normal 
distribution 

centered at 4.66 
falls above x=3, 

so TPF = 0.95
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The Receiver Operator Characteristic 
(ROC) Curve
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Threshold = 3
FPF = 0.001
TPF = 0.95



The Receiver Operator Characteristic 
(ROC) Curve
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The Receiver Operator Characteristic 
(ROC) Curve
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The Receiver Operator Characteristic (ROC) Curve

Fat-tailed 
noise 

distribution

Whitened 
noise 

distribution
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How can we fully capture a system’s 
performance with ROC Curves?

• Regions near the star have different noise properties 
than regions far from the star
– If the PSF is symmetric, each annulus requires a new FPF 

computation (otherwise, more complicated)

• Planets with different astrophysical flux ratios and 
separations require new TPF computations

• So, we need to make one ROC curve per separation 
per injected planet flux ratio. How do we represent all 
of that information in one figure?

• stuff
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How to Build a ROC Curve: the False 
Positive Fraction

• Pick a separation (e.g. 2λ/D) and a detection threshold (e.g. 1.5)
• Under the assumption that there is no signal, the fraction of 

resolution elements falling above the threshold is the FPF
• Try a range of thresholds such that the FPF varies between 0 and 1 

True FPF
= 0.07
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How to Build a ROC Curve: the False Positive Fraction

Res. Elem. Counts Meet threshold of 
counts ≥ 1.5?

1 -0.11 N

2 0.44 N

3 -0.35 N

4 0.3 N

5 0.29 N

6 -2.68 N

7 0.24 N

8 0.1 N

9 0.11 N

10 1.31 N

11 0.01 N

12 1.61 Y

True FPF = 0.07

Empirical FPF = 1/12 = 0.08
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How to Build a ROC Curve: the True 
Positive Fraction

• Consider the same separation and set of thresholds as in the FPF 
computations

• Put a fake planet onto each resolution element
• The fraction of resolution elements exceeding the threshold is the 

true positive fraction

True TPF = 
0.93 

Injected 
companion
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How to Build a ROC Curve: the True Positive Fraction

Res. Elem. Counts Meet threshold of 
counts ≥ 1.5?

1 2.76 Y

2 3.39 Y

3 2.74 Y

4 2.8 Y

5 -0.1 N

6 0.48 N

7 3.6 Y

8 4.19 Y

9 3.95 Y

10 4.02 Y

11 3.63 Y

12 5.79 Y

True TPF = 0.93

Empirical TPF = 10/12 = 0.83

Inject a 
companion 

one res. elem. 
at a time
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How to Build a ROC Curve: FPF and TPF 
pairs for a range of thresholds

Threshold = 1.5
FPF = 0.08 
TPF = 0.83

Liberal 
Thresholds

Conservative 
Thresholds
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Threshold 
= -10

Threshold 
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The Effects of Small Sample Statistics 

• Our empirical ROC curve is 
different from the 
theoretical ROC curve 
because we only have a 
small number of 
realizations of the noise 

• This is especially 
problematic at small 
separations: 
– 6 res. elems. at 1 λ/D
– 12 res. elems. at 2 λ/D

• Here, we can’t access the traditional gaussian false positive 
fractions corresponding to 3σ (FPF = 0.001) and 5σ (FPF = 3x10-7)

• However, our performance metrics are now based on the data 

• We may not require such small FPF for such small samples
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Possibilities for increasing the number of samples at 
small separations

• Different resampling methods may allow us to 
access smaller FPFs
– Angular Differential Imaging (ADI) datasets:

• Create more “final images” by randomly combining shorter 
exposures of different parallactic angles within a set of 
constraints

– Non-ADI datasets (e.g. WFIRST):
• Create more “final images” by randomly combining sets of 

shorter exposures

• Ultimately, however, we may not be able to 
access all FPFs for all separations
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Data challenge

• Ground-based telescopes:
– SPHERE/GPI/Keck data sets? Injection of false planets.

• Space-based telescopes:
– WFIRST simulations and lab tests

• The data must be carefully labeled (with ground-truth) 
and cover a wide range of scenarios (observing 
techniques, instruments, observation parameters, 
noise levels, etc)

• New proposed algorithms should use the standard data 
sets and the metrics accepted by the community when 
assessing their performance
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Continuing Work

• Simulate bootstrapping methods for increasing the 
number of samples at small separations

• Investigate the prospects for modeling the noise 
distributions at small separations in post-processed 
images. 

• Understand the procedures for calculating the false 
positive fraction in the presence of a suspected planet

• Provide a codebase for generating ROC curves in 
different scenarios: lab testbeds, ground-based ADI 
datasets vs. space-based static datasets, single 
observations vs. multi-target surveys). 
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Summary

• “Contrast” has too many different meanings in 
different contexts (simulation, lab tests, telescope 
data)

• The only true, unambiguous definition of contrast
is astrophysical planet/star brightness ratio

• We propose ROC curves as a standard 
performance metric to rigorously account for:
– False positive fractions

– True positive fractions
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Extra Slides
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The Receiver Operator Characteristic 
(ROC) Curve
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The Receiver Operator Characteristic 
(ROC) Curve
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Ambiguous contrast definitions, case I

• Assumption: SNR is solely a function of photon counts

• Aperture photometry: count photons in photometric aperture (or matched filter)

• ηtel = telescope throughput, without coronagraph, without apodizer, Lyot stop, etc., 
independent of photometric aperture size

• ηcor = coronagraph throughput or EE, fraction of the energy within photometric aperture (or 
matched filter)

• ε = astrophysical contrast, planet to star brightness ratio 

– independent of telescope and photometric aperture

• F = photon rate from star per unit time, at telescope input

• C = starlight suppression ratio = ratio of residual starlight photon counts in photometric 
aperture (or matched filter) to ηtel ηcor F t (off-axis PSF with all coronagraph optics in, 
including final DM settings)

• Planet signal = ηtel ηcor ε F t 

• Photon noise at planet location = sqrt (C ηtel ηcor F t)  

• SNR2 = (ηtel ηcor ε F t)2 / (C ηtel ηcor F t) = ηtel ηcor F t (ε)2 / C tilda ηcor t / C



Ambiguous contrast definitions, case II

• Assumption: SNR is solely a function of photon counts

• Aperture photometry: count photons in photometric aperture (or matched filter)

• ηtel = telescope throughput, without coronagraph, without apodizer, Lyot stop, etc., 
independent of photometric aperture size

• ηcor = coronagraph throughput or EE, fraction of the energy within photometric aperture (or 
matched filter)

• ε = astrophysical contrast, planet to star brightness ratio 

– independent of telescope and photometric aperture

• F = photon rate from star per unit time at telescope input

• C = starlight suppression ratio = ratio of residual starlight photon counts in photometric 
aperture (or matched filter) to ηtel F t (off-axis PSF with coronagraph out, apodizer out, DM 
flat = iteration 0 of WFC)

• Planet signal = ηtel ηcor ε F t 

• Noise at planet location = sqrt (C ηtel F t)  

• SNR2 = (ηtel ηcor ε F t)2 / (C ηtel F t) = ηtel ηcor F t (ηcor ε)2 / C # ηcor
2 t / C


