

SAG19 Update Exoplanet Imaging Data Challenge

Benchmarking Image Processing Methods

https://exoplanet-imaging-challenge.github.io/

Faustine Cantalloube , Carlos Gomez-Gonzales, Olivier Absil, Carles Cantero, Bacher R., Bonse J. M., Bottom M., Dahlqvist C.-H., Desgrange C., Flasseur O., Fuhrmann T., Henning Th., Jensen-Clem R., Kenworthy M., Mawet D., Mesa D., Meshkat T., Mouillet D., Müller A., Nasedkin E., Pairet B., Pierard S., Ruffio J.-B., Samland M., Stone J. and , Van Droogenbroeck M.

Data challenge host

See Cantalloube et al. 2020 SPIE Proceedings paper!

Context & Goals

• Goals

- Provide a **library** of pre-processed HCI datasets to test the various algos.
- Provide tools to **compare new algorithms** to the state-of-the-art.
- Context
 - Collaborative initiative between several institutes worldwide.
 - Direct **support** from the Grenoble Alpes Data Institute (France)
 - Feedback from a large international team of researchers.

Data sets

- ADI subchallenge: 9 datasets from 3 instruments
 - VLT/SPHERE-IRDIS using an Apodized Lyot Coronagraph (H-band)
 - Keck/NIRC2 using an Annular Groove Phase Mask (L-band)
 - LBT/LMIRCam without coronagraph (L-band)
- ADI+mSDI subchallenge: 10 datasets from 2 instruments
 - VLT/SPHERE-IFS using an Apodized Lyot Coronagraph
 - **Gemini-S/GPI** using an Apodized Lyot Coronagraph
- All data are pre-reduced and cropped to 20 λ /D x 20 λ /D
- Data are given with the pixel scale (arcsec/px) of the instrument

Injecting Synthetic Planetary Signals

- Injected synthetic exoplanet signals: 0 to 5 per image
- Injections are **standard** (no smearing, photometric variability, anisoplanetism etc.).
- For multispectral, a **specific spectrum** is used.
- The (separation; position angle) is randomly picked in the field-of-view
- The contrast is randomly chosen within a range close to the 5-sigma detection limit of the baseline annular Principal Component Analysis algorithm

Gomez Gonzalez et al. 2017 github.com/vortex-exoplanet/VIP vip.readthedocs.io

VIP - Vortex Image Processing package

pypi package 0.9.11 Python 3.6, 3.7 build failing license MIT arXiv 1705.06184

000000	0000	00000	000000	.000				
`888.	.8'	`888'	`888	`Y88.				
`888.	.8'	888	888	.d88'				
`888.	.8'	888	88800	0088P'				
`888.8'		888	888					
`888'		888	888					
`8'		08880	08880					
Vortex Image Processing package								

docs passing

Required Input from Participants

After running a given algorithm on **all** pre-reduced datasets, the participants must provide:

- A detection map for each dataset
- A single detection threshold value for all datasets

Detection Metrics

For each threshold, we count the:

- True Positives (TP)
 False Positives (FP)
- False Negatives (FN) True Negatives (TN)

Then, we define the:

- True positive rate: TPR = TP/(TP+FN) •
- False positive rate: FPR = FP/(FP+TN)
- False discovery rate: FDR = FP/(FP+TP)
- Final F1-score (or harmonic mean of TPR): F1 = 2*TP/(2*TP+FP+FN)

Detection Metrics

- 1. F1-score (ideally 1)
- 2. AUC of the TPR (ideally 1)
- 3. AUC of the FDR (ideally 0)

AUC = Area Under Curve

Submissions

- ADI subchallenge: 22 valid submissions from 12 participants
 - 12 submissions used speckle subtraction techniques:
 - cADI, PCA, LOCI, STIM map, RSM map
 - 5 submissions used inverse problem approaches:
 - ANDROMEDA, FMMF, PACO, TRAP
 - 5 submissions used supervised machine learning:
 - SODIRF, SODINN
- **ADI+mSDI subchallenge:** 4 valid submissions from 3 participants
 - 1 submission used a speckle subtraction technique: PCA-ASDI
 - 3 submissions used the inverse problem approach:
 - PACO-ASDI, FMMF, ANDROMEDA

ADI Subchallenge: Ranking the results by the F-1 score

ADI+mSDI Subchallenge: Ranking the results by the F-1 score

Results

• ADI subchallenge:

- The rankings based on the three scores generally give consistent results
- The latest techniques (e.g. RSM) perform better than classical speckle subtraction techniques
- However, the supervised machine learning techniques tested here suffer from high FPs
- Performance depends on the instrument and dataset
- ADI+mSDI subchallenge:
 - Spectral information enables the detection of fainter sources
 - More recent methods are generally better, but with some exceptions
 - The inverse problem approach allows for a comparison between the candidate and speckle spectrum

Future Work

- These results represent only Phase 1 of the data challenge!
- Future phases will:
 - Provide additional datasets, e.g. high spectral resolution data
 - Incorporate detection characterization (e.g. position and contrast)
 - Include extended sources to be detected
- Stay tuned for updates at future SPIE meetings!

