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March 2016:
Starshade Technology Development Activity Chartered
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 Interface definitions

« System error budget and
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Technical trades

Scaling issues

Reference mission (WFIRST)
Lead NASA center is JPL
Primary funding source



Key Goals and Deliverables of the
Starshade Technology Activity

« Advance the technology readiness of the starshade to TRL-5
— Byend CY17:

 TRL 5 Technology Development Plan
 TRL 5 success criteria (vetted by an external review board)
» key milestones with verification approaches
 high-confidence cost and schedule estimates
» key trade studies
 preliminary designs for remaining test articles and testbeds
 high fidelity error budget and key requirements

« Describe path to TRL-6 (PDR)

POC: John Ziemer (JPL)



May 2016:
Starshade Accommodation Added to WFIRST DRM

» WEFIRST is assessing the impact of accommodating a potential
future starshade mission

— First assessment briefing to NASA this month
— Final decision no later than summer of 2017

POC: Missie Vess (GSFC), John Ziemer/Doug Lisman (JPL)



November 2016:
Starshade Readiness Working Group Concludes

» Chartered with determining the path to flight, and if a space
demonstration was required

» Included more than 30 participants from industry, academia, and
multiple NASA centers

» Concluded a ground-based technology development program
would be sufficient
— Briefed NASA in November
— https://exoplanets.nasa.gov/exep/studies/sswg/
— AAS Splinter Session

POC: Co-Chairs: Gary Blackwood (ExXEP) and Sara Seager (MIT)
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Starshade Readiness Working Group

» 8 different options assessed
including:
« four flight demonstrations
+ two long ground baseline demo’s

« two ground demo’s addressing all
technology issues

» Options put forth separately by
NGAS and JPL showed ground
development paths to TRL-6 that
addressed the three technology
areas

» Stanford mDOT (Pl D’Amico; flight
demo) recognized as enhancing
AT R . formation flying sensing and control

POC: Charley Noecker (JPL) along with optical performance but

at additional costs and risk




Ongoing:
Next Generation Exo-Planet Mission Studies
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Next Generation Exo-Planet Mission Studies
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Starshades appear to outperform coronagraphs for
telescope apertures less than 6 m



Next Generation Exo-Planet Mission Studies
EXEP Segmented Coronagraph Design and Analysis Study

4,62 m
Tip-to-tip
4.0 m flat-to-flat

12 m (widest flat-to-flat dimension)

12 m diameter

1,98 m
Tip-to-tip
1,71 m flat-to-flat

12 m (widest flat-to-flat dimension)

12 m diameter

In search of coronagraph
designs capable of
achieving 10-10 contrast
with large segmented
telescope primary mirrors

Will require 1-2 OOM
Improvement over SOA In
both contrast and
wavefront/structural
stability.

POC.: Stuart Shaklan (JPL)9



100m-class Starshades?
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Pathfinder, Mars Exploration Rovers Curiosity Rover

1st generation 2nd generation
(Air Bags) (Sky Crane)
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Starshade Technology Needs
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Three Key Technology Areas for Starshades

(1) Starlight Suppres§ion (3) Formation

3 ~. _ Sensing and Control

&
Suppressing scatted light off petal
edges from off-axis Sunlight

NG

Maintaining lateral offset requirement
between the spacecrafts

\

(2) Deplo'yment Accuracy
and Shape Stability

Suppressing diffracted light
from on-axis starlight

} Fabricating the petals
to high accuracy

Positioning the petals to high accuracy, blocking on-axis starlight,
maintaining overall shape on a highly stable structure 13



A Possible TRL-5 End State for a Starshade

(2) half- to full-scale
latching and unfolding
mechanism verifying
controlled petal
deployment with no edge
contact during and after
launch

(3) half- to full-scale
deployment and petal
positioning mechanisms

Key models and analyses
(1) full-scale petal verifying predicting:
optical shape tolerances
and edge scatter

performance
o e = A\

(5) Optical performance and
validated optical model

(6) Maximum micro-
meteoroid hole area

(7) Error budget and draft
requirements for a possible
mission concept

¥ X (8) Dynamic and thermal
(4) Sub-scale test stability modeling

demonstrating lateral

i i Note: the deployment
formation Sensing architecture remains an Path to TRL-6
accuracy open trade at this time




2017 EXEP Technology Plan Appendix
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Exo-S Study (2015)

Sara Seager, Chair (MIT)

I T

W. Cash (U (

Starshade Probe-Class

CL#15-1155

http://exoplanets.nasa.gov/exep/studies/
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Starshade Technology Progress in 2016
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5 m Origami Optical Shield Deployment Trial

POC: David
Webb (JPL)




5 m Origami Optical Shield Deployment Trial

(approaching flight-like materials)

POC: David Webb (JPL)



Petal Launch Restraint and Unfurling System

Developed with SBIR
partners Tendeg and Roccor

Simulated petal spines
wrapped around a full-scale
simulated perimeter truss
and spacecraft

Petal launch restraints
embedded in petals

POC: David Webb (JPL)



Telescope
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Optical Demonstrations at
McMath-Pierce Solar Telescope

Jupiter, Moons, and HG Starshade
March 22, 2015, Image #485
Jupiter, Moons, and HG Starshade
March 22, 2015, Image #491

Jupiter
completely
blocked

POC: Steve Warwick (Northrop Grumman Aerospace Systems)



Optical Demonstrations at Princeton

« (Goal is to observe 1e-9 suppression — consistent with
flight requirements and about 3 orders of magnitude
deeper than previous tests.

Laser
Station

Station

Station

POC: Jeremy Kasdin (Princeton)
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Optical Modeling Convergence

Intentionally flawed starshade
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POC: Jeremy Kasdin (Princeton), Web Cash/Anthony Harness (UC-Boulder), Steve Warwick (NGAS), Stuart Shaklan (JPL)
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Formation Sensing

* Novel approach using WFIRST as a reference mission:

— Coarse acquisition: Starshade Acquisition Camera
 Alternative: existing WFIRST Wide-Field Camera
— Intermediate acquisition: existing WFIRST Coronagraph Imager

— Final acquisition: existing WFIRST Coronagraph Low-Order Wavefront
Sensor

« Using pupil plane wavefront sensor reduces contrast requirement
between starshade laser beacon and leaked out-of-band stellar
diffraction

— Starshade drift to the right clearly shows in the pupil plane
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80x80 LOWES images are binned to 16x16

POC: Doug Lisman (JPL)
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WFIRST

NASA’s | 3 ' | 4-20%)
Exoplanet *i

Missions

starshades ——
under study

New Worlds

Telescope
~ 2035?)

1 NASA/ESA Partnership Large Binocular NN-EXPLORE
2 NASA/CNES/ESA Partnership Telescope Interferometer

Ground Telescopes with NASA participation
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Additional Slides
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Towards the Detection of Exo-Earths
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