

In-Space Assembled Telescope (iSAT) Study Workshop

Day 1

June 5, 2018

Nick Siegler

Chief Technologist, NASA Exoplanet Exploration Program NASA Jet Propulsion Laboratory, California Institute of Technology

Harley Thronson

Chief Technologist, NASA Physics of the Cosmos/Cosmic Origins Programs NASA Goddard Space Flight Center

Rudra Mukherjee

Robotics Technologist NASA Jet Propulsion Laboratory, California Institute of Technology

© 2018. All rights reserved.

Logistics and Workshop Goals

Nick Siegler

Chief Technologist, NASA Exoplanet Exploration Program Jet Propulsion Laboratory, California Institute of Technology

Study Objective and Deliverables

- The in-Space Assembled Telescope (iSAT) Study is chartered by the NASA APD Director and the SMD Chief Technologist to deliver, by the goal of June 2019, a Decadal Survey Whitepaper assessing:
 - "When is it worth assembling space telescopes in space rather than building them on the Earth and deploying them autonomously from individual launch vehicles?"

• The Study will focus on:

- Sensitivity of telescope size (10-20 m) to cost and risk
- Factors that impact the cost and risk for the in-space assembly (iSA) of telescopes (e.g. modularized components, new I&T and V&V approaches)
- Trade parameters that impact options for iSA such as availability of resources (e.g., robotic servicers, low-cost launch vehicles, assembly platforms), orbits for assembly, operating environments, use of coronagraphs or starshades, operating wavelength among others.

Study Objective and Deliverables

• The Study is broken up into two parts:

- 1. a Concept Formulation phase -
- 2. a detailed Engineering Design phase where cost and risk benefits will be quantified across the project lifecycle and technology challenges identified.
- The first phase is currently funded; the second is pending proposal review by APD.

Activity 1a Modularization of the iSAT

Select a reference <u>design and architecture</u> concept for a 20 m, filled aperture, non-cryogenic space telescope to be assembled and tested in space.

- Paradigm shift in architecture: Modularization
- An example, from the 2012 OpTIIX study (NASA JSC/GSFC/JPL/STScI):

Activity 1b: Concept for Assembling and Testing the iSAT

Select a reference in-space <u>assembly and testing concept</u> for the "assemble-able" space telescope architecture, defining robotics, orbit, launch vehicle, and assembly platform.

In-Space Assembled Telescope (iSAT) Study

Study Members

Name	<u>Institution</u>	<u>Expertise</u>
 Ali Azizi 	NASA JPL	Metrology
Gary Matthews	Consultant	Mirror Segments
Fang Shi	NASA JPL	WF Sensing/Control
4. Larry Dewell	Lockheed	Pointing/Stability/Control
5. Oscar Salazar	NASA JPL	Pointing/Stability/Control
6. Phil Stahl	NASA MSFC	Telescope Architecture
7. Jon Arenberg	Northrop	Telescope Architecture
Doug McGuffey	NASA GSFC	Systems Engineering
9. Kim Aaron	NASA JPL	Systems Eng/Structures
10. Sharon Jeffries	NASA LaRC	Systems Engineering
11. Al Tadros	SSL	Robotics
12. Joel Burdick	Caltech	Robotics
13. Bob Hellekson	Orbital-ATK	Telescope Systems
14. Gordon Roesler	DARPA	Robotics
15. Michael Rodgers	NASA JPL	Optical Design
16. Hsiao Smith	NASA GSFC	Robotics
17. Eric Mamajek	NASA ExEP	Astrophysicist
18. Shanti Rao	NASA JPL	Optical Design
19. Ray Ohl	NASA GSFC	Optical Alignment/Test
20. Joe Howard	NASA GSFC	Optical Design
21. Sergio Pellegrino	Caltech	Telescope Structures
22. Tere Smith	NASA JPL	I&T
23. Paul Backes	NASA JPL	Robotics
24. Jim Breckinridge	UA	Optical Design
25. AllisonBarto	Ball	Optical SE/testing
26. Jeanette Domber	Ball	SE/Structures/Instruments
27. Joe Parrish	DARPA	Robotics
28. Acey Herrera	NASA GSFC	I&T

Name

29. David Stubbs 30. John Dorsey 31. Jeff Sokol 32. Brendan Crill 33. Dave Miller 34. Atif Qureshi 35. Jason Tumlinson 36. Carlton Peters 37. Paul Lightsey 38. Kim Mehalick 39. Bo Naasz 40. Eric Sunada 41. Keith Harvey 42. Babak Saif

Institution Expertise

Ball

MIT

SSL

Ball

Harris

STScI

Lockheed Telescope Structures/Design NASA LaRC Telescope Structures Mechanical/I&T NASA ExEP Technologist/Detectors Technologist Robotics Systems Engineering Astrophysicist NASA GSFC Thermal Systems Engineering NASA GSFC Optical Modeling/I&T NASA GSFC Systems Engineering Thermal NASA JPL Telescopes NASA GSFC Metrology

Goals of this Workshop

- 1) Create concepts (Options) for modularized telescope designs
- 2) Advance the Selection Criteria

Features of Kepner-Tregoe Decision Process

Goals of this Workshop

- 1) Create concepts (Options) for modularized telescope designs
- 2) Advance the Selection Criteria
- 3) Build a community of experts to advance in-space assembly

This Workshop is really part of the beginning not the end.

iSAT Study Process (Activity 1a – Telescope Modularization)

Humanity's Biggest Machines Will Be Built in Space

When rockets can no longer hold oversize payloads, building in space might be the best way to go.

Popular Mechanics Feb 2018

Replying to @LeeBillings @Simberg_Space

supporters of in-space assembly need to do a better job to educate the community on the likelihood of success. JWST experience has many in the community questioning what level of risk to take in during the next decade.

4:19 PM - 2 Jun 2018

Introductions

- US Persons Only
- Logistics specialist:
 - Jennifer Gregory

Introductions

- US Persons Only
- Logistics specialist:
 - Jennifer Gregory
- Breakout Facilitators:
 - David Miller and John Grunsfeld
- Note Takers
 - Brendon Crill and Ron Polidan
- Participants

A Word from one of our Sponsors...

Dr. Paul Hertz Director Astrophysics Division NASA Headquarters

Study Initial Conditions and Assumptions

Nick Siegler

Chief Technologist, NASA Exoplanet Exploration Program Jet Propulsion Laboratory, California Institute of Technology

Study Initial Conditions (Activity 1a)

- Modularized telescope design enables both exoplanet science and general astrophysics.
- ^{2.} 20-meter, filled-aperture, non-cryogenic telescope operating at UV/V/NIR
 - We will examine parameterized designs so that we can also explore smaller apertures
- ^{3.} Off-axis secondary mirror, f/(≥ 2) to assist coronagraph throughput, polarization, and performance

 A high-contrast coronagraph will be an observatory instrument tasked to directly image and spectrally characterize exoplanets
 The coronagraph will have the capability to actively sense and control

input light wavefront errors due to all reasonable disturbance sources.

5. Operational destination is Sun-Earth L2

Generating Modularization Design Options

- Trade space for <u>modularization</u> is very open
 - Number of modules
 - Segment size, segment carriers, sun shield
 - Backplane architecture
 - Power, latching, harnessing
 - Instrument carriers, thermal
- We're not trading telescope designs but...
- Do some telescope designs benefit from iSA more than others?
 - Let's find out
- Recommendation for Reference Telescopes Workshop in the Breakout sessions:
 - 1) 20 m off-axis
 - 2) 20 m off-axis with opportunities to move to a different configuration if benefits noted
 - 3) Max 5-m class fairings

Candidate Reference Telescope Design

Off-Axis 20-Meter Optical Layout

Parameter	Assumption	
Entrance pupil diameter	20 meter	
Field of View	3x3 arc-minute	
Final F/#	F/30	
Image size	530 x 530 mm (implied by EPD, F/#, and FOV)	
Primary mirror ROC and F number	80 meter ; F/2.0	
Primary-secondary spacing	36.5 meter	
AOI, maximum on each mirror	16.0° primary; 17.5° secondary; 5.6° tertiary; 8.4° fold.	
RMS WFE (nanometer)	18.6 maximum, 10.4 average	

Study Assumptions

- 1. The Observatory must provide the stability requirements associated with coronagraphy of exo-planets
 - These are expected to be on order of 100s of pm WFE stability over time periods of ~ 10 minutes for relatively large planets.
 - However, 10s of pm WFE stability for Earth-sized planets
 - At the end of the telescope modularization activity (Activity 1a) we may assess what would have been the impact if the coronagraph was not assumed but rather a starshade. A starshade would significantly reduce the stability requirements on the telescope as well as eliminate almost all of the active optics. In Kepner-Tregoe speak, this is an Opportunity.

2. Astronaut- and robotic-enabled assembly/servicing is available

Breakout Teams

Discipline	Grunsfeld	Institution	Miller	Institution
ACS			Oscar Alvarez-Salazar	JPL
Programmatics	Lynn Bowman	LaRC		
Structures	John Dorsey	LaRC	Bill Doggett	LaRC
Structures	Sergio Pellegrino	Caltech	Lee Peterson	JPL
FASST	Harley Thronson	GSFC	Howard MacEwen	Reviresco
Optics	James Breckinridge	U of A	Jon Arenberg	Northrop
Telescopes	Keith Warfield	JPL	Dave Redding	JPL
Metrology	Ali Azizi	JPL	Joel Nissen	JPL
Metrology			Shannon Zareh	JPL
Thermal	Eric Sunada	JPL	Peters Carlton	GSFC
Science	Jason Tumlinson	STSCI	Brad Peterson	OSU
Optics	Shanti Rao	JPL	Mike Rodgers	JPL
Optics	Fang Shi	JPL	David van Buren	JPL
Scribe	Brendan Crill	JPL	Ron Polidon	PSST
Systems	Kim Aaron	JPL	Bob Hellekson	Orbital ATK
Systems	Bo Naasz	GSFC	Doug Mcguffey	GSFC
Systems	Phil Stahl	MFSC	Keith Havey	Harris
Systems	David Stubbs	LMCO	Allyson Barto	Ball
AI&T	Marshall Woods	JPL	Rich Rynders	Orbital ATK
AI&T	Raymond Ohl	GSFC	Acey Herrera	GSFC
AI&T			Suzanne (Tere) Smith	JPL
Robotics	Hsiao Smith	GSFC	AI Tadros	SSL
Robotics	Paul Backes	JPL	Joel Burdick	Caltech
Robotics	Atif Qureshi	SSL	Joe Parrish	DARPA

Additional Slides

Study Schedule

^{*}tentative date

Activities 2a and 2b Detailed Engineering Design and Costed

Activity 2a: Advance the engineering fidelity of the concepts sufficiently so that they can be costed.

- a) Inputs from Activity 1a and 1b
- b) Select a team of NASA engineers, academia, government labs, and commercial companies to conduct the work.
- c) Needs funding

Activity 2b: Estimate, through an independent body, the cost of designing, architecting, assembling, and testing the reference 20 m space telescope?

- a) Input design from Activity 2a
- b) Identify risks
- c) Parameterize the cost to smaller apertures

Activity 3 Deliver Final Whitepaper

Write and deliver the Final Whitepaper

a) Submit to APD Director who submits to 2020 Decadal Survey

