Exoplanets are far away, and they are often obscured by the bright light of the stars they orbit. So, taking pictures of them the same way you'd take pictures of, say, Jupiter or Venus, isn't easy.

The major problem astronomers face in trying to directly image exoplanets is that the stars they orbit are millions of times brighter than their planets. Any light reflected off of the planet or heat radiation from the planet itself is drowned out by the massive amounts of radiation coming from its host star. It's like trying to see a firefly flitting around a spotlight.

So, it takes new techniques and advancing technology to make it happen.

Imaging a Planet in a Surprising Place

 b cen ab
This image shows the most massive planet-hosting star pair to date, b Centauri, and its giant planet b Centauri b. The star pair, which has a total mass of at least six times that of the Sun, is the bright object in the top left corner of the image, the bright and dark rings around it being optical artifacts. The planet, visible as a bright dot in the lower right of the frame, is 10 times as massive as Jupiter and orbits the pair at 100 times the distance Jupiter orbits the Sun. The other bright dot in the image (top right) is a background star. By taking different images at different times, astronomers were able to distinguish the planet from the background stars. Credit: ESO/Janson et al.

In December 2021, astronomers announced the discovery of b Cen AB b, an imaged planet that orbits two stars, each more massive than any other star known to host planets.

The European Southern Observatory’s Very Large Telescope (ESO’s VLT) has captured an image of a planet orbiting b Centauri, a two-star system that can be seen with the naked eye. This is the hottest and most massive planet-hosting star system found to date, and the planet was spotted orbiting it at 100 times the distance Jupiter orbits the Sun. Some astronomers believed planets could not exist around stars this massive and this hot — until this discovery.

About 325 light-years away in the constellation Centaurus, the b Centauri two-star system (also known as HIP 71865) has at least six times the mass of the Sun, making it by far the most massive system around which a planet has been confirmed. Until 2021, no planets had been spotted around a star more than three times as massive as the Sun. Read the ESO media release and the Janson et al. discovery paper for details.

Two Worlds Around a Sun-like Star

A direct image of a multi-planet system around a Sun-like star. The planets, TYC 8998-760-1 b and c, are visible middle and lower right. Image credit: ESO/Bohn et al.

These two planets – TYC 8998-760-1 b and now, c – are considered the first multi-planet system to be directly imaged around a Sun-like star. The star is a baby version of our Sun, only 17 million years old. The extreme youth of this system is a big part of why astronomers were able to capture direct images: The planets are so hot from their recent formation that they still glow brightly enough to be seen from our vantage point, even though they're hundreds of light-years away.

Planets b and c are much farther away from their star than, say, Jupiter and Saturn are from the Sun. Planet b is 160 times the Earth-Sun distance, planet c is about 320 times. Just for comparison, Jupiter is 5 times the Earth-Sun distance, Saturn 10 times.

Watching Four Planets in Orbit

Four planets gif
Four planets are in orbit around a star 129 light-years away in the constellation of Pegasus. Credit: Jason Wang and Christian Marois

Here, the black circle in the center of the image is part of the observing and analyzing effort to block the blinding light of the star, and thus make the planets visible. Four planets more massive than Jupiter can be seen orbiting the young star HR 8799 in a composite of sorts; it includes images taken over seven years at the W.M. Keck observatory in Hawaii.

The images were initially captured by Dr. Christian Marois of the National Research Council of Canada’s Herzberg Institute of Astrophysics. The movie animation was put together by Jason Wang, part of the Berkeley arm of the Nexus for Exoplanet System Science (NExSS), a NASA-sponsored group formed to encourage interdisciplinary exoplanet science.

The star, HR 8799, has continually played a pioneering role in the evolution of direct imaging of exoplanets. In 2008, the Marois group announced discovery of three of the four HR 8799 planets using direct imaging for the first time.

First Exoplanet Directly Imaged

A smaller planet is seen as a red sphere near a brighter, white-blue light of the much larger star.
This composite image shows an exoplanet (the red spot on the lower left), orbiting the brown dwarf 2M1207 (center). This photo of the exoplanet 2M1207b is based on three near-infrared exposures (in the H, K and L wavebands) with the NACO adaptive-optics facility at the 8.2-m VLT Yepun telescope at the ESO Paranal Observatory. Credit: ESO

In 2004, the first exoplanet imaged directly was 2M1207b, four times more massive than Jupiter. European Southern Observatory astronomers using the VLT (Very Large Telescope) in Chile. This composite image shows the exoplanet formally known as 2MASS J12073346-3932539 b (the red spot on the lower left), orbiting a brown dwarf 2M1207 (center). It orbits the failed star at a distance 55 times greater than the Earth to the Sun, nearly twice as far as Neptune is from the Sun. Planets that are far from their stars can be easier to directly image because they are less obscured by the light from their stars. The system 2M1207 is 170 light-years from Earth, in the constellation of Hydra. The photo is based on three near-infrared exposures (in the H, K and L wavebands).

More than 10 years later, astronomers used the Hubble Space Telescope to take a closer look. An artist's concept, below, is based on their observations.

A cloudy red exoplanet is seen in the dark of space.
An artist's concept of 2M1207b, a planet that is four times the mass of Jupiter and orbits 5 billion miles from its brown dwarf companion object. Image credits: NASA/ESA/G. Bacon/STScI

Hubble's image stability, high resolution, and high-contrast imaging capabilities allowed astronomers to precisely measure the planet's brightness changes as it spins. The researchers attribute the brightness variation to complex clouds patterns in the planet's atmosphere. The Hubble measurements not only verify the presence of these clouds, but also show that the cloud layers are patchy and colorless.