

In-Space Assembled Telescope (iSAT) Study

Steering Committee Telecon 5

September 28, 2018

Nick Siegler Chief Technologist NASA Exoplanet Exploration Program Jet Propulsion Laboratory, California Institute of Technology

© 2018 California Institute of Technology. Government sponsorship acknowledged. CL#18-5404

Today's Agenda

1. What's new?

- a) New members
 - i. New SC and SM members
- b) Concluded Activity 1a
 - i. deliverables
- c) Kicked off Activity 1b
 - i. status
- d) Many heading to VA
 - i. Agenda, goals

2. Next Steps

- a) Advance 1b to conclusion
- b) Plan Activity 2

3. Miscellaneous

- a) Briefed Hertz
- b) Scientific American article
- c) Interagency Science and Technology Partnership Open Forum Event

4. Open Discussion

What's New?

New iSAT Study Members

New Steering Committee Study Members

Transitioning from telescope focus to robotic assembly and systems focus

	1.	Dave Redding	JPL
	2.	Joe Pitman	consultant
	3.	Scott Knight	Ball
	4.	Bill Doggett	NASA LaRC
	5.	Matt Greenhouse	NASA GSFC
-	6.	Ben Reed	NASA GSFC
➡	7.	Gordon Roesler	DARPA (ret)
	8.	John Grunsfeld	NASA (ret)
	9.	Keith Belvin	NASA STMD
	10	.Brad Peterson	STScI/OSU
	11	. Florence Tan	NASA SMD
	12	. Ray Bell	Lockheed
	13	. Nasser Barghouty	NASA APD
→	14	. Dave Miller	MIT
	15	. Keith Warfield	NASA ExEP
-	16	. Bill Vincent	NRL
→	17	. Bo Naasz	NASA GSFC
→	18	. Erica Rogers	NASA OCT

Confirmed Study Members for Activity 1b

Telescope Systems	<u>Structures</u>		Launch
Lynn Allen (Harris)	Kim Aaron (JPL)	<u>Orbital</u>	Svstems/AI&T
Dave Redding (JPL)	John Dorsey (LaRC)	Mechanics/	Diana Calero (KSC)
Scott Knight (Ball)	Bill Dogget (LaRC)	Environments	Roger Lepsch (LaRC)
Allison Barto (Ball)	Joe Pitman (consultant)	David Folta (GSFC)	Mike Fuller (Orbital)
Keith Havey (Harris)	Keith Belvin (LaRC)	Ryan Whitley (JSC)	
Doug McGuffy (GSFC)			
Ron Polidan (consultant)	Eric Komendera (VA Tech)		
Bob Hellekson (Orbital)		Rendezvous &	Bo Naasz (GSFC)
Ray Bell (LMC)	Gateway	Proximity	
David van Buren (JPL)	Architectural Nate Schupe	e (LMC) Operations	Manufacturing
Kimberly Mehalick (GSFC)	Systems	ies (LaRC) Bo Naasz (GSFC)	Kevin DiMarzio (MIS)
	Paul Lightsey (Ball) Mike Elsper	man (Boeing)> Greg Lange (JSC)	──► Max Fagin (MIS)
	Bo Naasz (GSFC) Mike Fuller	(Orbital)	Bobby Biggs (LMC)
Robotics and Robotic			Alex Ignatiev (U Houston)
Servicing and Assembly	Controlo		> Rob Hoyt (Tethers)
Jason Herman (Honevbee)	Sunshad		
Atif Qureshi (SSL)	Kim Meha	lick (GSFC) SMES/Observe	ers
John Lymer (SSL)	Jon Arenbe	erg (NG) Keith Warfield (JI	PL)
Paul Backes (JPL)		Lynn Bowman (La	aRC) <u>Scientist</u>
Glen Henshaw (NRL)	The same of	Erica Rodgers (N/	ASA OCT) Brad Peterson (OSU)
Rudra Mukheriee (IPL)		John Grunsfeld (I	NASA retired) Eric Mamajek (NASA ExEP)
Gordon Roesler (ex-DARPA)	Carlton Peters (GSFC)	Phil Williams (La	RC) Matt Greenhouse (GSFC)
Mike Benner (DARPA)		Alison Nordt (LM	C)
Mike Fuller (Orbital)		Hosh Ishikawa (N	IRO)
Adam Yingling (NRI)	 5 NASA Centers 	Howard MacEwe	n (consultant)
Hsiao Smith (GSEC)	 14 private comp 	anies Kevin Foley (Boei	ing)
Dave Miller (MIT)	 4 gov't agencies 	Evan Linck (IDA)	
Ken Ruta (ISC)	 4 universities (s 		SAE)
Kim Hambuchen (JSC)	ared students n		
	grau students no	JL	
	shown here)		

Conclusion of Activity 1a (Telescope Modularization)

Process Activities

Activity 3: Write and deliver a whitepaper to APD and the Decadal

Activity 2: Estimate the costs and assess the risks of a reference iSAT

Activity 1a: Modularization and Testing

Activity 1b: Assembly and Infrastructure

Problem Statement (Activity 1a): Prioritize concepts of modularized designs and architectures for a 20 m in-space assembled telescope.

Musts

M1	Enable necessary adjustability and correctability of key optical components.
M2	Permit module servicing (repair, replacement, refueling) of all instruments and key spacecraft elements.
M3	Prevent failures within a module from propagating to other parts of the system
M4	Enable all modules to be testable and verifiable, including their interfaces.
M5	Fit into the selected LV
M6	Enable the direct imaging and spectral characterization of exoplanets with a coronagraph at contrast levels of 1e-8 or better.

Wants

ID			COMMENTS		Reference Option A	Reference Option B
	Programmatic					
				_		
	WANTS		COMMENTS			
	Technical					
			The more mature the concept the better,			
W1	Few requirements for technologies		the rewer "Miracles" the better; the larger			
	exceeding the SUA.		the number of low TK subsystems the			
		_	Worse, reach TRL 5 at earliest possible date	-		
			Clear simple architectures and interfaces			
	Clear and simple architectures and		are preferred over those that require			
W2	interfaces.		unique tools, infrastructure, large number			
			of non-identical modules, large number of			
			interfaces.			
			Modularization concept is robust to			
W3	Robust architecture		localized failures, LV failures			
			Exo-Earth imaging and characterization is			
	Enables the direct imaging and spectral		expected to require a greater level of			
W4	characterization of exo-Earths at		stability on the observatory. WFE stability is			
	contrast levels of 1e-10 or better		expected to be 10s of pm over 10 min time			
			scales			
	Fashlas in space access to all sequicable		Architectural flexibility - the more access			
W5	Enables in-space access to all servicable		the better but perhaps not all modules			
	modules for repairing or replacing.		need accessing; just the critical ones.			
			The more modules that can be testable and			
			verifiable the better. This implies module-			
W6	Testable and verifiable at interfaces		level tests on the ground. But is a full			
			assembly on the ground required? Could be			
			a candidate for a Must.	_		
	6-11					
	Cost		The last sector of a start sector of a sector of			
			The less expensive the better. Common			
			elements/standarization.			
W7	Minimize cost		size of modules consistent with industry			
			greater the consistency with industry			
			canabilities the lower expected cost			
			superinter the lotter expected cost			
	Schedule					
	Programmatic					
			If the modularized design reduces the size			
WR	Flexibility to serve more science		of the science community then it would be			
	communities		weighted less. An example is narrow FOV,			
			another is only a narrow wavelength.			
			Would like at least a 30 yr life time which			
	Life span		will require servicing both the instruments			
W9			and the spacecraft.			
1415.5	Modularized design does not preclude an		Evolvability may be an important feature			
W10	evolvable architecture.		but not a Must.			

Telescope Modularization Workshop Caltech, June 5-7

47 invited participants from government, industry, and academia spanning the fields of astrophysics, engineering, and robotics.

Telescope Modularization Concepts

- A 20 m off-axis f/2 telescope would serve as a good reference for the Study
- No better compelling alternatives for this study.
- No major show stoppers were found.
- The consensus was that modularizing this reference telescope would be feasible with current and anticipated technology and processes.

20 m, f/2, off-axis, segmented, filled-aperture, with coronagraph, UV/O/NIR

Modularized Telescope Sub-Elements

(all were discussed during the Workshop)

Telescope architecture and modularization are notional.

Optical Layout with Five Instruments

Perspective view

Three Analyses

1. Truss architecture (LaRC)

Deployable truss module for the backplane truss

Large deployable booms for the metering truss (made in space not ruled out)

2. Stray light analysis (GSFC)

Stray light analysis for multiple sun angles

3. Sunshade architectural concept

L-shape sunshade concurred and enlarged

Telescope Bus and Solar Arrays

Following drawings all come from R. Mukherjee et al. 2018

Telescope Deployed Trusses

Sunshades

Secondary Mirror Shroud

Simple power connection and free-space optical communications across short gap using a standard interface for all modules

20

. Kal

iSAT Study 20 m Reference Telescope

iSAT Study 20 m Reference Telescope

Will parametrize downward to 15, 10, and 5 m apertures

Problem Statement (Activity 1a): Prioritize concepts of modularized designs and architectures for a 20 m in-space assembled telescope.

Musts

M1	Enable necessary adjustability and correctability of key optical components.
M2	Permit module servicing (repair, replacement, refueling) of all instruments and key spacecraft elements.
M3	Prevent failures within a module from propagating to other parts of the system
M4	Enable all modules to be testable and verifiable, including their interfaces.
M5	Fit into the selected LV
M6	Enable the direct imaging and spectral characterization of exoplanets with a coronagraph at contrast levels of 1e-8

20 m Off-Axis

Actual assessment: The Study Members did not identify anything within the 20 m off-axis modularized reference telescope that preempted these Musts from being met.

or better.

Activity 1b Kicked Off (Telescope Assembly and Infrastructure)

Process

Musts

	MUSTS:			t.
	Assembly and infrastructure concent			
	must		COMMENTS	
	Technical		COMMENTS	ŀ.
	rechined		Useful refers to obtaining science data. To	,
			meet this Must the Concent must	ľ
			demonstrate it can service the observatory	
			and spacecraft for repairs and refueling	
M1	Have a useful lifetime of ≥ 30 years	Must	and spacecraft for repairs and refueling.	
			Examples of servicing includes replacing	
			examples of servicing includes replacing	
			and trues infrastructure	
			It is important that next generation science	ł.
	Be able to replace the observatory's		instruments replace older units as	ĺ.
M2	instruments and select modules with	Must	instruments replace older units as	Ľ
	newer ones		technologies change and new science	
	Fuching the charge stars to "value acts" from		questions arise.	ł.
	Enable the observatory to relocate from	Must		ſ
IVI3	its assembly point to SE-L2 (if not already	Must		
	assembled in SE-L2)		Orbital re-positioning capabilities	
M4	Access the payload stowage location of	Must		¢
	the resupply vehicles		The entire telescone woods to be designed	
	Not violate the expected contamination	March	The entire telescope needs to be designed	¢
IVI5	allocation budget for each module as well	Must	such that there is a docking station well clear	
	as the system		of the optics, to avoid pluming.	
M6	Enable incremental and end-to-end in-situ	Must		¢
	V&V of payload			ł.
	Tolerate micro-meteroid and orbital			¢
M7	debris requirements at the assembly	Must		
	location			

Wants 24 so far

	WANTS:	Must,	
	The assembly and infrastructure	Want, or	
	<u>concept can</u>	Neither	COMMENTS
	Technical		
W1	Have a lifetime exceeding 30 years	Want	The longer the lifetime the better. This is a reflected Must (M1)
W2	Enable refueling	Want (high)	
W3	Go unserviced for a minimum of 5 yr	Want	Servicable interval to be as long as possible
W4	Manipulate all modules (size, materials, etc) by the assembling agent(s)	Want (high)	We may have a base platform which faciliates the assembly on it but is not itself manipulatable
W5	Access all regions of the observatory	Want	Might not want to access certain regions post assembly
W6	Use common assembly and verification tools (like laser trackers)	Want	Unique tools/tooling will fare less well as those that are more common and standardized.
W7	Allow select assembly components to be adjustable	Want	Instrument, trusses, mirror rafts alignment to mitigate I&T positioning risks
W8	Permit assembling agents' behaviors to be pre-verified	Want	There cannot be a part of the system (whether it is a robotic artificial vision system, or a dexterous manipulation system, or a planner) whose behavior isn't predictable and deterministic over all the operational environments. Astronauts can fit into this as well given their training and scripts.

Face-to-Face Meeting

NASA Langley Research Center

- Oct 2-4
- Expecting out 60 Study Members and Observers; local guests
- Goals will be:
 - advancing robotic assembly and infrastructure concepts
 - advancing the Must and Wants

Features of Kepner-Tregoe Decision Process

Decisi	Decision Statement									
ч					Opti	ion 1	Opti	on 2	Opti	on 3
ipti		Featu	re 1							
scri		Featu	re 2							
De		Featu	re 3							
	Musts									
		M1			•	•	~	•		•
		М2			•	•		?		?
tior	М3					•	~		>	<
Iua	Wants		Weights							
Eva		W1	w1%		Rel s	core	Rel s	core	Rel s	core
	W2 w2%				Rel score		Rel score		Rel s	core
		W3	w3%		Rel score		Rel score		Rel score	
			100%	Wt sum =>	Score 1		Score 2		Score 3	
	Risks				С	L	С	L	С	L
		Risk 1			Μ	L	М	L		
Risk 2					Н	Н	Μ	M		
Final I	Decision	, Accou	unting for	Risks						
					C = Con	sequenc	æ, L = Lik	kelihood	l	

Day 1 Agenda

	Торіс	Presenter	Start	Duration	Intended Result
1	Sign in and Refreshments		8:30	0:30	
2	Welcome	Siegler	9:00	0:05	
3	Logistics overview	Bowman	9:05	0:05	
4	LaRC Welcome	Cathy Mangum	9:10	0:05	
5	Sponsor Comments	Paul Hertz (remotely)	9:15	0:10	
6	Opening Remarks	Siegler	9:25	0:20	Study Members gain understanding of the rationale, process, and goals of the 3 day meeting.
7	Introductions	All	9:45	0:15	
8	Technical Overview	Mukherjee	10:00	1:00	Study Members are presented with a recap of the Activity 1a telescope modularized architecture. Members are also presented with the different concepts for Activity 1b and overview of the process for the breakout sessions
9	Musts and Wants Overview	Siegler	11:00	0:45	Study Members receive a status of the Decision Matrix Musts and Wants
10	Lunch- NACA room	All	11:45	1:15	
11	Environments Overview	Dave Miller	13:00	0:45	Study Members are presented a systems level discussion of the various space environments for assembly and operations
12	Brief Introduction to Breakout sessions	Mukherjee	13:45	0:15	Study Members get a quick primer on the breakout sessions
13	Breakout Session 1	Breakout Leads	14:00	1:45	The break-out groups have their first discussion
14	Break		15:45	0:15	
15	Breakout Session 2	Breakout Leads	16:00	1:45	The break-out groups have their second discussion
16	Outbrief	Breakout Leads	17:45	0:15	Breakout leads provide quick updates on the two breakout sessions
17	Adjourn		18:00	0:00	Facilitators provide a quick recap of the breakout sessions
	End Day 1		18:00		
18	No Host Group Dinner @ "The Vanguard"		19:30		https://www.thevanguard757.com/

Day 2 Agenda

	Торіс	Presenter	Start	Duration	Intended Result
1	Sign in and Refreshments		8:00	0:30	
2	Recap	Siegler	8:30	0:15	Quick recap of day 1
3	Breakout session 3	Breakout Leads	8:45	1:30	2 groups evaluate the concepts
4	Break		10:15	0:15	
5	Breakout session 4	Breakout Leads	10:30	1:30	2 groups evaluate the concepts
6	Group Photo	All	12:00	0:15	
7	Lunch- NACA room (Guest Speaker: Debi Tomek, Deputy Director of Space Technology and Exploration at LaRC)	All	12:15	1:00	
8	Breakout session 5	Breakout Leads	13:15	1:30	2 groups evaluate the concepts
9	Break		14:45	0:15	
10	Breakout session 6	Breakout Leads	15:00	1:30	2 groups evaluate the concepts
11	Outbrief		16:30	1:30	Facilitators provide detailed recap of their group's findings on the different concepts (including day 1 and 2)
12	Adjourn		18:00		
	End Day 2		18:00		

Day 3 Agenda

	Торіс	Presenter	Start	Duration	Intended Result			
1	Sign in and Refreshments		8:00	0:30				
2	Recap	Mukherjee	8:30	0:15	Recap of findings from days 1 and 2			
3	Hybrid Concepts	Siegler	8:45	0:30	Study Members discusses any new concepts hybridizing the concepts from day 1 and 2			
4	Map Concepts to KT Matrix	Siegler	9:15	2:45	Study Members discuss relative merits for the different concepts per the criteria in the Musts and Wants			
5	Summary/Wrap Up	Siegler/Thronson/ Mukherjee	12:00	0:30	Next steps and action items are identified			
	Adjourn		12:30					
	End Day 3 12:30							

Sample Questions

Intended to help describe and compare the Assembly and Infrastructure Concepts

- 1. Describe the RPO con-ops of the assembly agent, resupply vehicle, sensing and spacecraft control authority.
- 2. Describe the assembly agent (single or multiple) and their roles.
- 3. Describe the assembly sequence (i.e. how do we go from the modules to the observatory)
- 4. Describe mobility or accessibility to different regions of the observatory for assembly estimate precision and accuracy

Next Steps

Next Steps

Complete Activity 1b

- Planning for mid-Nov
- Expect forward analyses needing to be work out

Activity 2: Assess Cost and Risk Impacts of iSA Paradigm

- Develop Product Life Cycle factoring in:
 - More parallel activities
 - Less systems-level testing; take advantage of increased adjustability and correctability of final integrated system
 - Mass and volume relief
 - Deferred I&T stage (in space, with numerous LVs)
- Feeds into a costing exercise for each of the four aperture sizes
- Focused engineering design/analyses sprints as needed
- Costing approaches:
 - 1) Identify cost and risk deltas with respect to the current paradigm
 - 2) Costing exercise combination of grass roots plus heritage
 - Some subsystems will have heritage and some will require new costing
 - 3) Parameterize to 5, 10, 15, 20 m apertures

Top-Level Schedule

Miscellaneous Topics

Miscellaneous iSA Topics

- 1. Briefed Paul Hertz at NASA HQ in September
- 2. Scientific American article on iSSA should be out in next few months
- 3. Interagency Science and Technology Partnership Open Forum Event
 - The purpose of the Open Forum is to understand the current state of commercial investments in in-space assembly related systems and capability developments and how they may fit with the in-space assembly capability needs of any of the partners.
 - Nov 6 at NASA HQ
 - <u>https://www.fbo.gov/index.php?s=opportunity&mode=form&id=521f240a</u> 66d117dfc929bde17d427791&tab=core&_cview=0

Open Discussion

