

In-Space Assembled Telescope (iSAT) Study

Study Members Telecon 8

September 12/13, 2018

Nick Siegler

Chief Technologist, NASA Exoplanet Exploration Program NASA Jet Propulsion Laboratory, California Institute of Technology

© 2018. All rights reserved.

Today's Agenda

- 1. Review of Study Goals and Activities
- 2. Face-to-Face Meeting Update
- 3. Exploring the Assembly and Infrastructure Parameter Space (*Rudra Mukherjee/JPL*)
- 4. Short Tutorial on Decision-Making Process
- 5. Begin Selection Criteria Assessment

Activity 1b Kick-Off Telecon presentation slides:

https://exoplanets.nasa.gov/exep/technology/in-spaceassembly/iSAT_working_group_telecons/

Study Charter (original):

https://exoplanets.nasa.gov/internal_resources/864

Review of Study Goals and Activities

Study Objective and Deliverables

• Study Objective:

- "When is it advantageous to assemble space telescopes in space rather than to build them on the Earth and deploy them autonomously from individual launch vehicles?"

• Deliverables:

A whitepaper by May 2019 assessing:

- 1. the telescope size at which iSA is necessary (*an enabling capability*)
- 2. the telescope size at which iSA is cheaper or lower risk with respect to traditional launch vehicle deployment (*an enhancing capability*)
- 3. the important factors that impact the answers (e.g., existence of HEOfunded infrastructure, architecture of space telescope (segments or other), cryogenic or not, coronagraph capable (stability) or not, etc.)
- 4. A list of technology gaps and technologies that may enable in-space assembly

The intention of the whitepaper is to inform NASA and the 2020 Decadal Survey of the cost and risk benefits of the iSA of telescopes. 4

Activity 1a Concept Telescope Modularization for the iSAT

Select a reference telescope <u>modularization</u> concept for a 20 m, filled aperture, non-cryogenic space telescope to be assembled and tested in space.

 Paradigm shift in architecture: Modularization

Activity 1b:

Concept for Assembly and Infrastructure for the iSAT

Select a reference in-space <u>assembly and infrastructure concept</u> for the "assemble-able" space telescope architecture, defining robotics, orbit, launch vehicle, and assembly platform.

Activities 2a and 2b Detailed Engineering Design and Costed

Activity 2a: Advance the engineering fidelity of the concepts sufficiently so that they can be costed.

- a) Inputs from Activity 1a and 1b
- b) Select a team of NASA engineers, academia, government labs, and commercial companies to conduct the work.

Activity 2b: Estimate, through an independent body, the cost of designing, architecting, assembling, and testing the reference 20 m space telescope?

- a) Input designs/final architecture from Activity 2a
- b) Identify risks
- c) Parameterize the cost to smaller apertures

Activity 3 Deliver Final Whitepaper

Write and deliver the Final Whitepaper

a) Submit to APD Director who submits to 2020 Decadal Survey (June 2019)

How will iSAT Study WG Produce a Recommendation?

Confirmed Participants for Activity 1b

Telescope Systems

Lynn Allen (Harris) Dave Redding (JPL) Scott Knight (Ball) Allison Barto (Ball) Keith Havey (Harris) Doug McGuffy (GSFC) Ron Polidan (consultant) Bob Hellekson (Orbital) Ray Bell (LMC) Kimberly Mehalick (GSFC)

Robotics and Robotic Servicing and Assembly

Jason Herman (Honeybee) Atif Qureshi (SSL) John Lymer (SSL) Paul Backes (JPL) Glen Henshaw (NRL) Rudra Mukherjee (JPL) Gordon Roesler (ex-DARPA) Joe Parrish (DARPA) Michael Fuller (Orbital) Adam Yingling (NRL) Hsiao Smith (GSFC) Dave Miller (MIT) Ken Ruta (JSC) Kim Hambuchen (JSC)

Structures

Architectural Systems

Larry Dewell (LMC)

David Kang (NG)

Bo Naasz (GSFC)

Controls

Paul Lightsey (Ball)

Kim Aaron (JPL) John Dorsey (LaRC) Bill Dogget (LaRC) Joe Pitman (consultant) Keith Belvin (LaRC) Eric Komendera (VA Tech)

Gateway

Nate Schupe (LMC) Sharon Jeffries (LaRC) Mike Fuller (Orbital)

<u>Sunshade</u>

Jon Arenberg (NG)

Orbital Mechanics/ Environments David Folta (GSFC) Ryan Whitley (JSC)

Rendezvous & Proximity Operations Bo Naasz (GSFC) Greg Lange (JSC)

Launch Systems/AI&T Diana Calero (KSC)

Roger Lepsch (LaRC) Mike Fuller (Orbital)

<u>GNC</u> Bo Naasz (GSFC)

Manufacturing Kevin DiMarzio (MIS) Bobby Biggs (LMC) Rob Hoyt (Tethers)

SMEs/Observers

Keith Warfield (JPL) Lynn Bowman (LaRC) Erica Rodgers (STMD) John Grunsfeld (NASA retired) Phil Williams (LaRC) Alison Nordt (LMC) Hosh Ishikawa (NRO) Howard MacEwen (consultant) Mike Elsperman (Boeing)

<u>Scientist</u>

Brad Peterson (OSU) Eric Mamajek (NASA ExEP) Matt Greenhouse (GSFC)

<u>Thermal</u> Carlton Peters (GSFC)

Face-to-Face Update

Assembly and Infrastructure Face-to-Face

October 2-4, NASA LaRC, Hampton, VA

- Goal:
 - 1. advance and generate concepts to assemble the reference telescope and define its needed infrastructure,
 - 2. advance the selection criteria in which we will prioritize these concepts.
- Draft Agenda and Logistics Package:
 - <u>https://exoplanets.nasa.gov/exep/technology/in-space-assembly/iSAT_study_workshops/</u>
 - Hotel information and meeting location
 - Please arrive early to deal with badging
- Logistics questions:
 - Jennifer Gregory (jgregory@jpl.nasa.gov)
 - Lynn Bowman (lynn.m.bowman@nasa.gov)

A Brief Exploration of the Parameter Space

Rudra Mukherjee

Jet Propulsion Laboratory, California Institute of Technology

The Job At Hand

Activity 1b Briefing Sep 12, 2018

Rudranarayan Mukherjee Ph.D.

The Whole (Notionally)

Optical Design

The Instrument Modules

Job At Hand

- Someone stacked multiple fairings with the modules and gave us a manual of what goes where and in what order
- Need a working observatory at Sun-Earth L2

Now what?

- Where to assemble?
- How to get there?
- How to bring them together?
- What robotic system(s)?
- How to assemble?
- How to verify and validate?
- How to service?
- Optimize cost and risk posture
- Understand tall tent poles
- Identify one or two concepts that seem most favorable
 - Not a down select: a reference approach to evaluating ISA implications

Manual Says (Cliff Notes version)

- Assemble the truss work,
 - Use metrology to show it meets requirements adjust as needed
- Block out the sun
- Assemble the optics
- Assemble the instruments
- Assemble final stray light blocks
- Use metrology and show optics are aligned and stable
 - Adjust as needed and loop till fully operational
- With time, service select modules
 - Instruments, reflectors etc.
- There are some hard constraints, e.g.:
 - Micron level structural stability, Nano-meter level optical stability
 - Gaping or spacing constraints
 - Block all stray light

The Doer Based Phase Space

	Free Flyer	Station	Embedded Robot	Astronaut
LEO	Х	Х	Х	Х
GEO	Х		Х	
CisLunar		Х	Х	Х
SE-L2			Х	

- Free Flyer Examples: RSGS, RESTORE-L
- Station Examples: ISS, Gateway
- Embedded Robot Example: Canada Arm
- Astronaut Example: HST Style Assembly
- Please email any additional columns or rows (i.e. concepts and orbits) to Nick and Rudra
 - Keep it real missions or concepts or technologies that are currently being developed
 - Need good coverage of the phase space: seeking diverse options

Notional Launch Vehicles

LEO	GEO	CIS LUNAR	L2		
SLS	SLS	SLS	SLS		
New Glenn	New Glenn	New Glenn	New Glenn		
Delta 4 H	Delta 4 H	Delta 4 H	Delta 4 H		
FH	FH	FH	FH		
Vulcan	Vulcan	Vulcan	Vulcan		
Ariane	Ariane	Ariane	Ariane		
Atlas 5	Atlas 5	Atlas 5	Altas 5		
F9	F9				
H3	H3				
Angara	Angara				
GSLV	GSLV				
Antares	Antares				
Pegasus					
Athena 1					
Athena 2c					
Firefly					
Vector					
Pegasus					
Electron					
Minotaur C					
Launcher One					
PSLV					

Delta V Map

Notional Function Based Phase Space

	Free Flyer	Station	Embedded Robot	Astronaut
LEO	R, A, T, I, S	V	A, I	V, A, I
GEO	V,		(AI)*	
	(RATIS)*			
Cislunar	R, A, T, I, S	V	A, I	V, A, I
SE-L2	R, S		A, M, I	

Ref: Gordon Roesler

R = rendezvous and capture of upcoming payloads, handoff to embedded robots

A = assembly of telescope from component modules

M = in-service maintenance, upgrade

V = verification of assembly concepts, robotics, etc. (risk reduction prior to go-ahead)

I = inspection of assembled systems/subsystems

T = tugging of components, subassemblies, or fully assembled telescope between orbits

S = station-keeping, attitude adjustment, wheel desaturation

* The starred options represent assembly in GEO by renting a commercial free-flyer there.

This view is for the Face to Face Meeting

- One and a half day break out sessions in 2 or 3 groups
- Facilitators: David Miller, John Grunsfeld, Harley Thronson
- Embedded Scribes: Ron Polidon, Lynn Bowman, Eric Mamajek

The Sane Moment Before Creative Mayhem

- We love this stuff: there is going to be the gushing of "what ifs" and "couldn't we just" ...
- But how to navigate the ideas, possibilities and options?
 - The KT Matrix Approach

The Face to Face Meeting Draft Agenda (Cliff Notes)

- Day 1 Morning: Introductions and Preamble
- Day 1 Afternoon: Break out session
- Day 2 Morning: Break out session
- Day 2 Afternoon: Break out session
- Day 3 Morning: Project it all on to the KT Matrix and see what sticks

Very Short Tutorial on the Decision-Making Process

Features of Kepner-Tregoe Decision Process

Decision Statement												
ч					Opti	ion 1	Opti	on 2	Option 3			
ipti		Featu	re 1									
scri		Featu	re 2									
De		Featu	re 3									
	Musts											
		M1			•	•	~	•		•		
		М2			•	•		?	?			
tior		М3			•	•	ų	•	×			
Iua	Wants		Weights									
Eva		W1	w1%		Rel s	core	Rel s	core	Rel score			
		W2	w2%		Rel s	core	Rel s	core	Rel score			
		W3	w3%		Rel s	core	Rel s	core	Rel score			
			100%	Wt sum =>	Sco	re 1	Sco	re 2	Score 3			
	Risks				С	L	С	L	С	L		
	Risk 1			Μ	L	М	L					
		Risk 2			Н	Н	Μ	M				
Final Decision, Accounting for Risks												
	C = Consequence, L = Likelihood											

Begin Selection Criteria Brainstorming

(switch to Excel)

Next Steps

Next Steps

• Telecons next week with the Study Members

- Pick one: Wednesdays at 12:30 pm (EDT) and Thursdays at 2 pm (EDT)
- Advance work on Selection Criteria
- Second Face-to-Face Meeting for the Study Members and Observers
 - Oct 2-4 at NASA LaRC
 - Focus is on Activity 1b: Telescope Assembly and Infrastructure
 - Breakout sessions to advance the concepts

Additional Slides

Activity 1A Discussion Space

Telescope Modularization Design Musts

Example of a Completed Trade Matrix

Decision Statement: Recommend one Primary and one Backup coronagraph architecture (option) to focus design																	
and ៦	techn	ology	development		Ontion 1		Ontion 2		Ontion 3		Ontion 4		Ontion 5		Ontion 6		Notos
Sec		Name			ор (opt V						NOLES
-	D.A.uat	Name	Dragrammatic			PC .	PIA	ACIVIC			v	vc	VINC	,- DA	VINC	PU	
	IVIUS	s	Programmatic														
		M1 - T	Science: Meet Threshold requirements? (1.6, x10)			Yes		Yes		Yes		No		No		U	
		M2	Interfaces: Meets the DCIL**?			Yes		Yes		Yes		Yes		Yes		U	
			TRL Gates: For baseline science is there a credible														yes, or expected likely
		M3	plan to meet TRL5 at start of FY17 and TRL6 at start			Yes		Yes		Yes		U		No		U	unknown no, or expected showstopper
			of FY19 within available resources?											_			
		M4	Ready for 11/21 TAC briefing			Yes		Yes		Yes		Yes		Yes		No	
		M5	Architecture applicable to future earth-			Yes		Yes		Yes		Yes		Yes		U	
			characterization missions														
	Want	\$		Weights		SPC	PIA	АСМС	н	II C	v	vc	VNC	C-DA	VNO	- PO	
5		W1	Science	40													
uati			Relative Science vield (1.6, v10) beyond M1-T			Sm/Sig		Bost		Sm/Sig		M		VI			Range of opinions between "significant and small". For SPC
va		ŭ	Relative Science yreld (1.0, x10) beyond M1 1			311/318		Dest		511, 515				••			that was taken into acct in comparisons
		W2	Technical	30													
		a	Relative demands on observatory (DCIL), except			Best		Rest		Best		Best		Small			
			for jitter and thermal stability			Dest		Dest		Dest		Dest		onnan			
		b	Relative sensitivities of post-processing to low			Best		Sig		Sig		VL		U			For n-lambda over D or different amplitudes the designs will
			order aberrations			Small		Sig		Bost		Sig		M			nave the same relative ranking
		d	Relative complexity of design			Best		Small		Best		Small		Sig			Demonstrated Performance (10%) and Prediction
		e	Relative difficulty in alignment, calibration, ops			Best		Small		Best		Small		Sig/Sm			Identify "Best" and others are:
		W3	Programmatic	30													-wash -Small Difference
		а	Relative Cost of plans to meet TRL gates			Best		Small		Best		Sig		Sig			-Significant Difference
								-									-Very Large Difference
			WL Sum =>	100%													
	Dicke		(all judged to be High consequence)		SPC		PIAACMC		ніс		MAC				- PO		
	Maka				C	L L	C	L	c	L	c	L	C	L	c	L	
		Dick 1	Technical rick in meeting TDLE gets	1						NA/I		NA/11					PIAA trend over the last three working days lower, but
		KISK 1	Technical risk in meeting TRL5 gate			L .		IVI		IVI/L		MITH		н			recommendation to keep M
		Risk 2	Schedule or Cost risk in meeting TRL5 Gate			L		м		M/L		М/Н		н			
			-	-													
		Risk 3	Schedule or Cost risk in meeting TRL6 Gate			L		L		L		М		м			
		Dick 4	Pick of not monting at least throshold science	1		1.1											
		NISK 4	hisk of not meeting at least timeshold science					- L									
		Risk 5	Risk of mnfr tolerances not meeting BL science			L		L		L.		M/L		н			One dissent, previous TDEM performance track record and
			Risk that wrong architecture is chosen due to														Bala's assessment should be taken into account.
		Risk 6	assumption that all jitter >2Hz is only tip/tilt			L		м/н		м		M/H		м			
	Risk that wrong architecture is chosen due to any				apparented question snawned evaluations on Pick 5. Pick 6. Pick 9. and Operatual												
		NISK /	assumption made for practicality/simplicity			opene	inaca da		panneo	- craitati	0115 0111		51(0) 11(5)	(), and c	opped -		
		Dick 0	Risk that ACWG simulations (by JK and BM)			dice	ussodur	not onou	th undo	rctanding	at this t	imo to n	nako an	ovaluativ	-		Model validation is a risk that needs to be evaluated in the
		RISKO	fidelity			uiso	usseu, i	not enoug	girunue	Istanume	actinist	line to n	liake all	evaluatio			future
Opp	Opportunities (judged to be High benefit)			9	SPC	PIA	АСМС	Н	ILC	v	vc	VNC	C-DA	VNC	C-PO		
					В	L	В	L	В	L	В	L	В	L	В	L	
		0	Describility of Calence and for 0 Second 2011					NA /11									
		Oppty 1	Possibility of science gain for 0.2marcsec jitter, x30			L		M/H		M		L		н			
Fina	Decis	sion, A	accounting for Risks and Opportunit	ies:													
							C . C			101.01							-
							L = L0	nseque	nce, L =	LIKeliho	υα, B=l	senerit					Indicates those few areas where consensus was not achieved
							-*DCIL	. = Dave C	ontent l	nterface	LIST					1	iconsensus achieved on balance of matrix

