

### In-Space Assembled Telescope (iSAT)

Steering Committee Telecon 4

July 25, 2018

**Nick Siegler** 

Chief Technologist, NASA Exoplanet Exploration Program NASA Jet Propulsion Laboratory, California Institute of Technology

© 2018 California Institute of Technology. Government sponsorship acknowledged



### Today's Agenda

#### 1. Update on Study activities

- Caltech Workshop
- 2. What's new?

#### 3. Next Steps

- Need help
- 4. Open Discussion

But first, any general questions?

# **Update on Study Activities**

# Last Telecon's Next Steps

- Advance Selection Criteria
  - Will continue advancing them at the Workshop and through telecons post-Workshop

#### • First Face-to-Face Workshop for the Working Group

- June 5-7 at Caltech
- Focus is on Activity 1a: Designing and Architecting a Modularized Telescope

The first face-to-face meeting for the iSA Telescope Study was held on June 5-7, 2018 at Caltech, hosted by the NASA Exoplanet Exploration Office.



Invited participants only:

- 46 from government, industry, and academia spanning the fields of astrophysics, engineering, and robotics.
- 29 NASA, 12 industry, 4 academia, and 1 government agency

# **Caltech Workshop (June 5-7)**

#### • The goals of the Workshop were to:

- 1) Create concepts (Options) for modularized telescope designs
- 2) Advance the Selection Criteria
- 3) Build a community of experts to advance in-space assembly
- Initial conditions for the reference telescope included:
  - A 20-m, filled-aperture, off-axis, non-cryogenic telescope operating in the UV/V/NIR, located at Sun-Earth L2.
  - The instrument suite would include a coronagraph
  - Astronaut- and robotic-enabled assembly/servicing is available
  - 5-m class LV fairing

#### • Participants broken into two breakout teams charged with:

- Modularizing the Primary Mirror and Backplane
- Modularizing the Rest of the Telescope
- Assembly, Integration, and Testing (on the ground and in space)

# THE KECK CENTER IN HONOR OF W.M. KECK JR.







#### Breakout Session 1: Modularizing the Primary Mirror and Backplane

- 1. What is the composition of the primary mirror? What is the depth of the back plane, how is it powered, what are the reflectors and what is the avionics scheme, is metrology integrated or separate from the PM, are there actuators and if so, what are their roles, how
- 2. What are the modules that make up the assembled PM? Considerations include interfaces, is the PM phase matched, among others power, communications, harnesses, structural connectors as well as internal composition
- i.e. what is contained within individual modules please be specific. 3. What is the packing configuration within a single or multiple launch vehicle fairing(s)? 4. What are the SWAP (size, weight, actuation, power) requirements of each module?
- What is the thermal architecture and how is it implemented (or accommodated within the modularization scheme)?
- 6. What is serviceable in the PM?

(IUID

- 7. What are the assumptions regarding modularization?
- What is the role, if any, of post assembly adjustments? 8.
- Are there survivability considerations during assembly for the PM under construction and for the individual modules? And how are these different from operational conditions? How

Keck

stelle.



# **Generating Modularization Design Options**

- Trade space for <u>modularization</u> is very open
  - Number of modules
  - Segment size, segment carriers, sun shade
  - Backplane architecture
  - Power, latching, harnessing
  - Instrument carriers, thermal
- Do some telescope designs benefit from iSA more than others?
  - Let's find out
  - Option generation starts at the Workshop but can continue after
  - Recommendation for Workshop Breakout sessions for Reference Telescopes:
    - (a) 20 m off-axis and (b) 20 m off-axis with opportunities to move to a different configuration if benefits noted
    - 2) Max 5-m class fairings



### **Candidate Reference Telescope Design**

**Off-Axis 20-Meter Optical Layout** 



| Parameter                       | Assumption                                                |
|---------------------------------|-----------------------------------------------------------|
| Entrance pupil diameter         | 20 meter                                                  |
| Field of View                   | 3x3 arc-minute                                            |
| Final F/#                       | F/30                                                      |
| Image size                      | 530 x 530 mm (implied by EPD, F/#, and FOV)               |
| Primary mirror ROC and F number | 80 meter ; F/2.0                                          |
| Primary-secondary spacing       | 36.5 meter                                                |
| AOI, maximum on each mirror     | 16.0° primary; 17.5° secondary; 5.6° tertiary; 8.4° fold. |
| RMS WFE (nanometer)             | 18.6 maximum, 10.4 average                                |

### **Workshop Progress**

- The 20 m off-axis f/2 telescope would serve as a good reference for the Study
- <u>No</u> major show stoppers were found; no real energy for an alternative.
- The consensus was that assembling the reference telescope in space was feasible with current and anticipated technology and processes.



LUVOIR B architecture scaled to 20 m, f/2.5, off-axis

#### **Modularized Telescope Sub-Elements**

(all were discussed during the Workshop)



Telescope architecture and modularization are notional.

### **Workshop Progress**

#### • Three analyses requiring additional work

- Primary mirror truss height and structure
- Stray light analysis

.

- Sunshade architectural concept
- Structural stability to enable primary mirror WFE stability remains a risk if the coronagraph for exo-Earth science is adopted
- Confidence there are cost savings and risk mitigations moving forward
- None of the participants felt strongly about other modularization schemes
  - o one challenged the 1.5 m-class segments

### **Features of Kepner-Tregoe Decision Process**

| Decision Statement |                                      |        |         |  |       |      |           |      |           |      |
|--------------------|--------------------------------------|--------|---------|--|-------|------|-----------|------|-----------|------|
| u                  |                                      |        |         |  | Opti  | on 1 | Opti      | on 2 | Opti      | on 3 |
| pti                |                                      | Featu  | re 1    |  |       |      |           |      |           |      |
| scri               |                                      | Featu  | re 2    |  |       |      |           |      |           |      |
| De                 |                                      | Featu  | re 3    |  |       |      |           |      |           |      |
|                    | Musts                                |        |         |  |       |      |           |      |           |      |
|                    |                                      | M1     |         |  | •     | •    |           | •    |           | •    |
|                    |                                      | M2     |         |  | •     | •    |           | ?    |           | ?    |
| tior               |                                      | М3     |         |  |       | •    | <b>~</b>  |      | ×         |      |
| Ina                | Wants                                |        | Weights |  |       |      |           |      |           |      |
| Eva                |                                      | W1     | w1%     |  | Rel s | core | Rel s     | core | Rel s     | core |
|                    |                                      | W2     | w2%     |  | Rel s | core | Rel score |      | Rel score |      |
|                    |                                      | W3     | w3%     |  | Rel s | core | Rel s     | core | Rel score |      |
|                    | <i>100%</i> Wt sum =>                |        |         |  |       | re 1 | Sco       | re 2 | Score 3   |      |
|                    | Risks                                |        |         |  | С     | L    | С         | L    | С         | L    |
|                    |                                      | Risk 1 |         |  | Μ     | L    | М         | L    |           |      |
|                    |                                      | Risk 2 |         |  | Н     | Н    | М         | М    |           |      |
| <b>Final</b> I     | Final Decision, Accounting for Risks |        |         |  |       |      |           |      |           |      |
|                    | C = Consequence, L = Likelihood      |        |         |  |       |      |           |      |           |      |

plus Assumptions



| Problem | Statement (Activity 1a): Prioritize conc                       | cep | ts of modularized designs and architectur      | es f | or a 20 m in-space assembled te  | lescope.                           |
|---------|----------------------------------------------------------------|-----|------------------------------------------------|------|----------------------------------|------------------------------------|
| ID      |                                                                |     | COMMENTS                                       |      | Reference Ontion A               | Reference Ontion B                 |
|         | OPTION DESCRIPTORS                                             |     | connerra                                       | -    |                                  |                                    |
| D1      | Architecture                                                   |     | on- or off-axis, segmented or monolith         |      | off-axis, segmented              |                                    |
|         |                                                                |     | 1.3-1.5 m segments are industry SOA; all       |      |                                  |                                    |
| D2      | Size of primary mirror segments                                |     | have RBAs, but need for figure control         |      | 1.3-1.5 m class                  |                                    |
|         |                                                                |     | actuators are TBD at this time.                |      |                                  |                                    |
|         |                                                                |     |                                                |      | 6-7 (This minimizes number of    |                                    |
|         |                                                                |     |                                                |      | interfaces during final assembly |                                    |
| D3      |                                                                |     |                                                |      | as compared to single segment    |                                    |
|         | Number of primary mirror segments per                          |     |                                                |      | per module; good heritage in     |                                    |
|         | module                                                         |     |                                                |      | testing this size module on the  |                                    |
| D4      |                                                                |     |                                                |      | Combination of laser metrology   |                                    |
|         | ROC and segment-to-segment control                             |     |                                                |      | and edge sensors                 |                                    |
|         |                                                                |     |                                                |      | Common electronics run the       |                                    |
|         |                                                                |     |                                                |      | segments self-contained          |                                    |
| D5      | Electronics and thermal architecture                           |     |                                                |      | metrology system and actuators,  |                                    |
|         |                                                                |     |                                                |      | includes simple thermal          |                                    |
|         |                                                                |     |                                                |      | management - cold bias with      |                                    |
|         |                                                                | _   | Related to module sizes. Look out for          |      | neaters and thermal              |                                    |
|         |                                                                |     | fairing sizes that do not yet exist (> 5-m     |      |                                  | Would fairing sizes greater than 5 |
| D6      | Fairing size needed                                            |     | class): larger is in play but may score poorly |      | 5-m class                        | m pose opportunities worth         |
| 20      |                                                                |     | in some areas and may carry shedule and        |      | 5 11 61232                       | considering?                       |
|         |                                                                |     | cost risks.                                    |      |                                  | containe mp.                       |
| 07      | Module packing within LV fairing                               |     |                                                |      | nominal vertical packing (5x16.5 |                                    |
| 07      | Module packing within LV fairing                               |     |                                                |      | m)                               |                                    |
| D8      | Number of modules                                              |     |                                                |      |                                  |                                    |
| D9      | Use of space infrastructure and                                |     | Includes assembly platforms, robotics,         |      |                                  |                                    |
|         | resources (existing, projected, or                             |     | astronauts                                     |      |                                  |                                    |
| D10     | Assembled robotically or robotically with<br>astronaut support |     |                                                |      | Assembled robotically            |                                    |
| D11     | Number of new technologies                                     | -   |                                                |      |                                  |                                    |
| D12     | Type of LV needed                                              | _   | Look out for unique launchers                  |      |                                  |                                    |
|         | Number of LVs to complete system                               |     |                                                |      |                                  |                                    |
| D13     | assembly                                                       |     |                                                |      |                                  |                                    |
| D14     | Serviceability                                                 |     | What modules can and can't be serviced?        |      | All modules are serviceable?     |                                    |
| D15     | Need for new industry facilities                               |     | vacuum chambers, test facilities, etc          |      |                                  |                                    |
|         |                                                                |     |                                                |      |                                  |                                    |
|         |                                                                | _   | 601111111                                      |      |                                  |                                    |
|         | Modular design option MUST                                     | _   | COMMENTS                                       |      |                                  |                                    |
|         | Enable necessary adjustability and                             | -   |                                                |      |                                  |                                    |
| M1      | correctability of key optical                                  |     |                                                |      | Expected                         |                                    |
|         | Permit module servicing (repair,                               |     |                                                |      |                                  |                                    |
| M3      | replacement, refueling) of instruments                         |     |                                                |      | Expected                         |                                    |
|         | and spacecraft.                                                |     |                                                |      |                                  |                                    |
| Md      | Not enable a failure within a module to                        |     |                                                |      | Expected                         |                                    |
|         | propagate through to the system                                |     |                                                |      |                                  |                                    |
| M5      | Fit into the selected LV                                       |     | Sanity check                                   |      | Expected                         |                                    |
|         | Enable the direct imaging and spectral                         |     | Contrast performance worse than 1e-10 (but     |      |                                  |                                    |
|         | characterization of exonlanets with a                          |     | peded observatory stability will not acquire   |      |                                  |                                    |
| M6      | coronagraph at contrast levels of 1e-8 or                      |     | exo-Earths, but may acquire larger planets.    |      | Expected                         |                                    |
|         | less                                                           |     | Acquiring exo-Earths would then require a      |      |                                  |                                    |
|         |                                                                |     | starshade.                                     |      |                                  |                                    |

|        | ID   |                                                                                                                    |          | COMMENTS                                              | Reference Option A | Reference Option B |
|--------|------|--------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------|--------------------|--------------------|
|        |      |                                                                                                                    |          |                                                       |                    |                    |
|        |      |                                                                                                                    |          |                                                       |                    |                    |
|        |      | Programmatic                                                                                                       |          |                                                       |                    |                    |
|        |      |                                                                                                                    |          |                                                       |                    |                    |
|        |      | WANTE                                                                                                              |          | COMMENTS                                              |                    |                    |
|        |      | Technical                                                                                                          | $\vdash$ | COMMENTS                                              |                    |                    |
| lor    |      |                                                                                                                    |          | The more mature the concept the better,               |                    |                    |
| Indei  |      | Few requirements for technologies                                                                                  |          | the fewer "Miracles" the better; the larger           |                    |                    |
|        | W1   | exceeding the SOA.                                                                                                 |          | the number of low TR subsystems the                   |                    |                    |
| review |      |                                                                                                                    |          | worse, reach TRL 5 at earliest possible date          |                    |                    |
| 101.   |      |                                                                                                                    |          | This speaks to the level of complexity.               |                    |                    |
|        |      |                                                                                                                    |          | Clear, simple architectures and interfaces            |                    |                    |
|        | 34/2 | Clear and simple architectures and<br>interfaces.                                                                  |          | are preferred over those that require                 |                    |                    |
|        | **2  |                                                                                                                    |          | unique tools, infrastructure, large number            |                    |                    |
|        |      |                                                                                                                    |          | of non-identical modules, large number of             |                    |                    |
|        |      |                                                                                                                    |          | interfaces.                                           |                    |                    |
|        | W3   | Robust architecture                                                                                                |          | Modularization concept is robust to                   |                    |                    |
|        |      |                                                                                                                    | $\vdash$ | localized failures, LV failures                       | <br>               |                    |
|        |      | Enables the direct imaging and spectral<br>characterization of exo-Earths at<br>contrast levels of 1e-10 or better |          | Exo-Earth imaging and characterization is             |                    |                    |
|        |      |                                                                                                                    |          | expected to require a greater level of                |                    |                    |
|        | W4   |                                                                                                                    |          | stability on the observatory. WFE stability is        |                    |                    |
|        |      |                                                                                                                    |          | expected to be 10s of pm over 10 min time             |                    |                    |
|        |      |                                                                                                                    | $\vdash$ | scales<br>Architectural flexibility , the more access |                    |                    |
|        | AN/E | Enables in-space access to all servicable                                                                          |          | Architectural flexibility - the more access           |                    |                    |
|        | WS   | modules for repairing or replacing.                                                                                |          | need accessing just the critical oper                 |                    |                    |
|        |      | Testable and verifiable at interfaces                                                                              | $\vdash$ | The more modules that can be testable and             |                    |                    |
|        |      |                                                                                                                    |          | verifiable the better. This implies module-           |                    |                    |
|        | W6   |                                                                                                                    |          | level tests on the ground. But is a full              |                    |                    |
|        |      |                                                                                                                    |          | assembly on the ground required? Could be             |                    |                    |
|        |      |                                                                                                                    |          | a candidate for a Must.                               |                    |                    |
|        |      |                                                                                                                    |          |                                                       |                    |                    |
|        |      | Cost                                                                                                               |          |                                                       |                    |                    |
|        |      |                                                                                                                    |          | The less expensive the better. Common                 |                    |                    |
|        |      | Minimize cost                                                                                                      |          | elements/standarization.                              |                    |                    |
|        | 14/7 |                                                                                                                    |          | Size of modules consistent with industry              |                    |                    |
|        | w/   |                                                                                                                    |          | capabilities - use of existing facilities. The        |                    |                    |
|        |      |                                                                                                                    |          | greater the consistency with industry                 |                    |                    |
|        |      |                                                                                                                    |          | capabilities the lower expected cost.                 |                    |                    |
|        |      |                                                                                                                    |          |                                                       |                    |                    |
|        |      |                                                                                                                    |          |                                                       |                    |                    |
|        |      | Schedule                                                                                                           | $\vdash$ |                                                       |                    |                    |
|        |      |                                                                                                                    | 1        |                                                       |                    |                    |
|        |      |                                                                                                                    | -        |                                                       |                    |                    |
|        |      | Programmatic                                                                                                       | $\vdash$ | Make mediated dealers and second                      |                    |                    |
|        |      | et authorite and an and an and                                                                                     |          | If the modularized design reduces the size            |                    |                    |
|        | W8   | communities                                                                                                        |          | or the science community then it would be             |                    |                    |
|        |      |                                                                                                                    |          | another is only a parrow wavelength                   |                    |                    |
|        |      |                                                                                                                    | $\vdash$ | Would like at least a 30 ur life time which           |                    |                    |
|        |      | Life span                                                                                                          |          | will require servicing both the instruments           |                    |                    |
|        | W9   | circ span                                                                                                          |          | and the spacecraft.                                   |                    |                    |
|        | 115  | Modularized design does not preclude an                                                                            |          | Evolvability may be an important feature              |                    |                    |
|        | W10  | evolvable architecture.                                                                                            |          | but not a Must.                                       |                    |                    |
|        |      |                                                                                                                    |          |                                                       |                    |                    |

### Activity 1a

#### **Concept Design and Architecture for the iSAT**

Select a reference <u>design and architecture</u> concept for a 20 m, filled aperture, non-cryogenic space telescope to be assembled and tested in space.

- Paradigm shift in architecture: Modularization
- An example, from the 2012 OpTIIX study (NASA JSC/GSFC/JPL/STScI):





6 launch modules for assembly

# What's New?

### What's New?

- Activity 2 Funding
- Workshop III at NASA Langley Research Center
  - Oct 2-4
  - Focus will be on Activity 1b: Assembly, Testing, Robotics, Assembly Platforms, Launch Vehicles
  - Another Musts and Wants List and expect several concepts



# **Next Steps**

#### **iSAT Study Process**



#### (Activity 1b – Telescope Assembly and Testing)

# **Next Steps**

#### Complete Selection Criteria

- Through upcoming telecons and emails
- Bi-weekly cadence

#### • Complete Activity 1a (Telescope Modularization)

- Complete the three analyses
- Canvas the Study Members for other modularization concepts for the reference telescope
- Complete description of Concept A including module definitions and Musts
- Start planning Activity 2 (concept definition cost and risk benefits)
  - Rudra will propose a plan next week for review; may need help
- Start Activity 1b (Module Assembly, Testing, etc)
  - Membership (and Steering Committee) will morph towards more assembly/robotics focused
  - Need names

## **Candidate Participants for Activity 1b**

Telescope

#### **Robotics**

Al Tadros (SSL) John Lymer (SSL) Paul Backes (JPL) Bo Naasz (GSFC) H Smith (GSFC) Gordon Roesler (ex-DARPA) Joe Parrish (DARPA) Someone from NG robotics William Vincent (NRL) JSC robotics POC Michael Fuller Orbital Motiv

#### <u>Structures</u>

John Dorsey (LaRC) Bill Dogget (LaRC)

Keith Belvin (LaRC)

#### Autonomy

Academia

Stanford

CMU etc

MIT

CLT Leadership

#### Gateway

John Guidi (NASA HQ) Ben Bussey (NASA HQ)

#### Sunshade

Kimberly Mehalick (GSFC) Jon Arenberg (NG) One more ?

#### Orbital Mechanics/ Environments

Ryan Whitley (JSC) Speaker to describe the environments

#### RPO

James Lewis JSC Scott Cryan JSC

#### ISS

James Lewis JSC Atif Qureshi (SSL)

#### **Programmatic**

Keith Belvin (STMD) Rob Ambrose (STMD) Dan Coulter (JPL) Jon Guidi (NASA HQ) Ben Bussey (NASA HQ) Erica Rodgers (STMD) Ben Reed (Space Council) Dave Miller (MIT)

#### Launch Systems/AI&T

LaRC/JSC expertise

#### GNC

George Chen (JPL)

#### Manufacturing

Rob Hyot (Tethers) Made In Space ?

# **Open Discussion**

# **Additional Slides**

# **Study Schedule**



<sup>\*</sup>tentative date

# **Study Initial Conditions**

- <sup>1.</sup> 20-meter, filled-aperture, non-cryogenic telescope operating at UV/V/NIR
  - We will examine parameterized designs so that we can also explore smaller apertures
- Off-axis secondary mirror (to assist coronagraph throughput and performance) but can diverge if clearly benefits telescope modularization (and therefore in-space assembly).
- <sup>3.</sup> A high-contrast coronagraph will be an observatory instrument tasked to directly image and spectrally characterize Earth-sized planets. The coronagraph will have the capability to actively sense and control input light wavefront errors due to all reasonable disturbance sources.
- f/(≥ 2) to reduce polarization effects to coronagraph performance (but identify benefits if a different number is selected)
- <sup>5.</sup> Operational destination is Sun-Earth L2

# **Study Assumptions**

- 1. Science goals developed from LUVOIR/HabEx concept studies; exoplanet science is the driving science on the reference telescope.
- The Observatory must provide the stability requirements associated with coronagraphy of Earth-sized planets. These are expected to be on order of 10s of pm wavefront error stability over time periods of ~ 10 minutes.
  - At the end of the telescope modularization activity (Activity 1a) we may assess what would have been the impact if the coronagraph was not assumed but rather a starshade. A starshade would significantly reduce the stability requirements on the telescope as well as eliminate almost all of the active optics. In Kepner-Tregoe speak, we can capture this as an Opportunity.
- 3. Astronaut- and robotic-enabled assembly/servicing is available
- 4. ISS is available until 2028 (TBD)
- 5. The following missions can be assumed but each will carry its own level of capability and risk:
  - DARPA's RSGS (Robotic Servicing & Geosynchronous Satellites) at GEO (contract with SSL already in place)
  - b. NASA's Lunar-Orbital Platform Gateway at cis-Lunar
  - c. Orbital-ATK's Mission Extension Vehicle (MEV) at GEO (contracts in place)
  - d. NASA's Restore-L at LEO

# Activity 1b: Concept for Assembling and Testing the ISAT

Select a reference in-space <u>assembly and testing concept</u> for the "assemble-able" space telescope architecture, defining robotics, orbit, launch vehicle, and assembly platform.









### Activities 2a and 2b Detailed Engineering Design and Costed

# Activity 2a: Advance the engineering fidelity of the concepts sufficiently so that they can be costed.

- a) Inputs from Activity 1a and 1b
- b) Select a team of NASA engineers, academia, government labs, and commercial companies to conduct the work.
- c) Needs funding

Activity 2b: Estimate, through an independent body, the cost of designing, architecting, assembling, and testing the reference 20 m space telescope?

- a) Input design from Activity 2a
- b) Identify risks
- c) Parameterize the cost to smaller apertures

# Activity 3 Deliver Final Whitepaper

#### Write and deliver the Final Whitepaper

a) Submit to APD Director who submits to 2020 Decadal Survey

#### SOA for Primary Mirror Segments 2016 ExEP Study

Table 1 Relative challenges of designs under consideration. Green to red designates least to most challenging. No absolute scale of difficulty is implied, and the relative challenge scale of each row may be different.

|                                                                          | APERTURES               |                         |                         |                         |                                           |                                           |                                          |  |
|--------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|--|
| Segment Shape<br>Max Segm. Dimension                                     | 4 ring<br>Hex<br>1.54 m | 3 ring<br>Hex<br>1.98 m | 2 ring<br>Hex<br>2.77 m | 1 ring<br>Hex<br>4.62 m | Keystone 24<br>Keystone<br>2.5 m x 3.14 m | Pie wedge 12<br>Pie wedge<br>5 m x 3.14 m | Pie wedge 8<br>Pie wedge<br>5 m x 4.71 m |  |
| Segments<br>Backplane<br>Stability<br>Launch Configuration<br>SM Support |                         |                         |                         |                         |                                           |                                           |                                          |  |
| Overall Ranking                                                          |                         |                         |                         |                         |                                           |                                           |                                          |  |

https://exoplanets.nasa.gov/internal\_resources/211/

