SAG 18 Starshade Metrics Update

1/2/2017

Tiffany Glassman

Introduction

- Goal of ExoPAG SAG 18 is to define how performance metrics for starshades are being used in the community
- SAG18 started with a survey to ask the community what metrics they've been using and how they're being used
 - Thank you to everyone who provided inputs
- Group led by Charles Lawrence of JPL is tackling similar questions, focused on a plot of testbed performance from Exoplanet office technology appendix
- Slides are a summary of the inputs/ discussion so far
- Aim is not to narrow down to one metric there are many different metrics that may be useful for different situations
 - Establish consensus on definitions, differences, and applications of each metric

Thanks to all the inputs to this work

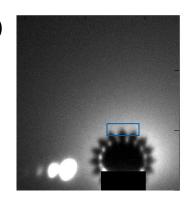
- SAG 18 co-chair Maggie Turnbull
- Inputs to SAG 18 survey
 - Ashley Baldwin, Dominic Benford, Jim Breckinridge, Robert Brown, Eric Cady, Shawn Domagal-Goldman, Anthony Harness, Joe Harrington, Aki Roberge, Tyler Robinson, Stuart Shaklan, Nick Siegler, Chris Stark, Steve Warwick, Sloane Wiktorowicz
- Lawrence starshade discussion group
 - Jon Arenberg, Web Cash, Tiffany Glassman, Anthony Harness, Jeffrey Jewell, Charles Lawrence, Doug Leviton, Stefan Martin, Charley Noecker, Stuart Shaklan, Ann Shipley, Steve Warwick, Ben Zeiger

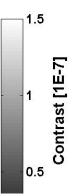
1) Fractional Planet Brightness

<u>Astrophysical property of the targets of interest – purely scientific definition</u>

Factor	Method
Residual light	Brightness of planet
Region of interest	N/A
Unsuppressed starlight	Brightness of star
PSF	N/A

- Pros: Defines properties of target of interest
- Cons: Not related to imaging system or test
- NB: Name from Turnbull et al. 2012, other names "Planet-Star contrast", "Planet Flux Ratio"

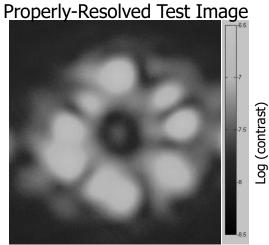

2) Raw Contrast

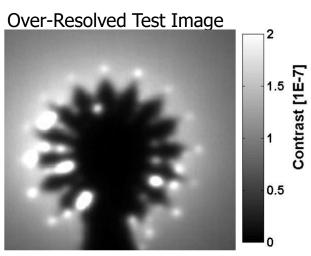


Straightforward calculation of average contrast in the focal plane

Factor	Method
Residual light	Average starlight irradiance in region of interest
Region of interest	Aperture/ pixel/ annulus in focal plane
Unsuppressed starlight	Average irradiance of unblocked star in equivalent aperture
PSF	No correction

- Pros: Simple to calculate in test data
- Cons:
 - Includes effects of imaging system (telescope), not just starshade
 - Doesn't consider PSF of planet (mostly coronagraph concern)
 - Doesn't consider unblocked PSF (issue for starshade tests)
 - Unclear how to interpret if performance is background-limited
- Variant is RMS contrast: No of background (instead of average) in region of interest
- Pros:
 - Simple to calculate in test data even when background limited
 - Assesses ability to detect planet against background noise
- Cons:
 - Not necessarily measuring effect of starshade itself (in case where non-starshade effects limit background noise)


3) Aperture-Corrected Contrast


Correct contrast for over-resolved PSF in starshade tests

Factor	Method
Residual light	Average starlight irradiance in region of interest
Region of interest	Aperture/ pixel/ annulus in focal plane
Unsuppressed starlight	Average irradiance of unblocked star in equivalent aperture
PSF	Convolve image by lower-resolution PSF (or ratio of lower to higher res. PSFs)

- Pros: Compare starshade images over-resolved in tests to each other and to likely flight systems
- Cons:
 - Extra calculation that is model dependent
 - Test images likely still at higher F# than flight

Samuele, et al. 2010, SPIE, 7731, 51

Glassman, et al. 2014, SPIE, 9143

Approved for public release; NG 16-2455 dated 12/15/16.

Corrects contrast for planet PSF

Factor	Method
Residual light	Average in raw image or peak of limiting speckle after processing
Region of interest	Aperture/ pixel/ annulus in focal plane
Unsuppressed starlight	Average irradiance of unblocked star in equivalent aperture
PSF	Correct for effect of system on point source in region of interest

- Pros: Assess detectability of planet through full imaging system
- Cons:
 - Extra calculation that is model dependent
 - Doesn't consider unblocked PSF (issue for starshade tests)
- For coronagraphs: brightness of a planet in region of interest, with the planet light equal to the residual starlight in the aperture. Brightness of planet uses models of effect of system on off-axis source.
- For starshades: calculate unsuppressed starlight as the average in aperture if the star was centered on the region of interest (with starshade in place)

5) Suppression

Total light entering the telescope

Factor	Method
Residual light	Integrated light in pupil with starshade in place
Region of interest	N/A
Unsuppressed starlight	Integrated light in pupil without starshade
PSF	N/A

Pros:

- Telescope agnostic useful for assessing and comparing tests with geometries that vary significantly from the flight system (unique for starshades)
- Quantitative measure of total amount of stray light entering the system

Cons:

- Can be dominated by background sources, therefore can be difficult to measure in lab/ field
- Difficult to translate into planet detectability in an absolute sense
- No meaningful coronagraphic equivalent must be translated to something like contrast to compare techniques

Starshade Radius

- Another important parameter that was raised by the Lawrence group is defining the radius of the starshade
 - $r_{1.0}$ = radius at petal tips
 - $r_{0.5}$ = radius at the 50% transmission point
 - $r_e = radius$ at the 1-1/e transmission point
- Relationships between these can vary depending on starshade design
 - Multiple radius values should be provided with each design/ test article if possible
- Starshade radius and any other factor derived from that (e.g. F#, IWA) should also be labeled with which radius was used

Approximate $r_{1.0}$ and r_e for a Hypergaussian starshade

Ratio of $r_{1.0}$ and r_e could look very different for a numerically determined shape

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN