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1 EXECUTIVE SUMMARY 

NASA has been engaged in a number of space missions aimed to further our understanding of 
the universe through the development and deployment of space telescopes such as Hubble, 
Herschel, Spitzer, Chandra, and Kepler, as well as the James Webb Space Telescope (JWST) 
currently under construction.  Such instruments cover a large band of the electromagnetic 
spectrum, from the X-ray to the infrared, providing valuable information on a number of 
phenomena of interest to the entire scientific community.  The 2010 Decadal Survey for 
Astronomy and Astrophysics calls for a medium-scale space mission that will hunt exoplanets in 
a wide field as an attempt to find stellar systems similar to this solar system and Earth-like 
planets.  The Wide-Field InfraRed Survey Telescope (WFIRST) would be the candidate for this 
type of mission, which would play a preparatory role in the development of a large-scale space-
based mission intended to image Earth-like planets in the habitable zones of nearby stars and 
study their atmospheres.  Thus, a telescope for imaging and spectroscopy of exoplanets from the 
ultra-violet to near infra-red spectra will be one of the top-priority areas in the 2020 decade.   

In order to lay the bases for this endeavor, NASA has commissioned the Massachusetts Institute 
of Technology’s Space Systems Laboratory to perform a tradespace exploration analysis for a 
large, segmented telescope, referred to as a Large Telescope Array (LTA), with the capabilities 
necessary to achieve the above-mentioned scientific objectives.  Specifically, this task involves 
the identification of a set of architectural decisions, which, once made, define an architecture that 
can be assessed based upon quantitative metrics (e.g., cost, mass, complexity, risk, performance, 
serviceability, assemble-ability).  By varying the architectural decisions, a family of architectures 
can be compared, via these metrics, to identify the attributes that are common to the better 
performing architectures.  To accomplish this task, then, the following questions were answered: 

1. Who are the stakeholders and what are their needs and desires? 
The stakeholders are scientific organizations, high-tech companies, and universities 
interested in a tradespace study for a next-generation telescope capable of opening 
new horizons to science and stimulate the development of new technologies. 

2. Based on the results of this stakeholder analysis, are there any assumptions that need 
to be taken into account and that would limit the scope of such a tradespace analysis? 
The assumptions were made based on the stakeholder needs and desires, the technical 
requirements of similar technologies, and the necessity to keep the scope of this 
project at a level manageable by a one-semester graduate course. 

3. What are the technical requirements to build an LTA? 
Derived from NASA’s Advanced-Technology Large-Aperture Space Telescope 
(ATLAST) concept, the requirements are: a 16.8-m-diameter primary mirror, 
operation at Sun-Earth Lagrangian Point 2, on-orbit assembly, launch in 2028, 
technology readiness level (TRL) 6 by 2020. 

4. What architectural decisions can be made? 
The following seven were selected: communications architectures, modularity, 
location of servicing, frequency of servicing, assembly and servicing technique, 
primary mirror segmentation, and primary mirror segment support method. 

5. What metrics can be employed to evaluate such architectures? 
The following four metrics were chosen: cost, utility to science, failed downtime, and 
servicing margin. 
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6. What are the best-performing architectures resulting from a Pareto-front analysis? 
The Pareto-optimal solutions are represented by those which generate high utility to 
science at low cost. 

The ultimate goal of the project was to develop a model that would take as inputs the 
assumptions, enumerate the architectural decisions, and develop a tradespace characterized by 
the selected trade metrics.  The model would also determine how requirements affect 
architectural choices and examine the interactions between the different subsystems of the LTA.  
The following sections will illustrate the main steps taken during this process, leaving an 
exhaustive description of all their details to the dedicated sections of the present report. 

1.1 Stakeholder Analysis 
The following groups have been interested in similar architectural trade studies and were our 
points of contact throughout the project: 

• NASA Goddard Space Flight Center (GSFC) 
• NASA Headquarters (HQ) 
• The Jet Propulsion Laboratory (JPL) 
• The Space Telescope Science Institute (STScI) 
• ITT (formerly Kodak) 
• MIT 
• Skoltech 

Such a diverse set of stakeholders provided a broad range of perspectives on the key assumptions 
and technical requirements needed to define our architectures.  They were asked questions 
related to mission goals, budget and cost models, mirror and detector technologies, data 
management, launch vehicle options, and inclusion of other potential stakeholders.  All this 
information became the basis for the enumeration and downselection of our architectural 
decisions. 

1.2 Technical Requirements and Assumptions 
The technical requirements for our telescope architectures are derived directly from NASA’s 
Advanced-Technology Large-Aperture Space Telescope (ATLAST) concept.  The decision to 
use ATLAST as a starting point was made because it presented several similarities with the case 
discussed in this report. In particular, ATLAST is a concept for a space-based optical telescope 
with a 16.8-meter-diameter primary mirror meant to achieve the scientific objectives discussed 
above.  This was a choice of the MIT team, who remains aware that other similar concepts were 
explored in the past. 

Assumptions used in the model were derived from three main areas: the results of the stakeholder 
analysis, the requirements for ATLAST, and the need to keep the scope of the tradespace 
analysis limited to what can be achieved within the time frame of a one-semester graduate 
course.  The assumptions provided a clear definition of the scope of the problem, which made the 
process of enumerating the various architectures more efficient and manageable form a 
computational perspective.  The assumptions are summarized in Table I. 
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Table I: Assumptions derived from the ATLAST requirements, stakeholder analysis, and 
model complexity reduction 

ATLAST requirements 16.8-m segmented primary mirror 
On-orbit assembly 
Operation at Sun-Earth Lagrangian Point 2 
Launch in 2028 
Technology at TRL 6 by 2020 

Stakeholder analysis 40-year lifetime 
Serviceability required 
Implementation of a Federated Satellite System (FSS) 

Model complexity reduction Scheduled servicing 
No mirror replacement 
Included coronagraph 

 

1.3 Architectural Decisions 
In order to enumerate all possible architectures, a total of seven architectural decisions were 
selected. They are described below. 

1.3.1 Communications Architecture   

Data gathered by the LTA will need to be transferred to Earth for processing and utilization by 
the scientific community. In addition, specific commands may be have to be sent to the LTA in 
order for it to accomplish correction maneuvers or accomplish certain tasks.  Efficient 
communications systems are thus essential to mission success and will have to maintain optimal 
communications quality and high data volume rates within cost constraints.  Among several 
options, the following architectures were selected: 

• Direct radio using either the Track and Data Relay Satellite System (TDRSSS) or the 
Deep Space Network (DSN) 

• Laser communications 
• Federated Satellite System (FSS) – exploiting the potential of underutilized space 

commodities by trading and sharing previously inefficiently allocated and unused 
resource commodities that are available in space assets at any given time 

1.3.2 Modularity   

It is the level at which components are grouped into physically separate, easily replaced modules 
with simple interfaces, from level 1 (no modularity) to level 7 (all instruments bus components 
divided into separate modules). It is important to note that the scientific instruments and 
engineering components are modularized separately, and therefore the modularity level does not 
correspond directly to the number of modules. A more complete description of the modularity 
architectural decision is provided in the body of this report. 

1.3.3 Location of Servicing   

All servicing is assumed to be robotic and four different locations were identified: Sun-Earth L2 
(SE-L2), Earth-Moon L2 (EM-L2), Earth-Moon L1 Orbit Trajectory Used for Servicing 
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(LOTUS), and Low Earth Orbit (LEO). Each location of servicing has its own challenges 
affecting ΔV requirements, propellant mass, launch cost, latency of communications, and total 
downtime for servicing. 

1.3.4 Frequency of Servicing  

This indicates a scheduled evaluation for replacement or improvement of failed parts or 
instruments every 3, 5, or 10 years. 

1.3.5 Assembly and Servicing Technique 

Three methods for assembling and servicing the LTA were identified: 

• Self-assembly using self-deployment mechanisms and robotic arms (e.g., JWST) 
• Independent tugs or tenders (e.g., DARPA Phoenix Project) 
• Formation flying (e.g., SWARM robotics) 

1.3.6 Segmentation of Primary Mirror   

It represents the characterizing permutations of how the primary mirror could be segmented for 
launch packing efficiency and ease of on-orbit operations. 

1.3.7 Primary Mirror Segment Support Method 

The precision of the shape of the primary mirror plays a critical role in obtaining high-resolution 
images from a space-borne telescope. Given its large diameter, the mirror cannot be thick; 
therefore, a back-structure made of trusses or ribs needs to be employed to maintain the precise 
shape of each mirror segment, as well as its positioning with respect to the other surrounding 
segments. Three methods were chosen to support this function: 

• Surface-normal: a rigid support of mirror segments using backplane structure 
• Surface-parallel: relative positioning of mirror segments without backplane structure 
• Hybrid: a combination of both surface-normal and surface-parallel actuation 

1.4 Trade Metrics 
The above architectures were evaluated against each other by means of four system-level trade 
metrics, which allow quantifying the variations in cost, risk, and performance among the 
different architectures. 

1.4.1 Cost  

It is the lifecycle cost of the designed telescope.  It includes flight system development (based on 
Stahl 2005 paper, the Unmanned Space vehicle Cost Model 8th edition - USCM8, and NASA 
Instrument Cost Model - NICM), launch (based on historical and projected launch vehicle costs), 
assembly, and servicing (Baldesarra 2007). 

1.4.2 Utility to Science  

Utility to science reflects the lifecycle science output of the telescope. It is defined as the 
discovery efficiency of each individual instrument integrated over instrument lifetime 
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(Baldesarra 2007). Instruments are assumed to gain utility with time and the telescope utility to 
science will increase as more advanced instruments are added. 

1.4.3 Failed Downtime  

The failed downtime is defined as the time during which no science can be done due to the 
failure of a component, and thus is a measure of the technical risk involved in the mission.  
Although downtime will also occur during the Assembly/Transit Phase and Servicing Phase of 
operations, this downtime is a part of normal telescope operations and thus is not a measure of 
the risk of a particular architecture. 

1.4.4 Servicing Margin  

It is a measure of the ease with which the telescope can be serviced.  Serviceability is reported as 
a cost margin (the difference between the lifecycle cost of a repair and a replacement case 
mission architecture) per kilogram serviced over mission lifetime (Baldesarra 2007). Subsystem-
level metrics were also developed to evaluate variations of each of the subsystems the telescope 
is composed of for all the different architectures. Complexity, mass, power, volume, and lifetime 
are metrics common to all subsystems; however, metrics specific to each subsystem were also 
identified and will be discussed more in detail in this report. 

1.5 Model Structure and Results 
In order to enumerate and characterize telescope architectures within the tradespace, a MATLAB 
code was developed to take inputs for architectural decisions and parameters based upon 
assumptions, generate a telescope architecture, simulate that architecture over the entire lifecycle, 
and characterize the architecture using the trade metrics described above. This code consists of 
three primary sections: the Architecture Generator, the Lifecycle Simulator, and the Trade Metric 
Characterizer. 

The Architecture Generator consists of nine sub-functions, which map to nine systems within 
space telescope design (Optics, Communications, ADCS, Avionics, Propulsion, Power, Thermal, 
Structures, and Systems). The code executes these sub-functions in order, and uses the 
architectural decisions to generate a telescope architecture consisting of a set of components from 
a given component database. The architecture indicates which components are used, how many 
of them are present, and how they are grouped into modules; the component database supplies 
data such as component mass and Mean Time Between Failures (MTBF). 

The Lifecycle Simulator performs a simulation of telescope operations over the assumed lifetime 
of 40 years, from launch to decommissioning. This simulation models the week-by-week 
operation of the telescope, including the Assembly, Science Gathering, and Servicing operational 
phases. During operations, the utility to science of the telescope is calculated for each time step 
and a random number generator is used along with MTBF data and operational time of telescope 
components to simulate random failures within the component set. When a time step 
corresponding to a scheduled servicing mission is reached, servicing is performed. This involves 
upgrading instruments and replacing modules as needed as well as calculating the serviced mass 
and servicing downtime. Scientific operations only resume once the servicing downtime is 
complete; there is no utility to science during servicing. In order to account for the stochastic 
nature of the random component failures, this simulation is repeated 10 times and the results are 
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averaged for each architecture. The outputs of the simulation are a time vector of utility to 
science and the amount of mass serviced during each servicing mission. 

Finally, the Trade Metric Characterizer takes the outputs of the Lifecycle Simulator as well as 
characteristics of the generated architecture and uses them to calculate the four primary trade 
metrics: Cost, Utility to Science, Serviceability, and Risk. For each architecture, these results 
(and other metrics of interest) are saved with the architectural vector for later identification. The 
code is executed for every combination of the architectural decisions in order to enumerate the 
entire tradespace, and the results are plotted for analysis. 

Discussion of Results 

Results generated by the model illustrate several dependencies and trends among metrics. It will 
be seen that utility to science mainly depends on both servicing frequency and servicing location 
while upgrading the instruments often and minimizing the failed downtime. Cost is instead 
mostly affected by modularity level and servicing frequency with architectures requiring a large 
serviced mass being most expensive. Servicing frequency will be shown to have the largest 
effects on failed downtime since architectures with infrequent servicing are expected to 
experience more failures, which lead to lengthy downtimes. Finally, serviceability most strongly 
depends on modularity, servicing frequency, and assembly/servicing technique. Indeed, 
architectures with strong modularity which are serviced often and with cheap servicing 
techniques exhibit the lowest cost per unit serviced mass. A sensitivity analysis was also 
performed in terms of reliability threshold and mean times between failures. Results show that 
utility to science is the sole trade metric that is significantly affected by changes in such 
parameters. 

The 2-D tradespace representation in Figure I illustrates the interactions between three different 
trade metrics. Points closest to the utopia point are considered “Pareto Optimal” and are 
highlighted in red. The utopia point has the lowest cost, highest utility to science, and highest 
servicing margin. Conversely, the so-called “bad” designs are characterized by high cost, low 
utility to science, and low servicing margin. In Figure 51I, clusters of architectural point 
solutions can clearly be seen on the tradespace, with a high concentration of points in the region 
with low utility to science and increasing cost. Clusters of larger points are seen closer towards 
the utopia point, reflective of designs with increasingly lower costs, higher utility to science, and 
higher servicing margin. 

An analysis of the points directly reveals that the subset of “Pareto Optimal” solutions is 
dominated by the “7-1-1” architectural vector elements. “7-1-1” represents the identification 
numbers of the assigned alternative for the first three architectural decisions in order: the highest 
modularity level possible of 7, Sun-Earth L2 as the servicing location, and a servicing frequency 
of 3 years. A modularity level of 7 would constitute the combination of highest instrument 
modularity and spacecraft bus modularity. A servicing location at SE-L2 will ensure that the 
space telescope never experiences downtime, thereby providing the highest utility to science. A 
servicing frequency of 3 years also ensures that onboard instruments and component families 
remain in pristine operating condition throughout their mission lifecycles. These reasons thus 
collectively explain why solutions with the “7-1-1” architectural vector would be dominant in the 
“Pareto Optimal” subset closest to the utopia point. 
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Figure I1: 2-D tradespace of “Pareto Optimal” solutions for the LTA, bounded by 
normalized utility to science and cost. 

In Clusters 2 and 3, the dominant architectural alternatives are still the Sun-Earth L2 servicing 
location and a servicing frequency of once every 3 years (“X-1-1”). However, modularity is no 
longer as dominant in this cluster. In fact, lower levels of modularity become more prominent, 
and this results in increased cost due to higher launch costs required for high launch masses of 
instrument packages instead of individual components. As such, the solutions of Clusters 2 and 3 
are located just to the right of Cluster 1 and in a region with higher normalized cost. 

The architectural alternatives of Level 7 modularity, servicing location at LEO, and servicing 
frequency of one every 10 years dominate the solutions in Cluster 4 (“7-3-3”). Modularity Level 
4 is also prominent, thus accounting for the presence of “4-3-3” solutions amongst the majority 
of “7-3-3” solutions. Cluster 4 is located below and to the left of Cluster 1 because servicing at 
LEO is a lot cheaper, but it also incurs higher downtime. Also, servicing the telescope once every 
10 years means that there is a higher probability that certain instruments or components could fail 
without being replaced for long periods. This results in a loss of utility to science. Cluster 5 is 
almost similar to Cluster 4 (“7-3-3”), except that it reveals some alternatives for other 
architectural decisions have become more prominent. “4-3-3” points are also present in this 
cluster. These alternatives are laser communications architecture, surface-normal primary mirror 
actuation, assembly and servicing with tugs and 36 mirror segments. Cluster 6 has modularity 
level 7, servicing location at LEO, and servicing frequency of once every 3 years as the dominant 
architectural alternatives (“7-3-1”). While it might be cheaper to service at LEO, a much higher 
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frequency of servicing would result in higher total launch costs for the space telescope across its 
mission lifecycle. As such, the solutions in this cluster would have a higher normalized cost and 
they are located to the right of Clusters 4 and 5. 

Finally, Clusters 7 and 8 are generally characterized by modularity levels 2 and 3, servicing 
location at LEO and servicing frequency of once every 3 years as the dominant architectural 
alternatives (“2/3-3-1”). Lower levels of modularity, near-Earth servicing location and high 
frequency of servicing collectively imply that large instrument packages or component families 
are being taken out and replaced frequently during its mission lifecycle. The high frequency of 
servicing drives the normalized costs up, while servicing a minimally modular spacecraft means 
that downtime will be a common occurrence, leading to lower utility to science. As such, these 
solutions are located in the region of increasing costs and low utility to science. 

Through analyzing the clusters of solutions in the tradespace of “Pareto Optimal” points, it is 
evident that the architectural decisions of modularity, servicing location and servicing frequency 
have huge leverage on the spatial distribution of solutions in the utility-cost space. Higher 
modularity, servicing at its SE-L2 operating location, and high servicing frequency generally 
drive solutions towards the utopia point. Low modularity will generally drive solutions towards 
the high cost end while servicing at LEO or at a lower frequency will drive solutions towards the 
low-cost/low-utility end.  

1.6 Conclusions 
The analysis presented in this report will show that servicing frequency, servicing location, and 
modularity are the most important decisions when architecting a space telescope, while the other 
four architectural decisions affect the trade metrics in minor ways. In addition, the model 
developed will serve as a preliminary tool for the stakeholders with which it will be possible to 
explore the tradespace of large telescope architectures to perform unprecedented science. Several 
sources of uncertainty remain in the existing model, but the further steps that can be taken to 
improve its fidelity will be briefly described at the end of this report to allow for follow-on 
developments. 
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2 INTRODUCTION 

Humanity’s endeavor to further its scientific understanding of the celestial heavens has led to the 
creation and evolution of increasingly powerful and complex space telescopes.  Space telescopes 
provide a view of the solar system, galaxy, and universe unobstructed by Earth’s atmosphere and 
have profoundly changed the way people view space.  In an effort to further advance space 
telescope capability and achieve the accompanying scientific understanding, the Massachusetts 
Institute of Technology (MIT), specifically, course 16.89 Space Systems Engineering, explored 
the tradespace of architectural enumerations encompassed within the design of an ultraviolet-
optical-infrared (UVOIR) space telescope located at Sun-Earth Lagrangian Point Two (SE-L2).  
SE-L2 presents several advantages as an operating location for a UVOIR telescope such as a 
thermally stable environment and an orbit that allows the telescope to maintain a constant 
orientation with respect to all of the primary sources of heat and light.  The main disadvantages 
associated with SE-L2 are caused by its relatively large distance from Earth, which marginalizes 
the effectiveness of real-time telerobotics because of latency and increases the cost of 
communications, launch, and servicing. Course 16.89 believes that, for this UVOIR application, 
the strengths of this operating location outweigh its weaknesses and therefore decided to explore 
the family of opportunities associated with SE-L2.   

This course used appropriate performance and system metrics to quantify the effectiveness of the 
aforementioned architectures and create a Pareto front of viable architectures.  Evaluating the 
designs along the Pareto front allowed the course to characterize and group architectures and 
present these group-types to stakeholders for the selection of an optimal space telescope 
according to stakeholder requirements and resources.  This course also developed sensitivity 
analysis, which allowed for a greater understanding of how architectural decisions affect the 
performance of the satellite. Segmentation, modularity, assembly, autonomy, and servicing were 
key aspects of this multidimensional analysis given the 16.8-meter class size and location of the 
telescope. Within the respective operating environment and for a spacecraft of similar 
characteristics, this model will allow stakeholders to predict the long-term operational 
effectiveness of different space telescope architectures and capture the synergistic effects of 
combining various architectural decisions into a spacecraft design. 

The following sections step through the aforesaid analysis and design efforts conducted in 16.89 
beginning with Section III, which explicitly performs the stakeholder analysis and articulates the 
requirements of the mission.  Section IV gives an overview of past designs and expands upon the 
architecture enumerations pertinent to this project, while Section V presents the methods and 
metrics by which those architectures will be evaluated and the system metrics which will be 
balanced and optimized in the creation of this space telescope.  Section VI will present the model 
validation of this project and Section VII will discuss the results and analyses of the project.  
Finally, Section VIII will explore the future work opportunities of this project, while Section IX 
will present the conclusions and recommendations drawn from this project. 
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3 TELESCOPE STAKEHOLDER ANALYSIS 

3.1 Stakeholder Analysis 
A stakeholder analysis was performed to determine what the specific needs and desires are of 
relevant stakeholders at this stage of telescope design. This analysis also helped to define areas of 
interest for the TITANS AE trade study, as well as what applications stakeholders might seek to 
use this model for in the future. A set of questions on telescope performance, architecture, and 
cost was sent to various stakeholders around the country. Potential stakeholders with an interest 
in programs of this kind include:  

• NASA Goddard Space Flight Center (GSFC) 
• NASA Headquarters (HQ) 
• The Jet Propulsion Laboratory (JPL) 
• The Space Telescope Science Institute (STScI) 
• ITT (formerly Kodak) 
• MIT 
• Skoltech 
• The European Space Agency (ESA) 
• Other international universities and space agencies 
• The National Reconnaissance Office (NRO) 
• Department of Defense (DoD) 
• Other governmental organizations 

The stakeholder responses were compiled into a set of assumptions and requirements. The list of 
stakeholders from outside MIT who responded to the questionnaire is shown in Table II. An 
effort was made to include a diverse set of stakeholders to represent a wide spectrum of views on 
the goals of our trade study. The stakeholder questions and answers are listed in Appendix B. 

Table II: List of surveyed stakeholders 
Stakeholder Organization 
Dan Lester University of Texas 
Lee Feinberg NASA GSFC 
Swati Mohan JPL 
Tupper Hyde NASA HQ 

 

The stakeholder answers to the questionnaire helped scope the model in a number of ways. The 
responses helped set the scientific goals of the mission, the timeframe of the mission, the size of 
the primary mirror, and the operating location. These responses also gave an indication of the 
range of opinions on different facets of our architecture. The stakeholders were adamant that the 
next-generation large space telescope should be a UVOIR telescope that primarily investigates 
exoplanets. Additionally, the stakeholders were consistent in their desire for a very serviceable 
telescope to achieve both a long lifetime and enable instrument replacement. There were some 
areas in which the stakeholders differed. The recommended primary mirror diameter ranged from 
16 m to 30+ m. Also, the stakeholders disagreed on the magnitude of the available budget, 
ranging from < $5B to $15B. In instances where stakeholders differed, reasonable assumptions 



 22 

were made that combined the stakeholder input with modeling constraints to arrive at sensible 
assumptions. 

 
Figure 2: Map of stakeholder needs 

 

 

 

 

 

 

 

 

 

 

 

 



 23 

A defined tradespace for a large 
space telescope → 

NASA 
(HQ, Goddard, 

JPL) 

→ A functional telescope 
A functioning model  → 

First-order analysis  
of design options → → New scientific data 

Feasibility of LTA as part  
of an FSS structure → → Inspirational images 

New space technologies →   

     

Feasibility of LTA as part  
of an FSS structure → 

Skoltech 

→ Publications 

→ Research Programs 

A functioning model → → New Technologies 

     

Images and data of exoplanets → 
The Scientific 
Community  

→ Analyses/scientific 
advancement 

Observations of distant objects → → Research papers and 
publications 

     

Inspirational images → The Public → Renewed interest in space 
science and space technology 

     

  

MIT 

→ Publications 

  → New technologies 

Funding → → Research Programs 

  

→ A functioning model  
(An adaptable tool, easily 
modified for future use, 
updatable as the project 
progresses) 

Figure 3: Needs of major stakeholders, organized as by inputs and outputs 

As understanding of individual stakeholder desires came into focus, a list of high-level 
stakeholder groups was constructed, and the basic needs of those stakeholders identified. The 
needs and the interactions between all stakeholders are shown in Figure 2.  For the high-level 
groups, these needs are displayed as inputs and outputs for each group in Figure 3. 
Understanding and organizing these needs enabled identification of what MIT’s primary outputs 
to stakeholders should be (see last block in Figure 3). Specific to the TITANS AE team, this 
identified the primary output to be a functioning model that may be used throughout future 
telescope development.  
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Of particular interest to NASA and Skoltech is including the concept of using Federated Satellite 
Systems (FSS) in the tradespace as major architectural decision. Using FSS, the final LTA would 
share processing power and access time with other satellites in its system, creating more efficient 
allocation of spacecraft resources. FSS use would be a sweeping paradigm shift in spacecraft 
technology and communications, and thus a key consideration for any new, long-term spacecraft 
design1.

3.2 Requirements Definition 
In order to identify requirements for the overall telescope design and the tradespace model that 
apply directly to the scope of this project, two stakeholder needs area were analyzed in detail – 
goals for data provided to the scientific community and goals for the model itself to make it 
functional for future use. These areas specifically have been chosen for further analysis because 
the TITANS AE team is fulfilling the need for a tradespace model, and the mission of the 
telescope will directly inform the potential telescope architectures explored by the model. Thus, 
the goals of the model itself and the science goals that affect model design are the needs areas 
that drive requirements for the TITANS AE project. The model must also incorporate the 
stakeholder-specified potential for FSS architectures, which will be taken into account directly as 
an architectural option.  

3.2.1 Science Goals 

To first understand the potential scientific objectives for a new large-scale space telescope, as 
well as which objectives are concurrent with needs of NASA and the larger scientific 
community, a study was conducted through review of the 2010-2020 decadal survey of 
astronomy and astrophysics2. This survey represents a clear summary of the highest priority 
needs in terms of data for the scientific community and science drivers behind potential NASA 
missions. The first priority space-based medium-scale mission in the decadal survey is a New 
Worlds Technology Development Program. That is, laying the groundwork and beginning to 
explore possible technologies for an exoplanet-imaging telescope whose critical development 
would take place in the 2020-2030 decade. The main goal for such a telescope mission would be 
to image Earth-like planets in the habitable zones of nearby stars and provide insight on their 
atmospheres. It would rely on knowledge obtained from the Kepler and Wide Field InfraRed 
Survey Telescope (WFIRST) exoplanet finders for observable target selection. Such a mission 
would require understanding of zodiacal light (light scattered by dust around a star) levels around 
potential target stars and the ability to distinguish rocky planets through this light.  

The first priority large-scale space mission from this decadal survey is the WFIRST telescope, 
designed to measure a wide field and detect exoplanets using near-infrared detection. WFIRST 
would determine the range of orbital parameters that permit an Earth-like planet to exist, which 
will help define the optical requirements necessary to resolve exoplanets. It is now likely that a 
recently donated National Reconnaissance Office (NRO) telescope will be repurposed to 
accomplish these goals3. The James Webb Space Telescope (JWST), though not ranked in this 
decadal survey, is recognized as an important mission in the near-infrared spectrum that will 
investigate the origins of planetary systems and the universe. The science goals of understanding 
the origins of the universe, galaxies, stars, and planets are still recognized as high-priority in this 
survey, and will likely still be of interest in the next decade.   
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From the rankings in this survey, a telescope for imaging and spectroscopy of exoplanets is in 
line to become the first priority large-scale space mission of the 2020 decade. This would build 
on the current New Worlds Technology Development Program, and serve as a logical next step 
following the WFIRST/repurposed telescope mission. Furthermore, the description of the 
program discussed here fits the timeline of this project, enhancing the impression that exoplanet 
studies should be one of this mission’s primary goals. Such a mission calls for observational 
capabilities in the visible-to-ultraviolet wavelength regimes. If this project is also to complement 
the mission of JWST, this new telescope will require the additional ability to make observations 
in the near-infrared spectrum and observe distant objects such as galaxies in early formation. 

Based on review of the decadal survey, the main science objectives for the telescope are defined 
in Table III. These objectives, defined here as goals, are high-level mission requirements that 
apply to the final telescope design and correspond with stakeholder needs for science for this 
project. 

 

Table III: List of mission goals from stakeholder analysis 
Goal 1 To observe known Earth-like exoplanets in the habitable zones of their stars at 

UVOIR wavelengths 

Goal 2 To analyze the atmospheres of these exoplanets through spectroscopy and 
obtain a clearer assessment of their potential to sustain life 

Goal 3 To observe distant objects such as forming galaxies and solar systems in order 
to understand the origins and formation processes of these far-field objects 

 

These science goals are similar to those of the Advanced Technology Large-Aperture Space 
Telescope (ATLAST). ATLAST was a NASA study performed several years ago that looked at 
the design of a large, next-generation UVOIR telescope primarily designed to determine if an 
exoplanet can harbor life4. Basing the key performance requirements on those from ATLAST 
means that the telescope being investigated will achieve the goals stated in Table III. These 
optical performance attributes are far more stringent than what has previously been achieved on 
Hubble and JWST. Based on stakeholder recommendations and desires, the technical 
requirements for the ATLAST optics are used as a baseline for this study. These hardware 
specific requirements are listed in Table IV. 
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Table IV: ATLAST key optical performance requirements5 

 

Definitions of these technical requirements and descriptions of how they are considered in the 
model may be found in Appendix I.  

3.2.2 Model Goals 

Based on stakeholder needs for the TITANS AE model itself, the main goal of this project is to 
produce a tool that characterizes the tradespace for a large UVOIR telescope design, and not 
down-select to any single architecture. This tool must be flexible for future use and robust to 
major changes in the telescope architectural tradespace. Understanding this, the goals specific to 
the TITANS AE project are listed in Table V.   

Table V: List of goals for TITANS AE model based on stakeholder analysis 
Goal 1 To create a robust model that generates a fully enumerated tradespace for a 

large scale space telescope 

Goal 2 The model shall be flexible and modular, such that it may be adapted to the 
telescope technical requirements desired by the user 

Goal 3 
The model shall provide data presented in a manner that will assist the user in 
determining what architecture characteristics are optimal for their needs, 
without down-selecting or defining an “optimal” 

Goal 4 
The model code shall be developed such that new trade metrics or variables 
may be added to suit future user needs without altering the fundamental model 
structure 

 

  

Requirement Name Minimum 
Requirement 

Target 
Requirement Science Drivers 

Optical Bandwidth 0.2 – 2.5 µm 0.11 – 2.5 µm Solar system exploration 
Aperture Size 16.8 m   
Angular Resolution 6 – 12 mas 3.5 mas  
Field of View 5 arcmin  Extragalactic star formation 

Pointing Stability 1 mas  Exoplanet characterization, life 
detection 

Spectroscopic Resolution 300 120000 Extragalactic star formation 

Contrast 1e+07 1e+10 Exoplanet characterization, life 
detection 

Inner Working Angle 50 -100 mas 40 -50 mas Exoplanet characterization, life 
detection 

Wavefront Error 37 nm 0.07 nm Exoplanet characterization, life 
detection 

Wavefront Stability 10 nm 0.07 nm Exoplanet characterization, life 
detection 

Uninterrupted Observation Time 2 hours   
Operational Efficiency 90%   
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3.3 Architectural Assumptions  
To simplify the architecture development process, several assumptions have been made: 

3.3.1 Operate at Sun-Earth L2 

This is the location currently proposed for both JWST6 and ATLAST4. Sun-Earth L2 is a benign 
environment where the main heat and stray light inputs are always on one side of the telescope, 
simplifying design. Other operational locations that were considered and could be analyzed in 
future studies are Low Earth Orbit (LEO), Earth-Moon L2 and Earth-trailing. 

3.3.2 16.8-meter-diameter primary mirror 

This size is significantly larger than anything previously flown and on par with the largest size 
considered for the ATLAST design4. A 16.8-m mirror provides unprecedented light gathering 
and resolution capabilities enabling new science. Future studies may look at the science 
capabilities of even bigger mirrors in the 20–30-m range, comparable with future ground 
telescope mirror sizes. 

3.3.3 On-orbit assembly is necessary 

A 16.8-m mirror is significantly larger than any current or planned launch vehicle fairing. 
Therefore, on-orbit assembly will be required, chiefly for the primary mirror. Novel folding and 
packing schemes were not looked into. 

3.3.4 Segmented primary mirror 

The primary mirror must be composed of smaller hexagonal segments, as there is no current 
infrastructure that would allow the construction of a 16.8-meter monolithic mirror.  

3.3.5 Launch in 2028, Phase A in 2020, Technologies be TRL 6 by 2020 

These dates represent the next available slot for a large astrophysics mission. JWST will be 
operational, freeing up funds for the next large telescope. 

3.3.6 Lifetime of 40 years 

Lifetime is a main driver of lifecycle science value. A 40-year lifetime will allow this telescope’s 
capabilities to be fully utilized before a presumably more capable telescope surpasses it. Lifetime 
is a significant driver of cost as well. Future studies can look at the effects of varying lifetime. 

3.3.7 Autonomous servicing, no human servicing 

The lifetime assumption drives the need to service the telescope as no space system has ever 
lasted 40 years on its own. Servicing also provides an opportunity to upgrade the instrument suite 
and enable the science output of the telescope to continue to increase over its lifetime. Human 
servicing capability in 2028 and beyond is highly uncertain and the technology for robotic 
servicing was assumed to be available and economically advantageous by 2028. 

3.3.8 Scheduled servicing 

Scheduled servicing, as opposed to on-demand servicing, simplifies the design and costing 
process since the interval between servicing and the number of servicing missions is known. 
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Additionally, the long travel times to Sun-Earth L2 mean that on-demand servicing would result 
in large downtimes. 

3.3.9 No servicing of optical surfaces, only instruments and engineering components 

Serviceability will be limited to instruments and engineering components as servicing mirrors 
introduce alignment and contamination concerns that would place strict constraints on the 
servicer. Additionally, optical services are unlikely to need servicing. 

3.3.10 No formation-flying coronagraph 

An external, formation-flying coronagraph was proposed for ATLAST4, but that architecture is 
neglected as it introduces unnecessary complexity in the form of another spacecraft design. 

3.3.11 Federated Satellite System (FSS) considered as a downlink architecture 

The FSS downlink architecture introduces multiple satellite-to-satellite links in the downlink 
chain. This pseudo-constellation allows data to be continuously transmitted from the telescope to 
the ground without concern for ground station line of sight. This capability potentially can 
reduce the mass and power of the communications and command and data handling subsystems. 

 
Figure 4: Resolvable exoplanets as a function of mirror diameter 
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4 ARCHITECTURAL ENUMERATION 

4.1 Historical Analysis of Past Missions 
Previous architectures can be described as a set of functions and forms developed to address 
various aspects of established science requirements.  Functions are defined as the actions for 
which each system is created, and forms are the shapes, configurations, arrangements, or layouts 
that are implemented to achieve the system functions. The study of past forms and functions in 
previous architectures allowed the team to analyze past telescopes and space systems to gain 
insights into how different subsystems interact, how the science requirements lead to 
architectural decisions, and how to determine which architectural decisions were the most 
important to include in tradespace analysis. Consequently, the analysis of past designs facilitated 
the determination of a set of functions that each subsystem team needed to address. This analysis 
also determined sets of forms corresponding to each of these functions for each mission, since 
the previous missions provided a historical basis for scoping possible forms to study.  

The example missions of the Hubble Space Telescope, James Webb Space Telescope, and 
Kepler Telescope were chosen because they span the tradespace of the current project goals and 
science requirements. Additionally, the Iridium Constellation was chosen to provide a basis for 
different communication architectures to analyze the Federated Satellite System concept. 
Specifically, the past missions permitted the analysis to incorporate several aspects of the 
different systems including: primary mirrors of various segmentation levels, wavelengths of 
study, and number of spacecraft in the systems. These telescopes and space systems also spanned 
a range of launch dates and revealed the progression in scientific and technical capabilities. The 
aim of the team analysis was the primary subsystem-related functions and forms for these four 
selected missions. 

The result was a mapping of various forms to each analyzed subsystem function, which were 
then mapped to the architectural decisions. A list of these forms and functions for each of the 
historical missions can be found in Appendix J. Each subsystem team analyzed all of the 
historical missions to gather as much information about their respective subsystems and their 
implementation aboard these spacecraft as possible. In particular, each team focused on 
determining the methodology by which each historical mission’s subsystems were designed and 
engineered to then determine a suite of forms and functions that historically were deemed the 
optimal designs and architectures. For example, the Structures and Mechanisms subsystem 
analyzed all four of the historical missions to determine the functional role of the Structures and 
Mechanisms subsystem for each mission, as well as how the structure was built for each mission 
and which mechanisms were selected to enable to spacecraft to perform their respective 
missions. Subsequently, the Structures and Mechanisms subsystem team was able to determine 
that the primary Structures and Mechanisms functions for the four analyzed missions were: 
protecting, supporting, pointing, preventing jitter, deploying, stowing, interfacing, access 
providing, and on-orbit assembling. These primary functions were then broken down into several 
additional sub-functions as required to fully define the various spacecraft architectures. The form 
by which each of the missions provides these functions was then listed on the row corresponding 
to each function. In this way, similarities between the missions could be determined. The 
architectural decisions arose from these functions, whereby the forms enabled the telescope to 
achieve the demands set forth by the architectural decisions. 
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4.2 Function and Form Mapping 
The historical missions have several very similar functions that can be attributed to the missions’ 
overall goal of collecting images of distant objects. With these sets of forms and functions, the 
teams were able to determine the most applicable functions with sample forms to be applied to 
the 16.8-m-total-width hexagonal-segment primary mirror telescope of the project. In addition, 
the forms allowed the teams to begin the determination of metrics to resolve differences between 
various architectural decisions as they are analyzed by an automated code. These metrics are 
quantitative in that they are based on relevant calculations. Additionally, the decisions 
themselves stem from the functions that must be performed by each subsystem, meaning that the 
architectural decisions made by each subsystem must be able to accomplish all of the respective 
functions as analyzed in the historical study. Figure 5 shows the top architectural decisions, 
functions, and forms for each subsystem as determined by observing which forms and functions 
best describe each subsystem across the different historical missions. 

Figure 6 presents architectural decisions with their associated forms across all of the subsystems 
for the LTA project. The historical missions allowed these seven architectural decisions to be 
determined as those that provide a basis that spans the possible LTA architectures. These 
decisions, therefore, represent the most crucial design decisions that most greatly affect the 
overall design of the telescope. The historical examination was necessary for the LTA analysis 
team to both narrow the architectural decision list to these seven, as well as to populate the table 
with the appropriate forms for each decision. By studying the historical missions, the team was 
able to select forms that are applicable to the LTA while providing a set of forms that fully 
describe the types of methods for instantiating each of the architectural decisions. Therefore, the 
historical analysis proved to help scope the LTA project by defining the possible space of forms 
to be analyzed in the team’s code. 
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Figure 5: Reduced architectural decisions and forms for each subsystem 

ID Architectural-Decisions Function Possible-Forms
Systems-1 Location(of(Servicing Humans/Robots(at(Earth8Sun(L2 Humans/Robots(at(LEO(or(MEO

Systems-5 Science(Instrumentation(Modularity Fully(Integrated((No(Servicing) Sub8system(modularity Component(modularity

Systems-6 Optical(Pathway(Modularity Fully(Integrated((No(Servicing) Sub8system(modularity Component(modularity

Systems-7 Engineering(Equipment(Modularity Fully(Integrated((No(Servicing) Sub8system(modularity Component(modularity

Comm-1 Communications(Type DSN Laser

Comm-2 Relay(Type FSS Direct

Comm-3 Processing(Architecture Centralized,hierarchic Centralized,Non8hierarchic Distributed,(hierarchic Distributed,(Non8hierarchic

Propulsion-1 Propulsion(Type
Maintain(orbit((station(keeping)(

and(move(system(to(new(location(if(
needed

Pulsed(chemical(thrusters Constant8fire(electric(thruster None

Structures-1 Jitter(Prevention(Method Prevent(jitter Electromagnetic Fluid Mechanical None

Structures-2 Primary(Mirror(Articulation(Method Provide(mirror(structural(support Surface(parallel( Surface(normal Both

Structures-3 On8orbit(Assembly(Technique Assemble(telescope(structure Robotic(Arm(s) Mechanical(Tug(s) Electromagnetic(Tug(s) Swarm(Robotics Deployment((unfolding)

Thermal-1 Insulation(from(Sun,(Earth Insulate(spacecraft(form(Sun,(Earth No(sun8shield Sun8shield

Thermal-2 Cooling(instrument(and/or(detectors
Maintain(instrument(temperature(

within(operational(range
Purely(passive(thermal(design Thermo8electric(cooler Cryocooler Cryogenic(dewar

Thermal-3
Controlling(temperature(of(optics,((bus(and(

other(subsystems

Maintain(temperature(of(bus(and(
subsystems(within(operational(

range
Purely(passive(thermal(design Active(thermal(components

Science-1 Telescope/Optical(Train(Architecture Collect(and(focus(light Fully(Unified(Telescope(Structure
Fully(Distributed(Telescope(

Architecture

Unified(Primary,(Detached(
Secondary,(Detached(Science(

Instruments

Unified(Primary,(Detached(
Secondary,(Attached(Science(

Instruments

Hybrid(((e.g.,(Center(of(Primary(
Mirror(Fixed,(Outer(Segments(free8

flying)

Science-2 Instrument/Optical(Bench(Architecture Detect(light(and(make(observations
Multiple(Primary(Instruments(with(

or(without(Secondary(Science(
Payloads

Single(Primary(Instrument(and(
Secondary(Science(Payloads

Science-3 Coronagraph
Observe(and(characterize(Earth8like(

exoplanets
Occultation(disk((separate)

Coronography(built(into(optical(
train((Lyot8TR6)

Optical(vortex(coronagraph
No(hardware(Coronography(

element

Provide(a(communciations(link(with(
gound

Provide(an(effectively(
servicable/upgradable(system
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Figure 6: LTA architectural decisions and forms

Architectural Decisions

Servicing Location Earth-Sun L2 Earth-Moon L2 LEO LOTUS

Servicing Frequency Every 3 years Every 5 years Every 10 years

Modularity Level
Level 1 (no 
modularity) Level 2 Level 3 Level 4 Level 5 Level 6 Level 7

Communications 
Architecture

Direct, DSN Direct, Laser TDRS FSS ( LEO)

Primary Mirror Actuation
Surface Parallel 

Actuators Surface Normal Actuators Both Surface Normal and 
Parallel Actuators

Assembly/Servicing 
Technique

Self-Assembling (Use 
of Robotic Arms with 

Unfolding)
Tug Swarm Robotics/Formation 

Flying

Structural segmentation 
of Primary Mirror

36 Segments, 1 
Mirror Each for 36 

Structural Segments 
Total

6 Symmetric Segments (6 
Mirrors Each) for 6 Structural 

Segments Total

1 Center Segment and 6 
Symmetric Segments (4 

Mirrors Each) for 7 Structural 
Segments Total

6 Symmetric Inner Segments 
(3 Mirrors Each) and 6 

Symmetric Outer Segments 
(3 Mirrors Each) for 12 

Structural Segments Total

Assymetric (1 Central 
Segment and 2 Identical 
"Chord" Segments) for 3 

Structural Segments Total

Possible Alternatives
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4.3 Architectural Decisions 
 
4.3.1 Communications Type 

Efficient communications are critical to the successful execution of space missions and 
architectural frameworks for space exploration. As operating a space telescope at L2 presents 
unprecedented challenges in maintaining optimal communications quality and high data volume 
rates within cost constraints, a number of existing and emergent technologies are being 
considered as prime candidates for the primary communications architecture. Existing 
technologies considered for architectural enumeration comprise radio-frequency (RF) 
communication platforms such as the Deep Space Network (DSN), Tracking and Data Relay 
Satellite System (TDRSS), and Federated Satellite Systems (FSS). An emergent technology is 
direct FSO (Free-Space Optical) or laser communications, which may eventually evolve to 
become the dominant option for space communications in future. 

Radio-Frequency communications have long been the primary medium for space 
communications. Commonly used to provide communications support to interplanetary 
spacecraft missions, the DSN consists of a worldwide network of large antennas and 
communication facilities located in three locations spaced equally along the Earth’s 
circumference: Goldstone, California; Madrid, Spain; and Canberra, Australia. These facilities 
contain extensive data processing platforms and several antennas varying from 11 to 70 meters in 
diameter. A distant spacecraft leveraging the DSN for communications support can thus 
potentially remain in contact with at least one site. With necessary infrastructure already in place 
and high reliability in its usage history, the DSN can provide the two-way communications link 
for guidance, control, telemetry, and scientific data transmission for the space telescope. 
Furthermore, telecommunications is continuously evolving to meet growing demands in data 
quality and quantity for commercial, military, and space applications. As such, using the DSN 
can provide flexibility to the space telescope in adapting to changing mission requirements over 
the system lifecycle. 

 
Figure 7: Large ground-based antennas of the Deep Space Network7 

The TDRSS is also a RF communications platform and it is a network of communication 
satellites and ground stations, where each satellite within the network is defined as a TDRSS. It 
has provided reliable communications support to existing spacecraft such as the Hubble Space 
Telescope and International Space Station, and is continuously being expanded with more 
planned launches of new data and relay satellites to manage increasing data rates and volumes. 
Also, its usage of the S-, Ku-, and Ka-bands will enable higher bandwidth communications for 
multi-spectral science instruments and reduce their susceptibilities to radio interference. With 
existing infrastructure to accommodate multiple users and achieve notable success in many state-
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of-the-art applications, the TDRSS also presents an effective and practical communications 
architecture option for the space telescope. An existing TDRSS is the Iridium satellite 
constellation, which is a large group of Earth-pointing satellites providing voice and data 
coverage to satellite phones and other integrated transceivers over the Earth’s entire surface.  

 
Figure 8: Iridium satellite constellation for global communications8 

While the DSN and TDRSS offer more direct communication paths between the spacecraft and 
ground stations, the FSS provides additional routing and relay capabilities for the space 
telescope. As such, the space telescope can operate as part of an infrastructure of an FSS 
architectural concept. The FSS is an emergent concept that leverages opportunistic cloud 
computing and which can potentially “increase the sustainability, cost effectiveness, robustness, 
and reliability of space-based assets, and hedge demand uncertainty while creating in-orbit 
markets of space resources.”9 The FSS concept is based on distributed satellite systems, where 
spacecraft within the federated network share unused space resources such as link capacity, 
storage capacity and data processing time. With the availability of communications resources 
already in orbit, designing the space telescope as part of an FSS can significantly reduce 
infrastructure costs and immediately achieve compliance with existing space communication 
regulations.  

Providing the option for data relay through the FSS can influence further design decisions of the 
space telescope such as the onboard data storage capacity, antenna power, system reliability and 
complexity. For storage capacity, direct communications via the DSN or TDRSS will require 
significant onboard data storage since the communications link window has been stated to be 
approximately 4 hours per day and it is necessary to preserve all recorded science information 
throughout its mission lifecycle. Being part of an FSS, however, can allow data recorded outside 
the link window to be transmitted via cross-links to other federated satellites for storage before 
rerouting back to Earth, thus reducing the need for large data storage platforms.  

With the FSS, antenna power may be reduced since the only transmission destinations are nearby 
satellites. While compensation for path loss may be required, power overheads for the space 
telescope can be significantly reduced if there is no need to overcome atmospheric attenuation. 
Despite its possible benefits, the FSS may also pose problems to system reliability since it is a 
concept still in its stages of developmental infancy. Without the presence of an existing or robust 
FSS in operation, there exists technical and bureaucratic obstacles involved in establishing a new 
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FSS and this incurs significant risk and uncertainty associated with its communications 
performance.  

Complexity of the system is also increased with the FSS since efficient routing protocols and 
resource scheduling among the space telescope and other satellites will be required. Satellites 
that are FSS suppliers, i.e., satellites that receive, process, and transmit data from FSS customers 
will most likely have increased power, mass, and volume requirements. Increased usage may 
also negatively impact the lifetime of the communications sub-system.  Nonetheless, the FSS is a 
concept that is achievable within current technological means, and designing the space telescope 
as part of the FSS to leverage on existing communication capabilities is a valuable option that 
should be seriously considered within the design tradespace. 

 

Figure 9: Visualization of FSS network and an individual satelliteError! Bookmark not 
defined. 

The final option for communications architecture is direct FSO or laser communications. Laser The final option for communications architecture is direct FSO or laser communications. Laser 
communications recently surfaced as a prospective alternative to RF communications with the 
successful application of the SILEX (Semiconductor-Laser Inter-satellite Link Experiment) 
communications payload onboard the Artemis satellite owned by the European Space Agency 
(ESA).10 With NASA’s recent launch of the Laser Communications Relay Demonstration 
(LCRD) mission, laser communications offer potential improvements in terms of larger 
bandwidth, higher data capacity, lower power consumption, more compact equipment, greater 
security and higher immunity from electronic interference. At equivalent data rates, laser 
communications may also be implemented with lower mass for greater capability, which will 
circumvent the requirements for high antenna masses and heavy feed systems archetypal of RF 
communications. As such, laser communications may be feasible if there is a regular and 
sufficient period of time during which the space telescope remains within direct line of sight with 
ground stations. 
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Figure 10: Satellite-to-ground laser communications11 

There is also a remote possibility where laser communications can be deployed for inter-satellite 
data relay similar to FSS operations. Optical communications offer the potential of operating at 
unprecedentedly high data rates because optical frequencies allow the use of very narrow 
transmit beams, which can produce high received signal levels with comparatively small antenna 
packages12.  

However, infrastructures for relay-centric laser communications are currently under-developed. 
A general concern for laser communications would be its reliability and usage history as 
compared to RF communications. While laser communications have been validated for terrestrial 
systems, near-Earth and deep space applications are still in their infancy stages. For relay-centric 
laser communications to be possible, other laser-based satellites must first be deployed before a 
laser-based space telescope can begin providing value to stakeholders.  As such, it is unlikely 
that current knowledge and infrastructure available during the early-phase design timeframe of 
the space telescope will enable relay-centric laser communications to become a worthwhile 
option. Therefore, only direct and not relay-based laser communications architecture will be 
considered within the design tradespace.  

With differing performance specifications, complexity, implementation costs and scope of 
application, the selection of DSN, TDRSS, FSS or direct laser as the primary communications 
system will be an imperative architectural decision in the design of the space telescope. As the 
cost and complexity of integrating, launching, and deploying a communication system is 
contingent upon the form and capability, the choice of communication systems will be a key 
architectural design driver. 

4.3.2 Modularity 

The modularity of the telescope – defined as the extent to which components are grouped into 
physically separate, easily replaced modules with simple interfaces – plays a large role in the 
cost of the telescope. The number of modules impacts the cost of the telescope in two opposing 
ways. First, a higher number of modules will result in a higher development and launch cost due 
to an increased engineering effort to define and package modules as well as increased total mass 
and volume from module encapsulation materials and interface components. Second, a higher 
number of modules will result in decreased servicing costs; as the number of modules increases, 
the number of components per module decreases, therefore lowering the number of components 
that must be replaced to rectify a single component failure. Another way to consider the benefit 
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of increased modularity would be to think of wasted component time – if a single component 
within a module fails that component must be replaced, and therefore functional components 
within that module will also be replaced, even though they have not failed. As the number of 
components in a module decreases, the amount of useful component time that is lost due to a 
module replacement after a single component failure also decreases, thus it is more cost-effective 
for servicing to have more modules. This cost-effectiveness is magnified if modules are created 
by combining items with similar failure rates and will be discussed later. The combination of 
these two effects – low development/launch costs and high servicing costs for a small number of 
modules, high development/launch costs and low servicing costs for a large number of modules 
– is expected to produce a lifecycle cost curve with high costs at either end of the spectrum and 
low lifecycle costs at an intermediate number of modules. This trend is depicted notionally in 
Figure 11. It is important to note that this figure is not based upon any data; it was simply created 
to illustrate the trends in development/launch, servicing, and lifecycle costs with regard to the 
number of modules and to enable this discussion of the trade between the number of modules 
and lifecycle cost. 

 
Figure 11: Notional trade between the number of modules in a satellite and the lifecycle 

cost (red), which is the sum of the costs incurred during the servicing (blue) and the 
development and launch phases. For the purposes of this analysis, all other factors in cost 

are assumed to be held constant. 

The motivation behind the use of modules in telescope design is to enable servicing, where 
servicing is defined for our purposes as the action of removing one module and replacing it with 
another, newer one. Servicing serves two purposes. First, servicing missions can replace failed or 
unreliable components within the telescope to allow continued operation and extend mission 
lifetime. This includes the replenishment of consumables such as coolant or fuel. Second, 
servicing allows for component or instrument upgrades over the mission lifetime. This second 
purpose is of particular importance to scientific missions, since it allows space telescopes to take 
advantage of the advancement of instrument technology on Earth14. Instrument discovery 
efficiency increases over time, following a power law described in Baldesarra 200713; servicing 
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gives space telescopes the capability to replace older instruments with newer ones that have 
higher discovery efficiencies. In this way, each servicing mission that upgrades an instrument 
will increase the overall utility to science of the telescope. 

In order to capture these two separate purposes of servicing as they affect modularity decisions, 
the science instruments (the “instrument package”) are considered separately from the 
engineering components (the “spacecraft bus”). This is accomplished by defining a modularity 
breakdown tree, as shown in Figure 12. In this tree, the overall telescope (top level) is broken 
down into three branches representing three sections of the telescope: Permanent Infrastructure, 
which contains telescope components that are not expected to fail within the 40-year lifetime of 
the telescope, such as the primary mirror and the structural backbone; Instrument package, which 
contains the scientific instruments; and Spacecraft Bus, which contains the engineering 
components required to enable the telescope’s mission. Gray boxes indicate items that cannot be 
serviced without replacing the entire telescope. 

 

 
Figure 12: Modularity breakdown tree. This diagram defines the divisions within the 

telescope that are used to separate components before they are grouped into modules. Each 
branch of the tree can be modularized at different levels; the number of modules produced 

increases as one moves further down the branches. Gray boxes indicate permanent 
infrastructure that cannot be replaced without replacement of the full satellite; this 

includes components that are expected not to fail, such as the primary mirror and the 
structural backbone of the telescope. 

The Instrument Package and Spacecraft Bus can both independently be broken down further. The 
second level of Instrument Package modularity involves the separation of individual instruments 
into their own independent modules. The second level of Spacecraft Bus modularity involves the 
grouping of components into assemblies for module encapsulation; the third level of Spacecraft 
Bus modularity involves the grouping of components into component families for encapsulation, 
meaning that multiple instances of the same component are grouped into the same module. For 
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the second level of Spacecraft Bus modularity, assemblies (which are encapsulated to create 
modules) are defined by grouping components within the architecture according to Design 
Structure Matrix (DSM) connections and Mean Time Between Failures (MTBF) values. In 
addition, the assembly/servicing technique informs module definitions – a self-assembling 
architecture adds a robotic arm for every ten modules, and all architectures include Universal 
Docking Ports (UDPs) in each module except for formation flying architectures, which have 
electromagnetic (EM) coils (these decisions are described further in the Assembly/Servicing 
Technique section). Where possible, components with similar MTBF values are grouped in the 
same module; this is to take advantage of the effect described in the first paragraph of this 
section. By grouping components with similar MTBF values, the components within a module 
are projected to fail at approximately the same time. Therefore, when one component fails, it is 
likely that the other components within that module are near failure and the amount of useful 
component time lost when a module is replaced is minimized. The full enumeration of all 
combinations of the levels of each branch of the tree generate 7 discrete modularity levels, 
described in Table VI. It is important to note that as a result of the separation of the modularity 
of the instrument package and the modularity of the spacecraft bus, the magnitude of the 
modularity trade metric does not correspond to the number of modules in the telescope. The 
modularity levels are labeled 1 through 7 simply for identification purposes. The number of 
modules at a given modularity level may fluctuate depending upon other architectural decisions, 
but the number of modules in a given architecture are saved for analysis later. 

Table VI: Description of the 7 levels of the modularity architectural decision 
Modularity Level Description 

 
1 
 

Full Telescope 
(No Modularity) 

 
2 
 

Permanent Infrastructure 
Instrument Package 
Spacecraft Bus 

 
3 
 

Permanent Infrastructure 
Instrument Package 
Spacecraft Bus Assemblies 

 
4 
 

Permanent Infrastructure 
Instrument Package 
Spacecraft Bus Component Families 

 
5 
 

Permanent Infrastructure 
Individual Instruments 
Spacecraft Bus 

 
6 
 

Permanent Infrastructure 
Individual Instruments 
Spacecraft Bus Assemblies 

 
7 
 

Permanent Infrastructure 
Individual Instruments 
Spacecraft Bus Component Families 
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4.3.3 Location of Servicing 

The telescope towards which this analysis is directed represents a substantial investment and is 
expected to provide significant scientific return for a lifetime of approximately 40 years. Since 
the probability of an event resulting in complete or partial loss of scientific capability increases 
significantly as time goes on (as illustrated by data from the Hubble Space Telescope, Figure 13) 
a 40-year lifetime strongly implies the need for servicing in order to repair and replace 
components14. In addition, servicing allows the telescope to maintain scientific relevance by 
upgrading instruments to take advantage of advancements in instrument technology. 

 
Figure 13: Reliability of the Hubble Space Telescope as a function of time since last 

servicing mission. Note the significant decline in reliability as time goes on15.  

As mentioned previously, all servicing is assumed to be robotic. Four servicing locations have 
been identified: Sun-Earth L2 (in-situ servicing), Earth-Moon L2, L1 Orbit Trajectory Used for 
Servicing (LOTUS – see Figure 14), and Low Earth Orbit. Each servicing location has a 
different ΔV requirement to move the telescope into place for servicing operations, which incurs 
a launch cost from propellant mass. This launch cost, associated with the telescope itself, is 
higher for servicing locations closer to Earth, as the telescope must travel farther on its own. 
However, the launch cost for servicing (the cost to launch replacement parts) will decrease as the 
servicing location moves closer to Earth. For this model, the servicers are assumed to launch on a 
schedule so that they arrive at the servicing location; therefore, the transit time of the telescope 
must be included in the calculation of total servicing downtime but not the transit time of the 
servicers. Since transit time is time during which science cannot be done, the telescope 
architectures with longer transit downtimes due to moving to and from the servicing location are 
expected to exhibit a lower utility to science. In summary, the location of servicing primarily 
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affects the cost of the telescope itself via propellant mass, the launch cost of replacement parts 
during servicing, and the overall downtime and utility to science of the telescope. 

 
Figure 14: L1 Orbit Trajectory Used for Servicing (LOTUS), one of the orbits under 

consideration for servicing operations at a greater proximity to Earth. The Earth-Moon 
system is shown, with green lines indicating the proposed orbital paths of the telescope 

during servicing operations15. 

4.3.4 Frequency of Servicing 

As mentioned before, the servicing of the telescope is assumed to be on a regularly scheduled 
basis rather than on-demand. The frequency of servicing missions is therefore an architectural 
decision, and servicing missions may be sent every 3, 5, or 10 years. These values were chosen 
to represent short, medium, and long inter-servicing periods. 3 years was selected as the 
minimum because this is estimated to be approximately the time required to prepare and execute 
a servicing mission; 10 years was selected as the maximum due to the significant increase in 
instrument technology expected in a 10-year period – estimated to be an approximately 25x 
increase in discovery efficiency13 – as well as the increased risk of mission failure as the duration 
between missions increases (see Figure 13). The servicing schedule determines a minimum 
threshold for the MTBF of component families on the spacecraft – that is, components must be 
selected or set up in redundant systems such that they are expected to last at least the time 
between servicing missions. 

The assumption of scheduled servicing as opposed to on-demand servicing was made to reduce 
model complexity and maintain the scope of this project at a level which could be completed in a 
one-semester graduate level class. Incorporation of on-demand servicing into the model would 
have increased model complexity in several ways. First, it would have required the 
implementation of some form of decision tree or decision rules analysis, which requires the 
definition of decision threshold values. For example, a parameter would have to be created to 
indicate what circumstances trigger a servicing mission. In addition, the inclusion of on-demand 
servicing as an option effectively triples the tradespace by adding the architectural decision of 
servicing architecture: on-demand, scheduled, or hybrid (on-demand or scheduled, whichever 
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triggers servicing first); one method to mitigate this would be to simply assume a different 
servicing architecture, but that would again be an assumption that must be justified. In addition, 
model parameters would have to be created to describe the duration of servicing mission 
development, and servicer transit time would need to be incorporated into the model. Currently, 
since servicing is scheduled, it is assumed that servicers are launched in such a way that they 
arrive at the servicing location at the start of scheduled servicing. Finally, there is a certain 
degree of risk associated with programmatic uncertainty – it is more difficult to organize and 
fund a servicing campaign that is not regularly scheduled – and this uncertainty would need to be 
factored into the mission risk analysis. 

However, the differences between on-demand and scheduled servicing have been investigated 
for individual architectures by Baldesarra, who investigated the lifecycle effects of servicing on a 
particular telescope for both on-demand and scheduled servicing cases.13 His thesis determined 
that on-demand servicing has the potential to increase the utility to science of a given 
architecture for roughly the same cost.13 This makes sense, as on-demand servicing mitigates the 
problem of long periods of downtime between servicing missions in the event of a component 
failure. The longest possible downtime is the time it takes to prepare and launch a servicing 
mission and for that mission to reach the servicing location. Since downtime is time in the 
telescope’s lifetime that has no utility to science, the more downtime a telescope has the lower its 
utility to science will be. The incorporation of on-demand servicing as an option within the 
model has the potential to raise the utility to science of certain architectures, or (if servicing 
architecture were incorporated as an architectural decision) to produce new families of 
architectures with higher utility to science, but at the cost of a more complex model. This option 
is further discussed in the future work section. 

4.3.5 On-Orbit Assembly/Servicing Technique 

Central to this investigation is the evaluation of different methods of on-orbit assembly and 
servicing of large space structures. At the architectural level, the methods of assembly and 
servicing are grouped into three families or classes: self-assembly/servicing, tugs, and formation 
flying. Based on the results of the study, the telescope architectures will be grouped into these 
classes and compared to predict which of the three techniques performs the best in terms of cost, 
serviceability, utility to science and risk/schedule as discussed in later sections of the paper.  

The self-assembly/servicing method involves only a single spacecraft, encompassing the 
telescope and supporting systems. The spacecraft is “folded” into one launch vehicle and uses 
deployment mechanisms to unfold or assemble various appendages once on orbit. This method is 
therefore very similar to JWST16 and ATLAST17, which both rely heavily upon complex 
deployment schemes. Shown in Figure 15 are the deployment methods for both JWST and 
ATLAST. If the size of the primary mirror prohibits folding into the selected launch vehicle, this 
technique requires the use of robotic arms that would access and assemble mirror segments 
stored in a stack below the spacecraft bus. To facilitate servicing, these robotic arms would also 
be able to remove and discard failing component modules and install new modules upon the 
docking of a new cargo shipment.  
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Figure 15: (a) The JWST deployment sequence (mirror only)16 (b) The ATLAST stowed 
and deployed configurations17 

The tug technique18 involves one or multiple assembler/servicer spacecraft in addition to the 
main spacecraft containing the telescope and bus. This method allows for the telescope to be 
launched in several pieces, possibly on several smaller launch vehicles. There can be either one 
primary tug responsible for assembling the whole system, or several dedicated tugs, each with 
their own role. The tug(s) would be fully functioning spacecraft with robotic arms or docking 
ports. Once in orbit, the tug(s) would gather and assemble the mirror segments into the primary 
mirror, attach the secondary mirror and its support structure, and connect the spacecraft bus 
appropriately. After assembly, the tug(s) would dock to the main spacecraft and potentially add 
functionality in actuation and sensing. The tug(s) would also be able to service the telescope by 
replacing faulty components upon the arrival of new cargo. The tug(s) in this method are akin to 
the servicer/tender that harvests components from satellites in the geostationary graveyard orbit 
in DARPA’s Phoenix program, shown in Figure 1619. Note that the cost or the complexities 
associated with designing the servicer/tenders is not accounted for in the system cost. This cost is 
regarded as too difficult to model without a baseline or previous mission to model after and is 
outside the scope of this model, so this aspect of the technique will not be captured in the 
architecture enumeration and analysis.  

 
Figure 16: DARPA’s Phoenix project. Artist’s concept of the servicer/tender (or tug) 

assembling a space structure19 
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The formation flying technique requires the telescope and bus to be composed of several smaller 
modules that each has an attitude determination and control subsystem (ADCS). For example, 
the spacecraft bus, sun shield, primary mirror, secondary mirror, and science instruments would 
self-assemble by formation flying and then docking to form the completed telescope. This 
technique will employ electromagnetic formation flying that utilizes superconducting coils on 
each module to actuate against each other20. Having non-contacting servicing and assembly 
provides added autonomy and flexibility, but will also require stiffer requirements on individual 
modules. Using the electromagnetic option also removes the need for a propulsion system and 
fuel in each and every module, as all that is needed is the electromagnetic coils. With this 
technique, the individual modules would be able to be replaced or serviced individually without 
impacting the rest of the system. However, if further modularization were required for 
consumables or short-lifetime components, the spacecraft bus would act as the servicing 
spacecraft and would require robotic arms. This technique is the riskiest of the options as it 
involves several stand-alone spacecraft, which increases the probability of a failure that requires 
servicing, because there are many more subsystems and components. It also uses lower 
technology readiness level (TRL) components to achieve electromagnetic formation flying, 
which are inherently riskier.  

As one can see from the drastically different architectures described above, the architectural 
decision of the on-orbit assembly/servicing technique is necessary to include in the investigation. 
This decision has implications to every subsystem. The structures subsystems vary in each 
choice from a single, continuous structure to multiple, modular structures. The propulsion and 
ADCS subsystems play different roles, as do the distribution of communications and avionics. If 
this architectural decision were not included, the tradespace of the study would be significantly 
decreased.  

4.3.6 Segmentation of Primary Mirror 

As previously noted, the immense scale of the observatory envisioned in this study will 
necessitate some degree of on-orbit assembly and/or deployment to reach an operational 
configuration.  Although the method of assembly, deployment and servicing is treated separately 
(architecture decision 6), some consideration of the type and configuration of components to be 
assembled or deployed is merited.  Architectures containing a large number of independent 
components simplify launch considerations such as packing at the cost of increased complexity 
and risk in on-orbit initialization (and vice versa).  Additionally, architectures may consider the 
degree of symmetry in the selected number of segments.  Architectures with a high degree of 
symmetry will simplify assembly and increase reliability, but may complicate the design and/or 
manufacturing, particularly if bus or support functions are included within the separate segments 
(as opposed to located in a single primary bus segment). 

The architectural trade described here is mostly clearly observable in the primary mirror element 
of the observatory. At one extreme, the primary mirror may be launched with the minimum 
number of structural components, which still permit the assembly to fit in the payload fairing.  
This option corresponds to a “chord segment” architecture not unlike that in use for JWST 
(Figure 15)16.  At the other extreme, the number of structural components is equal to the number 
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of mirror segments.*  Such a scenario envisions a higher degree of on-orbit assembly (Figure 
17).21 

 
Figure 17:  Notional packing and assembly scenario for a highly structurally-segmented 

primary-mirror architecture.21 

Between these extremes, a variety of alternative segmentation concepts exist which have not 
been extensively explored in previous literature.  Each offers a compromise between the launch- 
and packing-optimized high-segmentation approach and the on-orbit assembly- and deployment-
optimized “chord segmentation” approach.  For the purposes of this investigation, three 6-fold 
symmetric concepts were selected which provide a range of structural segment counts, 
dimensions, and volumes (Figure 18).   

 

                                                
* Included in the requirements derived from the ATLAST telescope concept baseline is an 
assumption that three rings of 2.4 m mirrors will be used in the primary mirror architecture.  See 
Appendix I for a detailed treatment of the ATLAST requirements and their implications.  In a 
more general sense, the size and number of mirror segments is itself an important design 
consideration, but will not be addressed in the architectural trades treated here. 
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Figure 18:  Architectural options selected for exploration in the primary mirror 
segmentation decision. 

From an on-orbit assembly perspective, the complexity of the assembly operation is closely 
related to the total number of observatory segments to be deployed, the number of operations 
which must be conducted to deploy them, and the number of unique operations which must be 
developed to complete the assembly operation.  The symmetry of the observatory segments as 
well as the number of segments thus heavily drive the degree of complexity of the overall 
assembly operation.  By contrast, from a launch payload sizing and packing perspective, the 
dimensions and volumes of the segments are the most important factors to consider (Figure 19). 

 

Figure 19:  Notional packing of segments into payload fairings of various heights and 
diameters (sizes are to scale).   

More efficient packing of structural segments becomes possible where individual structural 
segments are allowed to deform to meet the constraints of a given payload fairing.  Such an 
approach would represent a hybrid between the segmentation/assembly and deployment models 
for telescope construction, where individual segments deploy, and are then assembled into the 
macro-structure of the observatory.  Because these specific variations between segmentation and 
deployment tread heavily into the design space (as opposed to the architecture space under 
consideration here), they are not further addressed in this report.   

4.3.7 Primary Mirror Segment Support Method 

A critical part of obtaining high-resolution images from a space telescope is the precision of the 
shape of the primary mirror. While a precise shape can be maintained by making the mirror very 
thick, such a mirror would be too massive to launch, and in the case of a 16.8-meter mirror, too 
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large for any launch vehicle. Thus, other support methods have been developed. Typically, a 
large mirror is supported through a backstructure which contacts the back side of the mirror by 
pins at a discrete number of points. These pins can apply forces to the mirror to accurately 
articulate its shape. Because these pins are normal to the surface of the mirror, this technique is 
known as surface-normal actuation. The backstructure is typically made of trusses or ribs22, as 
shown in Figure 20.  

 

 
Figure 20: The Herschel telescope primary mirror with ribbed backstructure23 

In the case of a segmented primary mirror, not only does each of the segments have to maintain 
an extremely precise shape, but each segment must also maintain a precise positioning with 
respect to each of the surrounding segments. Thus, a key architectural decision for the 
development of the next large space telescope is the primary mirror segment support method. For 
the purposes of this trade study, the three support methods being investigated are surface-normal, 
surface-parallel, and a combination of both surface-normal and surface-parallel. Each of these 
alternatives will be evaluated according to the metrics of utility to science, serviceability, 
downtime, and cost, which are described in the Trade Metrics Descriptions and Trade Metrics 
Calculation sections.   

In the surface-normal support method, each of the mirror segments is supported directly by a 
backstructure that links all of the segments. This structure positions the segments relative to each 
other. In the surface-parallel support method, each of the segments is only relatively positioned. 
This positioning is done through actuators parallel to the surface of the mirror and between each 
of the segments. This method removes the need for the backstructure and could simplify 
assembly and servicing techniques; however, it does increase complexity. The final alternative is 
a combination of the first two. Figure 21 shows a diagram of surface-normal and surface-parallel 
techniques for connecting two mirror segments. The entire backstructure is not pictured in the 
surface-normal diagram. 
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Figure 21: Surface-Parallel vs. Surface-Normal actuation techniques 

This architectural decision is important to the investigation for several reasons. Each of the 
alternatives in this decision is needed to appropriately cover the tradespace. In the past, only 
surface-normal support techniques have been utilized. However, strictly surface-parallel 
actuation between segments is an alternative, which could significantly change the structure, 
assembly technique, and servicing technique of the primary mirror if determined to be more 
effective with respect to the metrics. 
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5 METRICS AND MODEL DESCRIPTION 

The following sections go into detail regarding the inputs, outputs, and internal processes of the 
space telescope architecture model developed for this paper. First will be an overview of the 
layout of the model, followed by detailed descriptions of the trade metrics and the MATLAB 
code modules that make up the simulation environment. 

5.1 Model Overview 
The modeling and simulation environment of this project has been implemented in the form of 
MATLAB code modules that are run in ordered succession by an overarching Main wrapper that 
structures variables, defines constants, provides variable interfaces, and collects results. A 
detailed list of the code modules and variables tracked throughout the model can be found in 
Appendix A.  

The first set of code modules (Design Constants, Components DB and DSMs, and Design 
Vector) are all contained within the Main wrapper. The Design Constants module sets values to 
important constants that are used throughout the other code modules.  The Components DB and 
Components DSMs module captures component family data from Excel workbook files for use 
within the code.  The Design Vector module enumerates the full modeling tradespace of 
architectures by expanding all of the possible combinations of the seven architectural decisions, 
as found in Section 4.3. Each architecture is captured within a common global variable structure 
(initialized in the Main wrapper as a struct data-type) known as an ‘LTA’ within the code, short 
for Large Telescope Architecture, which is gradually built upon as the design matures through 
the remaining code modules. 

Once the LTAs have been enumerated, the Main wrapper iterates through each individual LTA 
and sends it through the subsystem code modules (in order: Optics, Communications, ACS, 
Avionics, Propulsion, Power, Thermal, and Structures), resulting in an architectural design, or a 
set of selected quantities of component families distributed into defined spacecraft modules. 
Each architectural design is then sent through the Systems code module, which computes the 
system complexity.  Once this is completed, each architectural design is sent through the 
Operations code module, which performs Monte Carlo simulations of the spacecraft’s mission.  
Finally, the Trade Metrics code module receives the architectural designs and quantifies desired 
output metrics for later use in analyzing and evaluating all of the architecture designs against 
each other. The specific trade metrics (utility to science, serviceability, downtime, and cost) will 
be discussed further in Section 5.2. 

The flow of information and variables between each module can be seen in the N2 diagram in 
Figure 22, where the inputs for a given code module can be found in that module’s column, and 
the outputs of that code module can be found in the module’s row.  Each code module will take 
the specified inputs and internally use subsystem, operations, and system-level models to 
compute the subsystem metrics required by other modules.  The internal computations of each 
code module are described in detail in Section 5.3. 
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Figure 22: N2 diagram showing interactions between code modules in the MATLAB model 
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One very important thing to take away from the N2 diagram is that the model described in this 
paper does not have feedback loops, and therefore design decisions cascade through the model 
without any optimization between subsystems. This is justified in that the model is only meant to 
perform a first-order architecture evaluation and generate all possible designs, not only those that 
are optimal.  With this in mind, simplifying assumptions regarding computations were made 
where possible. It is important to note that the order of the subsystem code modules was 
specifically designed in order to intuitively arrange the necessary inputs and outputs of each 
subsystem and minimize the number of assumptions to make, thereby simplifying the code and 
eliminating feedback loops.  The code is expandable if feedback loops are desired in the future 
for more detailed design. 

5.2 Trade Metrics Descriptions 

5.2.1 Utility to Science 

Utility to science reflects the lifecycle science output of the telescope. It quantifies the expected 
value to the scientific community. There are several methods of quantifying an instrument’s 
utility including productivity rate (the rate that images are taken), number of papers, or discovery 
efficiency (field of view multiplied by throughput).  

 
Figure 23: Discovery efficiency for selected Hubble instruments24  

This model for science utility will use discovery efficiency with an exponential improvement 
over time, similar to the model in Baldessara.13 The discovery efficiency for HST instruments is 
shown in Figure 23. 

The two architectural decisions that most directly affect utility to science are servicing location 
and servicing frequency. Servicing frequency limits the maximum possible rate at which new 
instruments can be added to the telescope and therefore the maximum rate of increase of utility 
to science. Additionally, broken components that may have degraded the utility to science can 
only be fixed during a servicing mission, so more frequent servicing missions help limit the 
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downtime of the telescope. Servicing location determines the downtime per servicing mission 
which represents times in which it is impossible to perform science with the telescope. 

In this model, utility to science can only be used to compare among telescope architectures. It 
cannot be used to compare with other telescopes as it has not been calibrated against existing 
telescopes.  

5.2.2 Specific Servicing Margin 

The serviceability of a telescope is defined as the ease with which telescope hardware can be 
changed after the start of the mission, either to replace or repair damaged components or to 
upgrade telescope systems that have become obsolete. This may be considered as the capability 
to achieve some benefit at a cost – a more serviceable architecture will have the capability to 
achieve more repair and upgrade benefits for a lower lifecycle cost. In order to quantify the 
serviceability of architectures in the tradespace, this report defines the specific servicing margin 
!$!"#$: the number dollars of budget margin per kilogram of serviced mass for each servicing 
mission. Effectively, the specific servicing margin is a measure of how much money can be 
spent per kilogram of replacement parts for a given servicing mission before it becomes more 
cost-effective to simply replace the entire satellite rather than service it.  

Ideally, a model of serviceability would be able to estimate the cost of each servicing mission in 
order to develop an estimate of the lifecycle cost of servicing for a given architecture. However, 
space telescope servicing and the technology that supports it are relatively new and are still 
subject to uncertainty that makes it difficult, if not impossible, to directly model the cost of 
servicing missions with confidence.13 Portions of the cost, such as the cost of replacement 
component development and the launch cost for the mass of replacement components, can be 
modeled. However, a valid model of the cost of a robotic servicer is beyond the scope of this 
project due to the wide variety and technological immaturity of robotic servicing architectures. 
Lacking a valid servicer cost model, any attempt to include the cost of servicers in the lifecycle 
cost would reduce the validity of the model output. Therefore, a more creative approach must be 
taken to measure the serviceability of a given architecture. Specifically, a metric must be used 
which does not require an estimate of the cost of each servicing mission. Hence, the specific 
servicing margin is defined and is calculated and utilized as described below. 

Baldesarra has implemented a method that avoids the estimation of servicer costs.13 Instead of 
attempting to estimate the cost of servicing missions directly, the model instead calculates the 
lifecycle cost of each telescope architecture without including the cost of servicers (both 
development and launch cost). These lifecycle costs are used to compute the servicing margin, 
defined as the difference in lifecycle cost between the architecture and a baseline, “non-
servicing” case 

!$!"#$ = !! − !                                                      
Eq. 1 

  
where !! is the baseline cost for a given architecture, ! is a given architecture’s lifecycle cost 
not including servicers, and !$!"#$ is the servicing margin. All units are in dollars. The baseline 
cost for each architecture is defined as the lifecycle cost (not including servicers) of the 
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architecture with modularity level 1 and all other architectural decisions (servicing location, 
servicing frequency, communications architecture, primary mirror actuation, assembly/servicing 
technique, and mirror support method) the same. Thus, the only difference between a given 
architecture and its baseline case is the modularity level. For example, an architecture 
represented by the architectural vector [4!1!1!1!1!1!1] (where the first element is the modularity 
level) would use for its servicing margin calculation a baseline architecture with the architectural 
vector [1!1!1!1!1!1!1]. It is important to note that, while these baseline costs do not include the 
cost of the servicers – due to the uncertainty in this value described above – they do include the 
development and launch cost of the replacement parts, as this value can be determined with the 
same validity as the value of the original cost of the telescope. Thus, costs that can be 
confidently modeled are included in the lifecycle cost, and costs that cannot (specifically, the 
cost of servicers) are not. 

The baseline architecture is analogous to what Baldesarra called the “replacement case”13 With 
modularity level 1, at each servicing mission the only options are to replace the entire telescope 
or to not take any action. Replacement of the entire telescope is a cost that can be modeled with 
confidence, as it effectively consists of repeating the development and launch of the telescope. 
There is no servicer; the new telescope simply replaces the old one. Therefore, the lifecycle cost 
of a baseline architecture is a value which can be reported with the same degree of confidence as 
the initial telescope development and launch costs; there are no additional sources of uncertainty. 
Using this baseline value, the telescopes that are serviceable – that is, architectures with 
modularity levels 2 through 7 that are capable of replacing a part of the telescope without 
replacing the whole – can be compared to each other by calculating the servicing margin 
described above. The servicing margin is a measure of the amount of money that can be spent on 
servicing over the entire telescope lifetime before it becomes more expensive to service the 
telescope than to simply replace it. 

However, this margin alone does not capture all aspects of servicing. Some telescope 
architectures may require more servicing than others, either by requiring more replacement parts 
or more servicing missions. Two metrics are used to capture this aspect: serviced mass and the 
number of servicing missions. Serviced mass is defined as the mass the modules that are replaced 
at each servicing mission. It is assumed for the purposes of this model that a module is replaced 
with another module of identical mass. For each servicing mission in the lifecycle simulation, the 
mass of each replaced module is known and can be used to calculate the total serviced mass in 
that mission. The mean of the total serviced mass across all missions is then calculated as a 
representative value for the amount of mass serviced in a typical mission for the architecture 
being analyzed. Additionally, during the lifecycle simulation the number of executed servicing 
missions is counted. It should be noted here that, while the mission lifetime is known and one of 
the architectural decisions is the frequency of servicing, it is not as accurate to simply pre-
calculate the number of servicing missions that occur for a given architecture. Servicing missions 
only execute in the lifecycle simulation if servicing is required (i.e. if a component has failed or 
is below the reliability threshold, or if an instrument has become obsolete), so there is potential 
for one architecture to have fewer servicing missions than another even if they have the same 
frequency of servicing. Therefore, the number of servicing missions for a given architecture is 
determined in the lifecycle simulation rather than before it based upon the architectural 
decisions. 
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These three metrics – the servicing margin, the mean serviced mass, and the number of servicing 
missions – are combined to produce the specific servicing margin using the equation 

 !$!"#$ = !$!"#$
!!"#$!×!!

   
Eq. 2 

 

where !$!"#$ is the servicing margin in dollars, !!"#$ is the mean serviced mass in kilograms, ! 
is the number of servicing missions, and !$!"#$ is the specific servicing margin in dollars per 
kilogram per mission. A higher specific servicing margin indicates that more money is available 
to service for the amount of servicing which occurs; therefore architectures with higher specific 
servicing margins are considered more serviceable. 

As previously stated, the specific servicing margin is a measure of how much money can be 
spent per kilogram of replacement parts in a given servicing mission before it becomes more 
cost-effective to replace the telescope than to service it. This can be thought of as analogous to 
the amount of money that can be spent on servicers, and the metric is reported with the intent of 
informing stakeholders and mission planners of the budget available to spend on servicing. 
Specific servicer architectures can be considered independently, and once the cost of a given 
servicer architecture is estimated the specific servicing margin metric can be used to filter the 
telescope architecture tradespace to only those architectures for which servicing would be cost-
effective. Conversely, the specific servicing margin of a given telescope architecture could be 
used to set an upper bound on the cost of a servicer, and based on mission-specific data mission 
planners can use this metric as an aid to decide whether it is feasible to develop a servicer within 
that budget. 

In addition, two interesting artifacts appear in this metric. The first is the fact that, by definition, 
telescope architectures with modularity level 1 will have a specific servicing margin of 0. This 
makes sense, as an architecture with modularity level 1 is the non-modular case: it cannot be 
serviced – it can only be replaced. Therefore, no servicing occurs on these architectures, and the 
entire budget is spent on non-servicing items. This is the reason that the modularity level 1 
family of architectures was chosen as the servicing margin baseline. More interestingly, the 
definition of this metric provides for the possibility that some architectures may have a negative 
specific servicing margin. These architectures are those for which it is in fact more expensive to 
develop and launch the telescope and replacement parts than it is to simply launch a new 
telescope when components fail, even before servicing costs are factored in. For these 
architectures, it is always more cost-effective to utilize modularity level 1 and build a non-
serviceable telescope which is simply replaced when components fail. In both cases, the specific 
servicing margin accurately reflects the serviceability of the telescope architecture. 

5.2.3 Failed Downtime 

The failed downtime is defined as the time during which no science can be done due to the 
failure of a component.  Downtime will also occur during the Assembly/Transit Phase and 
Servicing Phase of operations, but this downtime is a part of normal telescope operations and 
thus is not a measure of the risk of a particular architecture. Failure of individual components or 
subsystems could impact the scientific operations of the telescope, degrading the utility to 
science of the overall system either partially or completely. Different components will have a 
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different magnitude of effect; the effect of component failures on utility to science and their 
representation in this model are described further in the Code Module Description of Operations 
in the Metrics and Model Description Section. Failed downtime is used as a measure of the risk 
of a telescope architecture using the assumption that higher risk architectures will experience 
more failed downtime over the course of a telescope’s mission lifetime. Thus, a telescope with 
more failed downtime is considered a riskier telescope than one with less failed downtime. 
Failed downtime is reported as a fraction of total mission lifetime. 

5.2.4 Cost 

The final trade metric is cost.  In order to allow a true comparison of the costs associated with 
each different architecture, the entire lifecycle should be considered.  For that reason, cost will be 
determined in terms of various phases of the space telescope project for each architecture.  The 
phases are flight system development, launch, and on-orbit assembly and servicing.  The on-orbit 
assembly and servicing costs are not estimated.  Instead, the costs for a baseline concept in which 
there is no assembly or servicing are estimated.  Then, costs for each mission are estimated 
without the assembly or servicing costs.  The difference between the baseline cost and the cost 
for each mission is then reported for each decision vector.  It is clear that the statistically based 
models presented here may not provide a highly accurate estimate for the absolute cost of the 
each design architecture.  Rather, the relative costs with respect to the baseline mission cost will 
be the primary consideration.  The goal is to help determine which of the design architectures are 
more attractive from a cost standpoint rather than to provide a reliable absolute cost estimate.  

5.2.4.1 Flight System Development 

Flight system development is defined here as the design, manufacture, test, and operation of the 
space telescope system.  Several models for flight system development currently exist, and three 
are being used here.  These existing models will be drawn upon in estimating a cost for each 
architecture.  Each of these existing models provides a cost estimate for a portion of the total 
flight system cost, therefore, the cost estimate output from each will be summed to determine the 
total flight system cost. 

The Stahl Ground-Based Telescope Model is a parametric cost model.  It predicts the cost to 
produce an optical telescope assembly, which consists of the primary mirror, secondary mirror, 
auxiliary optics, and support structure.25 The Unmanned Spacecraft Cost Model (USCM8) was 
developed by Tecolote Research for the US Air Force, Space and Missile Systems Center.26  The 
model provides cost-estimating relationships for non-recurring and recurring cost for large 
spacecraft buses, including the development, ground equipment, launch operations and orbital 
support, and communications payload.  The non-recurring costs included are design and 
development, manufacturing, and test of one spacecraft, and acquisition of peculiar support 
equipment.26  Recurring costs include fabrication, manufacturing, integration, assembly, and test 
of the spacecraft.26  The final flight system development model is the NASA Instrument Cost 
Model (NICM).  This model provides cost estimating relationships for several different types of 
instrumentation.26   

The three cost models presented for the flight system development each capture a portion of the 
total cost. These models complement each other and will be summed to provide an estimate for 
the entire space telescope.   
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In addition to the architecture decisions captured by the models above, the complexity discussed 
in the structures subsystem metrics section will have an influence on the cost.  To account for 
this influence, a complexity multiplier is applied to the cost estimate.  This multiplier is applied 
to the non-recurring costs for the space telescope system bus and program overhead.  These are 
the efforts that are directly impacted by the complexity of the design.  Complexity is discussed in 
Section 5.3.3.9.  

5.2.4.2 Launch 

Launch costs will be estimated using historical launch costs as estimates for future costs from 
different launch vehicle providers. Launch costs are calculated for both the initial space telescope 
system launch and the subsequent servicing launches.  The initial launch costs are determined 
based on the mass, volume, and largest dimension of the payload.  A particular space telescope 
assembly must fall within the acceptable ranges for all of these characteristics for a given rocket, 
otherwise a larger rocket is required.  Inflation will also have an effect on the dollars spent for a 
given launch in the time frame of the proposed space telescope system.  The launch cost for the 
servicing missions, which take place over the 40-year life of the space telescope assembly, are 
discounted back to the year of launch in 2013 dollars using an assumed annual interest rate of 
2.01%.  A slight departure for the servicing launch costs involves the volume and largest 
dimension for each of the servicing payload.  These values are not calculated in this model, 
therefore, only the masses of the service payloads are considered when calculating servicing 
launch costs.  Each design architecture will be associated with a launcher type required as well as 
the number of launches required based on its mass and volume. 

5.2.4.3 Assembly and Servicing 

The models for each phase of the space telescope project described above are based on inputs 
from the subsystem modules.  To avoid introducing unnecessary uncertainty into the model, the 
servicing and on-orbit assembly portions of the mission cost are not estimated.  However, as 
mentioned above, the launch costs for the servicing missions as well as the cost of the 
replacement components deployed during servicing are being accounted for.  These replacement 
component costs are estimated as a fraction of the original space telescope system cost allocated 
based on the mass fraction of those components over the mass of the entire system.  For 
example, if 10% of the mass of a given space telescope system is to be replaced, the cost of those 
components are calculated as 10% of the cost of the original space telescope system.   

Based on the inputs from the subsystems, the integrated cost model, composed of each of the 
individual cost models described above, will provide a lifecycle cost minus the cost of assembly 
and servicing for each architecture.  These assembly and servicing costs are defined as the cost 
of developing, building, and deploying any object (e.g., tugs, servicer spacecraft) that are not a 
part of the space telescope system itself.  The architectures will be compared based on the funds 
available for servicing by subtracting the cost of a serviceable telescope from a non-serviceable 
telescope which requires no assembly.  For further details on the Servicing portion of the cost, 
see the Serviceability discussion below.  The cost estimates and the remaining system metrics 
below can be used to evaluate each of the design architectures. 
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5.3 Code Module Descriptions 

5.3.1 Design Structure Matrix 

In order to determine the metrics such as mass, power, and volume for the telescope, two Excel 
documents were created: a Design Structure Matrix (DSM) and a Components Database 
(Components DB). These two documents, included as Appendices C through H, are read into 
MATLAB for the analysis of different architectures in the tradespace. The MATLAB code uses 
a standardized set of variables, listed in Table VII, across subsystems to capture the various 
metrics based on the Components DB, thereby allowing ease of use and information transfer. 

Table VII: Component Family DB variable names organized by subsystem 

 
 
The DSM lists high-level components that will be included in the final telescope. The interfaces 
between these components include optical, thermal, data, power, and structural, and are 
enumerated in a format for ease of MATLAB utilization. The DSM is structured so that each of 
these interface types are listed on individual Excel sheets. The component families are listed 
across the first row and column to create an N2 matrix. To accurately sum the interfaces, which 
are listed as a 1 for an existing interface or a 0 for no interface between two component families 
at the intersection of a row and column, the resulting matrix is lower triangular. To ensure that 
the matrix is lower triangular and remove the possibility for human error, the DSM reader 
MATLAB function forces any upper triangular values to become lower triangular values. The 
main diagonal is kept as zeros since component families do not interact with themselves, and 
duplication of interfaces would occur if the matrix were to be fully populated. By keeping the 
DSM lower triangular, each column can be summed to determine the total interfaces of each 
component family. Each subsystem adds their component families to the DSM. The MATLAB 
function sums the DSMs to create an overall interface DSM that defines whether any two 
components share an interface with any of the five interface types. By grouping component 
families by subsystem, the interaction between different subsystem component families 
throughout the telescope can be observed. 

5.3.2 Component Family Database 

The Component Family DB comprises the complete list of component families for the entire 
telescope that are included in the DSM. In this manner, each component family is fully described 
in the Component Family DB so that its interfaces can be recorded in the DSM. Specifically, the 
database contains for each component a best estimate for its mass, volume, cost, average power 
required, peak power required, design life, and nominal probability of failure. The Mean Time 
Between Failures (MTBF) is also computed directly in this spreadsheet based on the design life 

Average Power Peak Power Mass Volume TRL Lifetime Nominal Failure 
Probability

Structures struct_avg_pwr struct_peak_pwr sruct_mass sruct_vol struct_trl sruct_lifetime sruct_p_fail
Science_instrument_nominal_lifetime
Science_optical_train_lifetime

Communications comm_avg_pwr comm_peak_pwr comm_mass comm_vol comm_trl comm_lifetime comm_p_fail
Avionics avionics_avg_pwr avionics_peak_pwr avionics_mass avionics_vol avionics_trl avionics_lifetime avionics_p_fail
Thermal therm_avg_pwr therm_peak_pwr therm_mass therm_vol therm_trl therm_lifetime therm_p_fail

Propulsion prop_avg_pwr prop_peak_pwr prop_mass prop_vol prop_trl prop_lifetime prop_p_fail
Power power_avg_pwr power_peak_pwr power_mass power_vol power_trl power_lifetime power_p_fail

Science_p_failScience/Optics Science_nominal_power Science_peak_power Science_mass Science_volume Science_trl
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and nominal probability of failure, as will be explained in greater detail in Section 5.3.3.8.18. 
Component families cannot contain specific individual components within each component 
family. Alternatively, the component family database contains values that are representative of 
the components within that particular family. In situations where widely varying properties can 
describe a family, that family can be broken into separate families, of which only one would be 
used in a particular architecture. Additionally, there are instances where one type of component 
may be used in widely differing roles, such as a deployment device for a solar panel versus 
deployment device for an antenna, or where one type of component family is used in very 
different places within the telescope, such as thermostatic heaters for different components. In 
these cases, splitting the component families into multiple sub-families allows the code to select 
the proper number of components for use in different modules of high modularity spacecraft 
architectures. The added granularity afforded by splitting component families allows for 
increased accuracy in the model. The DSM also reflects these component family splits, with both 
families’ interfaces listed. Using this component family database, modularity decisions and 
system mass, volume, and power analyses may be conducted. Just as with the DSM, each 
subsystem contributes its section to the Components DB, which is kept updated as an Excel 
spreadsheet that is read into MATLAB each time the main code is run. 

In each subsystem code module, the requirements and architectural decision vector dictate which 
of the component families should be used for a given architecture from the Components DB and 
incorporated into the architecture for analysis. These component families are recorded by each 
subsystem in a subsystem specific vector that is passed from module to module. This vector 
represents integer numbers of each component family that is incorporated into a particular 
architecture for each particular subsystem. Consequently, this vector is the same length as the 
number of rows in the Components DB and as the number of rows and columns in the DSM. The 
vector is used to determine many of the component centric metrics, since the resulting dot 
product between this component family vector with the DSM is used to determine the 
complexity of the system, and the dot product between this component family vector with 
columns in the Components DB is used to determine metrics such as power, volume, and mass. 
For example, the dot product of the component family vector with the mass column from the 
Components DB multiplies each component family mass by the number of that particular 
component family incorporated in the LTA. Summing the resultant provides the mass for that 
particular subsystem. In this manner, several metrics can be determined, as will be explained in 
later sections. The Structures and Mechanisms subsystem’s code is run as the last subsystem 
code in order to perform telescope level calculations that require the sum of all components, such 
as the complete system mass. Consequently, the individual subsystems’ values are incorporated 
into the Structures and Mechanisms code before being sent to the systems level analytics. 

In order to determine how varying inputs to the model affects the output trade metrics, a 
sensitivity analysis was run. Two loops were included in the Main_Servicing.m function for 
conducting the sensitivity analysis, including a loop for running several cases of a MTBF 
multiplication factor. The MTBF multiplication factor was run at values of 0.50, 0.85, 0.90, 0.95, 
and 1.05 to see how varying the mean time between failures for every component family affects 
the outputs, since the MTBF values greatly affect how servicing missions are performed. All 
datasets are combined for the sensitivity analysis. The coding structure enables this sensitivity 
analysis by incorporating this factor in the initialization of the MTBF values, which occurs when 
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the Components Family DB is read into the LTA MATLAB structure array. A full description of 
the sensitivity analysis is discussed in Section 7.4. 

5.3.3 Subsystem Modules 

The code structure uses a series of subsystem modules as initial building blocks that construct 
the LTA structure of variables used to find the Trade Metrics. The following subsystem 
descriptions include both calculations used in Excel for the Components Data Base and 
MATLAB code modules. Each of the MATLAB modules is run through the Main.m function. 
Design options derived from the architectural decisions are specified in the LTA structure, which 
is fed into each of the subsystem modules in order. Each module adds to the MATLAB structure, 
and it is taken in by the next subsystem. 

5.3.3.1 Science/Optics Subsystem Module 

The Science/Optics subsystem is responsible for calculation of variables pertaining to the optical 
train and instrument package. The primary outputs from this module are the telescope discovery 
efficiency, which is found in the MATLAB code module and used for the “Utility to Science” 
trade metric, as well as the MTBF, power, mass, and volume estimates of the instruments, which 
appear in the Components Data Base using Excel. Secondary outputs that are required for other 
subsystem module calculations, such as power dissipation, data rate, and operational temperature 
range, are also generated in the MATLAB code. The assumptions made to perform the analyses 
from this module are as follows:  

• There will be five instruments total: four optical instruments, plus fine guidance 
sensors (FGS) 

• Mass, Power, Volume, and Temperature range of instruments is based on values for  
Hubble Space Telescope instruments  

• All instruments have equal reliability 
• Power dissipation is 20%, the standard used in spacecraft first-order estimations 
• Data rate estimates are based on JWST instrument data rate 
• Performance analysis used in Baldesarra, 200713 can be applied to this system 

5.3.3.1.1 Lifetime/MTBF 
Instrument lifetime has been determined based on empirical analysis of past space-based 
telescope instruments and instrument packages. A list was compiled of every space telescope 
either currently in operation, or whose total operational mission length was ever planned to last 
longer than ten years. This data set was selected because it encompasses historical failure rates 
on long-duration telescope missions, as well as data from systems with the most advanced 
current optical technology. Ten years was chosen as the minimum intended mission length for 
the data set because it is the maximum time between servicing missions considered for TITANS 
AE, and thus the minimum time that any given component must last for the telescope to remain 
in continuous operation with the least amount servicing for potential repairs. Any problem 
involving direct compromise of instrument function, but not loss of the entire spacecraft, was 
classified as a failure in this analysis, even if the actual cause was in another subsystem directly 
related to instrument function (i.e., thermal systems). This extension beyond actual instrument 
hardware failure allowed all cases of instrument loss to be recorded, and captured the possibility 
of shorts in instrument-specific electronics in later full-system risk analysis.  
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For each relevant telescope, the number of instruments and number of instrument failures over 
the total mission lifetime was recorded. An estimate for the probability that no instrument will 
have failed by end-of-life on a future long-duration telescope mission was then calculated in two 
ways. In the first method, an overall probability (total probability of success) was determined by 
tallying the total number of instrument failures and dividing it by the total number of instruments 
ever flown on any of the relevant missions. The second method found the average probability of 
no failure (average probability of success) by dividing the number of failures by the total number 
of instruments in each instrument package in the data set. A full summary of this process is 
shown in Table VIII. The more conservative of the two probability values was selected for use in 
MTBF calculations, as indicated by the highlighted block in the table. This value represents a 
first-order estimate for the reliability of a space telescope optical instrument at the end of that 
telescope’s anticipated mission duration.  

Table VIII: Calculation of probability of no instrument failure 

Telescope Number of 
Instruments 

Number 
of 

Failures 
Failure Type 

Time 
Before 
Failure 
(years) 

Mission 
Length/Time 

in orbit (years) 

Probability 
of  Success 

HEAO 3 3 0   11 1 
AGILE 3 0   6 1 
Fermi 2 0   5 1 
Granat 7 0   10 1 
INTEGRAL 4 0   10 1 
Swift 3 0   8 1 
BeppoSAX 11 1   7 0.909091 
   MECS power 

supply 
1   

Chandra 4 0   14 1 
Rossi 3 0   16 1 
Suzaku 4 1   8 0.75 
   thermal coolant 

leaked 
0.1   

XMM-
Newton 

6 0   13 1 

COROT 1 0   6 1 
Hubble 15 3   23 0.8 
   NICMOS 

thermal failure 
8   

   STIS power 
failure 

7   

   ADCS 
electronics 
issue 

4   

Kepler 1 0   4 1 
MOST 1 0   10 1 
Herschel 3 0   4 1 
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Spitzer 3 0   10 1 
Odin 2 0   12 1 
Plank 2 0   4 1 
IBEX 2 0   4.5 1 
PAMELA 1 0   7 1 
SAMPEX 4 0   12 1 
Totals 85 5 --- --- --- --- 
Total Probability of Success 0.941176 
Average Probability of Success 0.975413 
 

The reliability estimate was used to determine an expected MTBF (in years) for each instrument 
by using the equation  

 !"#$ = !− ! ln !    
  Eq. 3 
 
Where R is the estimated reliability at the end of instrument life and t is the expected lifetime in 
years. For the purposes of this model, t is set to 40 years. Since at this stage of development no 
instruments have been selected and detailed instrument characteristics remain rough 
approximations, each instrument is assumed to have the same reliability. As the project 
progresses, the trade space for the entire system design narrows, and instrument design is known, 
the reliability numbers for individual instruments may be changed in the Components Data Base 
to improve model fidelity.  

This calculation was originally coded as a sub-function in the MATLAB code, but was later 
incorporated into the Components Data Base in Excel, and extended to the MTBF calculations 
for each subsystem component. Using the Components Data Base method was found to be more 
efficient for overall code structure and helped shorten total model runtime. If later use of this 
model involves modifications in which calculation in MATLAB is more efficient, the sub-
function may still be found in the Optics/Science module code comments. 

5.3.3.1.2 Mass, Power, Volume 
Instrument mass, power, and volume were determined based on empirical analysis of past space-
based telescope instruments and instrument packages.  

Table IX: Summary of Hubble instrument mass, power, and volume 
Instrument) Type/Function) Mass)(kg)) Power)(Watts)) Volume)(m3))

High%Speed%Photometer% Photometer% 300% ~20% 2.00%
Goddard%High%Resolution%
Spectrograph% Spectrograph% ~200% ~20% ~1.25%

WFC3% Wide%Field%Camera% 400% ~80% 1.78%
FGS% Guidance,%Astrometry% 217% 19% 1.24%
STIS% Spectrograph% 374% ~80% 1.78%
COS%% Spectrograph% 40% 62% ~1.25%
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NICMOS%% NI%Camera%and%
Spectrometer% 370% ~80% 1.74%

FOS% Camera% 329% 130% 1.78%
 

Based on design requirement, telescope functionality was grouped into four instrument classes. 
Hubble references were used to assign approximate mass, power, and volume estimates 
according to instrument type/function. These numbers represent a rough instrument of the 
instrument payload for the telescope. While the instrument packages can be serviced, none of the 
architectural decisions explicitly alters specific set of instruments that is selected. Future work 
can examine the trades involved in how the science requirements translate into a set of science 
instruments and the associated changes in mass, power, and volume. 

Table X: Summary of instrument mass, power, and volume for TITANS AE model 
Instrument) Type/Function) Mass)(kg)) Power)(Watts)) Volume)(m3))

%Instrument%A%

Wide%Field%of%View,%
Low%Spectral%
Resolution,%NUVSVISS
VISNIR,%Partially%
coronographic%

500% 90% 1.25%

%Instrument%B%

NonSImaging,%
Medium/High%Spectral%
Resolution,%FUVSNUVS
VIS,%Non%coronographic%

500% 90% 1.78%

Fine%Guidance%Sensors% Orientation%navigation% 300% 45% 1.25%

Instrument%C%

Imaging,%Low/Medium%
Spectral%Resolution,%
VISNIRSNIRSExtNIR,%
coronographic%

500% 90% 1.25%

Totals% Camera% 1800% 315% 5.5%
 

5.3.3.1.3 Optical Performance  
Because the current set of architectural decisions and assumptions hold much of the optical train 
design constant across the tradespace, overall optical performance will not vary substantially 
across the architectures under analysis.  In general, optical performance is closely associated 
with the total collection area of the observatory primary mirror, the degree of wavefront control 
and stability, the degree of control over stray light entering the optical pathway and finally, the 
wavelength range and reflectivity permitted by the mirror coatings.  By utilizing the ATLAST 
design requirements as a baseline, the total collection area, wavefront control parameters, and 
wavelength ranges were standardized across all architectures.  (A detailed treatment of the 
ATLAST requirements and their implications can be found in Appendix I) Additionally, the 
selection of a James Webb-style sunshield design (based on engineering considerations) results 
in a uniform degree of stray light suppression performance across all architectures as well.  Jitter 
and pointing stability do vary to a limited extent with the choice of mirror actuation and primary 
mirror segmentation.  These are specifically addressed separately in the structures code module.  
As the “optics” module lies upstream from the structures module and feedback loops have been 



 63 

deliberately suppressed in the code design, any implications derived from the jitter analysis are 
ultimately addressed in the trade metrics modules at the code terminus.  As a result optical 
performance is initialized here as a constant modifier within the instrument performance module.  
A more detailed proposal for how optical performance might be addressed in future cases where 
architectural decisions substantially affect this metric can be found in Appendix K. 

5.3.3.1.4 Data Collection/Science/Instrument Performance  
Overall science output and performance is heavily dependent on the number and quality of 
instruments incorporated into the observatory architecture.  This proposal uses the ATLAST 
science instrument set as a baseline for comparison and analysis (Figure 24).   

 
Figure 24: Tentative ATLAST science instruments and their FOV27 

This instrument set was devised by the key stakeholders at NASA, who are also, by virtue of 
experience and access, best positioned to determine the most useful instruments from a scientific 
perspective for a given telescope architecture.  It is reasonable therefore to assume for our 
purposes that this selection of instruments represents an optimal balance of resources for each 
scientific function (otherwise, that instrument would have been given more FOV or more of 
those instruments would have been added in place of another instrument).  As the scope of the 
architecture tradespace primarily analyzes the engineering and performance – rather than 
scientific goals – of a 16.8-meter class telescope implementation, this assumption does not 
substantially alter our analysis, provided the utility is assessed in a relative and normalized 
fashion. 

For the purposes of the TITANS AE architectural model, the functions represented in the 
ATLAST instrument proposal were packaged into four instrument ‘boxes’ for the purposes of 
future assembly, operations and servicing calculations.  Each is initialized with a baseline utility 
value of 10.  Accompanying these baseline utilities is an additional value – the utility 
degradation rate – reflecting the decay in science utility as a result of radiation damage on orbit.  
Historical values derived from monitoring of Hubble instruments suggest a rate of approximately 
1% a year to be in the appropriate range.28,29 These variables are later employed by the utility-to-
science trade metric module to evaluate telescope performance against a variety of architectural 
decisions. 

A more detailed proposal for how instrument performance might be addressed in future cases 
where architectural decisions substantially affect this metric can be found in Appendix K. 
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5.3.3.2 Communication Subsystem Module  

 
5.3.3.2.1 Communication Subsystem Metrics  
The communications module receives inputs from the design vector and other subsystems, i.e., 
Optics, and produces outputs for use by subsystems, i.e., Power, Thermal, Structures and 
Systems.  The majority of the communications module outputs are calculated via the Satellite 
Communications Design Process (described in the following section).  The communications 
module outputs required by the Systems module and to calculate the system metrics are 
calculated separately. The communications module will have the following inputs and outputs, 
illustrated in Figure 25. 

 
Figure 25: Communication system inputs (left) and outputs (right) 

5.3.3.2.1.1 SNR (Signal to Noise Ratio)  
The SNR is a basic subsystem metric for assessing communications systems and it is defined as 
the power ratio of the signal to background noise and it can be calculated at both the transmitting 
and receiving ends of a communications channel. The signal power will be equivalent to the 
power of the antennas onboard the space telescope and the relevant values can be tabulated for 
the high-gain, low-gain, and omni-directional forms after the communications architecture has 
been finalized. Assumptions will have to be made about the power of cosmic or galactic noise at 
the telescope’s orbit position. High SNRs at both transmitting and receiving ends represent a 
stable and efficient communications channel, while low SNRs will indicate the need for higher 
antenna power or more electronic filters.  SNR is constrained to have a minimum performance 
value in the communications module but the SNR value is also used as an input to systems 
metrics. 

5.3.3.2.1.2 BER (Bit Error Rate)  
Like SNR, BER is also a basic subsystem metric for any communications system. Since digital 
transmission is ubiquitous in satellite communications, the BER will determine the reliability of 
the communications channel established as it computes the number of bits in error divided by the 
number of the received bits in a data stream that may be altered due to noise, interference, 
distortion or bit synchronization errors. This metric can be used to assess the reliability of cross-
links between satellites or satellite-Earth channels characteristic of FSS and TDRSS respectively, 
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or that of laser and RF communications. Choosing the appropriate communications architecture 
or relay type and making the right design choices by selecting high-power antennas, reliable 
modulation schemes and error correction codes can minimize BER. Assumptions will have to be 
made for the parameters required in calculation. 

The equation for BER is below: 

!"# ≈ !
! !"#$

!!
!!
!"# !

!      

Eq. 4 
 
where N0 is the noise power spectral density, the M-ary PSK modulation scheme encodes m=2M 
bits per symbol. 

5.3.3.2.1.3 Power Requirements  
Power requirements will be used to assess the architectural choices for the communications 
subsystem as there is always an operational need to regulate power consumption and power 
budgets may influence the choice of antenna sizes, communications relay and technology. Power 
will also impact other subsystems as it imposes constraints on the overall power supply and 
power dissipated by communications infrastructure will contribute significantly to the thermal 
characteristics of the space telescope. Power can implicitly be calculated through supply voltages 
and currents from the avionics or via other means such as the link budget equation. 

5.3.3.2.1.4 Mass and Volume  
Due to the considerable costs of launching a unit weight of load, mass and volume of the 
communications infrastructure are key considerations for determining the communications type, 
relay type and final design choices. RF communications require large antennas and heavy feed 
systems while laser communications may have more compact and lightweight equipment at the 
same performance level. They can be calculated through dimensions and densities of available 
communications infrastructure and adjustments may be made to accommodate the space 
telescope scenario with the appropriate assumptions justified. 

5.3.3.2.1.5 Lifetime/MTBF  
The predicted lifetime will be a key metric for evaluating the architectural choices, as the large 
amount of electrical equipment and distribution networks onboard the space telescope have to 
maintain a high level of reliability through the mission lifecycle. The lifetime of the 
communications sub-system can be predicted through calculating parameters such as probability 
of failure and average lifetime for a single or network of components.  The communications 
subsystem is also assumed to be serviceable so that its predicted lifetime metrics do not 
necessarily have to meet or exceed the in-service lifetime of the entire system. The failure rate of 
the communications subsystem can thus be calculated via the multiplicative sum of 
communications components operating in a casual chain, and therefore variable across 
architectures. 

5.3.3.2.1.6 Delay  
Calculation of time delays in communications is vital if there are time and cost constraints for 
direct linkage between a spacecraft and relevant ground control stations. As space 
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communications entail the exchange of data over vast distances in space, communication 
channels established between L2 and Earth or other intermediary relay satellites are susceptible 
to electromagnetic interference and obstruction caused by objects in near-Earth orbits. Both 
architectural and design choices in communications technology, relay mechanisms and routing 
protocols have different measures of impact on the time delay experienced during data 
transmission. Typically, delay should be minimized within the constraints of cost and availability 
of technology so as to increase overall value and reliability of the communications system in the 
space telescope. 

For example, to perform the delay calculations for the FSS option, the delays in uplink and 
downlink transmissions in the FSS system (assumed to be RF-based in this study) can be defined 
as functions of the distance between nodes and the processing time of each node.  More 
specifically, the processing delays can be divided into transmission time, buffering delays, 
switching delays and data processing time.30  Likewise, propagation delays can be divided into 
inter-satellite link delays (in-plane and cross-plane) and uplink/downlink delays with the ground 
station. 

The number of supplier nodes in the FSS network greatly changes the delay; due to orbital 
alignment, the delay varies with time.  For the purposes of this study, a model of the FSS 
constellation will be developed using documented assumptions (quantity and locations) and will 
be used as the baseline for communications performance.  The model will be developed using 
Systems Tool Kit (STK).  

The processing delays per node will be assumed to be uniform for all FSS suppliers and this 
delay will be a function of the link access time, data to be transmitted to ground and assumption 
on the processing speed.  The processing speed of each FSS supplier node will be estimated 
using specification sheets of comparable satellite systems. 

 !"#$%&%'(#)_!"#$% = ! !!  
  Eq. 5 
 
where d is distance and c is speed of light. 

 !"#$%&&'()_!"#$%! = !"#_!"#"_!"#$%&
!"#$%&&'()_!"##$  

Eq. 6 
 
5.3.3.2.2 Communications Design Process   
Satellite Communications Design is an iterative process that involves defining the 
communication mission architecture, specifying the payload architecture, performing the link 
analysis, designing the payload, estimating impact to key metrics and updating parameters to 
achieve performance that meets requirements and meets the system level constraints. The design 
process for the communications module will follow the steps illustrated in Figure 26. 



 67 

 
Figure 26: The communication system design and sizing process30, adapted for the context 

of this class 

The first two steps in the process outlined above involve making architectural decisions.  One of 
the most important decisions for the communications module is fixed for the purposes of this 
study and that is the orbit and location of the telescope, Sun-Earth L2. It is also pre-determined 
that the Earth ground stations will be stationary. The ground stations considered are part of the 
DSN, detailed in the following section.  

The first block in Figure 26, define space mission communications architecture, is the step in 
which the high-level communications architecture is determined.  For this study, four options 
have been considered, which are DSN, TDRSS, FSS and direct laser as dictated by the 
“Communications Architecture” value in the design vector.  The communications module 
calculations will vary according to the communications architecture. 

The “Communications Architecture” impacts the second block in Figure 26, define 
communications payload architecture.  For example, the communications payload for the RF-
based communications systems varies greatly from the payload for the direct laser 
communications system.  Furthermore, the payload systems for DSN, TDRSS and FSS have 
differing processing and transmission requirements, which will be analyzed separately in the 
following. 

The way the communication system design was approached is the illustrated in Table XI. 
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Table XI: Communication system design process 
Step Step action 

1 
The system composition was identified – main components (ex. 
Antennas), other components (filters, amplifiers, modulation units, 
etc.)  

2 
STK scenarios were setup. The main goals were to visualize the 
telescope link to the ground directly, via LEO satellites and GEO 
satellites and compute the access times  

3 

Perform link budget calculations for a point design (i.e. having selected 
an antenna type and dimensions, calculate the maximum allowable 
downlink data rate for the link to be closed); also determine other 
relevant parameters for the design (antenna mass, volume, number of 
antennas, required power etc.)  

4 
Generalize the results of the link budget analysis – considering a 
variable antenna size, investigate how the communication subsystem 
design would scale with this variation 

5 Write the MATLAB code for the communication subsystem in the 
cases analyzed in STK  

 

Step 1 – Identify communication subsystem components 
The architecture of the onboard communication system is outlined in Figure 27. 

 
Figure 27: The communication systems architecture considered for the scope of this class31 

Step 2 – Setup the STK scenario for the mission and calculate access times 
Using STK, the orbit for the telescope is illustrated in Figure 28 and Figure 29: 
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Figure 28: The orbit of TITANS AE in STK – at Sun-Earth L2 

 
Figure 29: Alternate view of the orbit 

The DSN considered is composed out of the following three ground stations: 

a) Goldstone Deep Space Network Communication Complex – Barstow, California, USA 
b) Robledo de Chavela – Madrid, Spain 
c) Tidbinbilla – Australia 

The scenarios investigated are: 

a) Telescope direct communication with the DSN  
b) Telescope communication with the Iridium satellites (LEO) to DSN 
c) Telescope communication with the TDRSS satellites (GEO) to DSN 
d) Free space optical (FSO) communications (laser). 
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In cases b), c) and d) only the first part of the communication link has been analyzed, since it is 
the one relevant to the satellite communications architecture sizing.  
 
Direct DSN: 
The assumptions made are that the telescope communicates directly with the DSN ground 
stations. The average access time is 7.4 hours a day, with the three DSN stations. In order to have 
some margin here, the average access time was considered to be 4 hours a day with the DSN 
stations, due to additional scheduling factors (ex. Communication with the ISS and other 
satellites) that may limit the connection time. The STK computed access time was considered to 
be the best case, and the realistic value of this time will be considered as 4 hours. 

LEO: 
The satellite constellation considered was Iridium. The problem with this assumption is that the 
main antennas of Iridium are pointing towards Earth, and in order to establish a high-data rate 
connection with L2 they would have to point towards L2. However, Iridium also has 
omnidirectional S-band antennas, which can be used as a contingency scenario, because their 
gain is low and the supported data rate is also low. The Iridium satellites considered for the link 
access time calculations are shown in Table XII. 

A better assumption would be to consider a LEO satellite network with two antennas: one 
pointing towards L2 so the telescope can communicate with it, at a high data rate (so a parabolic 
antenna would be desired), and another antenna pointing towards the Earth, so data collected by 
the previous antenna can be relayed to the Earth. This would entail a new communication 
satellite network to be designed, built, and launched for LEO, which translates into an entirely 
new program, which is considered unfeasible for the scope of this project. Therefore, the LEO 
case is considered a contingency scenario. 

Table XII: Iridium satellites considered for link access calculations 
Satellite name Access time from telescope to satellite 
Iridium_13_24840 

14 access/day, each of 1.1 hours Iridium_22_24907 
Iridium_24_25105 

 

 
TDRSS: 
TITANS AE can see the TDRSS satellites 24 hours a day, so in theory this would be the access 
time. However, due to the reasons mentioned above, a more realistic value is 4 hours a day. The 
TDRSS satellites considered for the link access calculations are shown in Table XIII. 

Table XIII: TDRSS satellites considered for link access calculations 
Satellite name Access time from telescope to satellite 
TDRS3_19548 

24 hour access TDRS5_21639 
TDRS7_23613 

 

The Iridium and TDRSS constellations are illustrated in Figure 30. 
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Figure 30: STK scenario with the Goldstone DSN site and the Iridium & TDRSS networks 

Step 3 – Link budget calculations 
The main process of this step is the link budget design. For this, a few definitions are necessary: 

• Satellite Ground Terminal (SGT) – the satellite terminal on the ground, may be large 
or small, fixed or mobile 

• Uplink – the link from the SGT to the satellite 
• Downlink – the link from the satellite to the SGT 
• Link budget – a quantitative analysis of a communication link, used to assess 

whether a link is closed (meets requirements) or open (does not meet requirements) 
and facilitate design. 

The main parameters for the link budget are presented in Table XIV. 

Table XIV: The main parameters for the link budget32 
Parameter Unit Definition 
PT dBW Transmit power 
GT dBi Transmit antenna gain relative to isotropic 
EIRP dBW Effective Isotropic Radiated Power 
LP dB Free space loss 
LM dB Miscellaneous losses 
LR dB Losses due to rain 
LA dB Losses due to atmospheric effects 
GR dBi Receive antenna gain relative to isotropic 
T dBK Temperature in degrees Kelvin 
G/T dB/K Figure of Merit 
C dBW Receiver carrier power 
N dBW Noise power 
C/N dB Carrier-to-noise ratio 
B dBHz Signal bandwidth 
S/N dB Signal-to-noise power ratio 
R dBHz Data rate 
k dbW/K*Hz Boltzmann’s constant 
Eb/N0 dB Energy per information bit to noise power density ratio 
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The link budget may be expressed in terms of carrier-to-noise (C/N) ratio as: 

!
! ≅
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Eq. 7 
 

It may be decomposed into uplink (UL) and downlink (DL) link budgets. 

Since the uplink is mainly used for telecommands, the data rate that has to be supported by this 
link is small and therefore closing this link will not be as challenging as closing the downlink, in 
which the science data has to be downloaded and therefore will necessitate a high data rate. 
Therefore, for the purposes of this analysis, the link budget will focus on the downlink part. 

For simplification purposes, the carrier-to-noise ratio was considered to be approximately equal 
with the signal-to-noise ratio (S/N). 

The free space loss is given by the following formula 

 L! = !
!∙!∙!"#$%

!
  

Eq. 8 
 
where λ is the wavelength (meters) and the range is the path length (meters). 

The antenna gain is dependent on the directivity of the beam, for the simplification purposes in 
this analysis it was assumed (in the first iteration), that the antenna is a parabolic dish, whose 
gain is given by the following formula 

 ! = 10!"# ! !"
!

!
!(!!")     

  Eq. 9 
 
where ε is the antenna efficiency (usually equal to 0.55), D is the diameter of the aperture in 
meters and λ is the wavelength (c = f λ). 

EIRP is the effective isotropic radiated power of the transmitter  

10 log !"#$ = 10 log !!!! = 10 log !! + 10 log !! !(!"#)   
 

Eq. 10 

The noise power can be expressed as 

 P = !"#

!
!"
!"!!

  

Eq. 11 
 
where ℎ = 6.62! ∙ 10!!"!"!(Planck’s constant), ! = 1.38! ∙ 10!!"!/°!, B is the receiver 
bandwidth, P is the noise power. 
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When ℎ!/!" ≪ 1, the formula above can be simplified and the receiver noise power is  

P = kTB = !N!B! W  
 P! = GkTB!(W)     

Eq. 12 
 
Typical losses that affect the communications link are summarized in Table XV: 

Table XV: Typical communication losses and their values 
Loss Value (dB) 
Quantization 0.25 
Differential encoding 0.2 
Filtering 0.5 
Adjacent channel interface 1 
Interleaving 1 
TOTAL: 2.95 

 

The total value for typical losses is considered to be 3 dB. A margin of another 3 dB was added 
to give a losses value of 6 dB, which has been considered in the link budget as the miscellaneous 
losses.  

The link analysis or link design for the communications module is performed by a set of 
interrelated equations used to close the link while maintaining an acceptable level of link 
performance. The communications module is constrained to have a link margin of greater than or 
equal to 3 dB and a Signal-to-Noise ratio of 5/10 (-3 dB) or better.  These values were selected 
based on traditional performance standards.30 

The link analysis takes as one parameter the transmit power required.  In combination with the 
transmit distance (determined by the communications architecture), the antenna type and size can 
be determined.  From there, estimates of mass and volume can be provided for the antenna.  
Power, mass and volume for the non-antenna communications components will be estimated 
using specification sheets for comparable systems.   

The different antenna types considered are parabolic, horn and array. The helix antenna will not 
be considered because of its low frequency application spectrum.30 

The equations for the antennas described above are presented in Table XVITable XVII, and 
Table XVIII: 

 

 

 

 



 74 

Table XVI: Parabolic antenna characteristics30 
Antenna type Parabolic reflector 
Antenna model 

 

Beam type Conical 
Typical max gain (dBi) 15-65 
Peak gain 17.8 + 20 log d + 20 log f (ε = 0.55) 
Half-power beamwidth (deg) 21/ (fd) 
Size (m) D 
Mass (kg) 10-30 

 

 

 

 

Table XVII: Horn antenna characteristics30 
Antenna type Horn 
Antenna model 

 
Beam type Conical 
Typical max gain (dBi) 5-20 
Peak gain 20 log (πd/λ) – 2.8 (ε = 0.52) 
Half-power beamwidth (deg) 225/( πd/λ) 
Size (m) D 
Mass (kg) 1-2 
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Table XVIII: Array antenna characteristics30 
Antenna type Array 
Antenna model 

 
Beam type Conical (scanning) 
Typical max gain (dBi) 5-20 
Peak gain 10 log (A/λ2) + 8 
Half-power beamwidth (deg) -  
Size (m) A 
Mass (kg) 20-40 

 

To simplify the design, two antenna types have been considered: 

i) Parabolic antenna – for the high gain communications. For redundancy purposes, the 
telescope will have two high-gain antennas, only one of them being powered at a time 
so that the overall power draw for the communication system will not be impacted by 
the built-in redundancy in the communication system 

ii) Patch antenna – for low gain communications. There will also be two antennas of this 
type, with only one of them being powered on at a time. 

For the optical communication, TITANS AE will have two telescopes and two corresponding 
stabilizer units. Each DSN complex consists of at least four deep space stations equipped with 
ultrasensitive receiving systems and large parabolic dish antennas. There are: 

• One 34-meter (111-foot) diameter High Efficiency antenna 
• One 34-meter Beam Waveguide antenna (Three at the Goldstone Complex and two in 

Madrid) 
• One 26-meter (85-foot) antenna 
• One 70-meter (230-foot) antenna33 

The best antenna that could be used is the 70-meter antenna, which would give the highest value 
for the antenna gain. However, in order to ensure a conservative design, it will be assumed that 
the antenna that is available for communications with TITANS AE is the 34-meter antenna. 

The power range for transmission from the DSN antenna is from 16 W to 400 kW. The 
maximum transmission power is considered to be of 200 kW. The frequencies are separate for 
Transmit (Earth to Space) and Receive (Space to Earth) and are shown in Table XIX. 
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Table XIX: DSN transmit and receive frequency range 
 Transmit Receive 

S-Band   2110-2120 MHz   2290-2300 MHz   
X-Band   7145-7190 MHz   8400-8450 MHz   

Ka-Band   34200-34700 MHz   31800-32300 MHz   
 

The transmission frequencies have been chosen to be 34.7 GHz for transmission and 32.3 GHz 
for reception for the high gain antennas onboard the telescope. For the contingency scenario, the 
reception frequency is 2.2 GHz (S-band). The link budget was done for the high-gain downlink 
case and the low-gain downlink case, considered a set antenna size. The link budget main 
parameters for the high gain case are illustrated in Table XX. 

The link budgets for the downlink high and low gain cases are illustrated in the following tables. 
They represent the core of the communications system design, from which further generalization 
was done in the following sections. 

Table XX: The link budget for the high gain antenna downlink case 
Parameter Unit Value Comments 
Antenna elevation 
angle degrees 30 Assumed high to minimize scattering from 

buildings or tall mountains 

Maximum 
transmission range km 1503178.873 

L2 distance is 1.5 million km, taking into 
account the elevation angle this value was 
calculated 

Frequency GHz 32.3 Chosen from Table XIX 
Wavelength m 0.0093 ! = ! ! ! 

Path loss dB -246.2 
Eq.$8L! = !

!∙!∙!"#$%
!
$ $

Eq.$8$
%

Telescope antenna 
diameter m 3.5 Chosen as a point design 

Gain of the telescope 
antenna dBi 58.9 Parabolic antenna 

Gain of the ground 
antenna dBi 84.9 

 Assumed 34-m diameter, parabolic 

Noise temperature K 225 
Antenna assumed to be shaded from the 
Sun, to minimize Sun radiation 
interactions 

Telescope antenna 
radiated power W 20 

Input power to the transmission system is 
assumed to be 200W, the yield of this is 
considered 10% 

Required Eb/N0 dB 12 

Corresponds to a BER = 10-8 (see Figure 
31, the coding method selected was QPSK 
because this is the most commonly used 
coding technique in satellite 
communications34 

Data rate bps 50M Arbitrarily chosen 
Margin dB 14.6 Link closed 
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The link budget main parameters for the low gain case are illustrated in Table XXI. 

Table XXI: The link budget for the low gain antenna downlink case 
Parameter Unit Value Comments 
Antenna elevation 
angle 

degrees 30 Assumed high to minimize scattering from 
buildings or tall mountains 

Maximum 
transmission range 

km 1503178.873 L2 distance is 1.5 million km, taking into 
account the elevation angle this value was 
calculated 

Frequency GHz 2.2 Chosen from Table XIX 
Wavelength m 0.136363636 ! = ! ! ! 
Path loss dB S222.9% Eq.$8%
Telescope antenna 
diameter 

m 1.25 Chosen as a point design, patch antenna 

Gain of the telescope 
antenna 

dBi 10 Parabolic antenna 

Gain of the ground 
antenna 

dBi 61.55461367 
 

Assumed 34m diameter, parabolic, at the 
corresponding S-band wavelength 

Noise temperature K 175 Antenna assumed to be shaded from the 
Sun, to minimize Sun radiation 
interactions 

Telescope antenna 
radiated power 

W 5 Input power to the transmission system is 
assumed to be 50W, the yield of this is 
considered 10% 

Required Eb/N0 dB 9.6 Corresponds to a BER = 10-8 (see see 
Figure 31 the coding method selected was 
QPSK because this is the most commonly 
used coding technique in satellite 
communications34 

Data rate bps 16k Arbitrarily chosen 
Margin dB 7.24 Link closed 

 

 
Figure 31: Eb/N0 values for different coding methods and BER desired values 
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The laser communication is a novel communication technology, that allows a low satellite 
transmission power and a low transmit telescope dimensions, in the order of cm. It can also 
sustain high volumes of data. The problem is that it is cut off by cloudy conditions, therefore, to 
achieve 99% reliability in the reception link, 9 ground stations are used.35 

The mass and volume necessary to be accommodated aboard the telescope are about 5 times less 
than those needed for RF communications35, but the laser beam has to be very accurately pointed 
toward the receiving station’s direction. In order for this pointing accuracy to not impact the 
ADCS system, MIT Lincoln Labs have developed an extra stabilizer, which can help improve 
the telescope’s pointing accuracy (The telescope is the optical transmission unit, different from 
TITANS AE). However, the TRL level for this technology is currently low. 

The main mathematical relations describing the laser communications are presented in the 
following. 

 !!! = ! !!!   
Eq. 13 

 

where Eph is the energy per photon, h is Planck’s constant, c is the speed of light and λ is the 
wavelength. Usually this is 1550 nm. 

The energy per pulse can then be written as 

 !!"#$% = !!! ∙ !!! ∙ !!   
Eq. 14 

 
where ns is the number of photons in a pulse and qe is the quantum efficiency, equal to 0.8. 

The laser communication has M = 16 modulation levels (also called 16-PPM – 16 pulse position 
modulation). 

The received power can be then expressed as 

 !!"#"!"#$ = !!"#$% ⋅ !!!   
Eq. 15 

 

For the laser communication, the link budget main parameters are illustrated in Table XXII. 

Step 4 - Generalize the results of the link budget analysis 
MATLAB code was written to investigate how the daily data rate (for 4 hours of contact time) 
would scale with the TITANS AE antenna size. 

The results are illustrated in the following plots. 
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Figure 32: The DSN trade: the increase in daily data volume (Gbits/day) versus the 
antenna size (meters) 

The maximum value of the daily data volume is at 5 m of antenna size, and is of 305 Gbits/day. 

 
Figure 33: The TDRSS trade: the increase in daily data volume (Gbits/day) versus the 

antenna size (meters) 
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The maximum value of the daily data rate is at 5 m of antenna size, and is of 87 Gbits/day. 

For both the DSN and TDRSS cases, the antenna size was varied from 0.5 to 5 meters, in 
increments of 0.01 m. There is an option to have deployable parabolic antennas (Harris) but it 
this option was not considered for this project. 

 
Figure 34: The laser communications trade: the increase in daily data volume (Gbits/day) 

versus the optical telescope size (m) 

The maximum daily data rate is of 748.3 Gbits/day, and it corresponds to an optical telescope 
size of 0.2 m. The antenna size was varied from 0.04 m to 0.2 m. 

Step 5 - Write the MATLAB code for the communication subsystem in the cases analyzed in STK  
The MATLAB code for the communications subsystem was hardcoded to include the values 
determined in the link budgets above for DSN, TDRSS and laser communications.  

5.3.3.2.3 Conclusions, recommendations and future work 
In conclusion, the options for TITANS AE communications are shown in Table XXII below. 

Table XXII: Summary of TITANS AE communication design 
Communication type Gain value Number of 

antennas 
Band Communication 

architecture 
Telemetry and 
telecommand 

Low 2 S LEO (FSS) 

Science data High 2 Ka TDRSS  
Laser 
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In conclusion, based on the results illustrated in Table XXII above, the best options for TITANS 
AE are as follows: 

1. Laser communications – this is the best communication system option because of the 
advantages it offers: a low weight and power requirement and capability of sending a 
high data volume. These outweigh the limitations the weather effects may have on this 
technology 

2. Direct DSN – this is the next best communication system option because TITANS AE is 
located at ESL2 (Sun-Earth Lagrange point 2), the distance from it to the Earth is 1.5 
million km. The receiving antenna on the Earth is a DSN 34meter antenna, thus having a 
big gain and helping close the communication link. 

3. TDRSS – this option is following DSN because, although the distance is shorter by 
35786 km the receiving antenna aboard the TDRSS satellite is 4.9 meters, so it does not 
help closing the link as much as the 34 meter antenna on the ground does. So the shorter 
distance does not compensate the gain lost due to the smaller antenna. 

4. LEO (or FSS) – if the FSS is considered to be in LEO (other options are possible too, and 
should be further explored), the antennas of satellites in LEO usually point towards the 
Earth and cannot sustain a high data rate communication link to L2. The omnidirectional 
antennas onboard these satellites would have to be used, which leads to a very small gain 
and data rate. Due to these considerations, this option is regarded as the contingency case. 

As mentioned before, a future work point is to consider other satellite constellations as part of 
the FSS communication architecture. For example, FSS can include satellites that have highly 
elliptical orbits so that they can link at their apogees the telescope at L2 and at their perigee other 
communication satellites in LEO or even a DSN ground station. FSS is considered to be a very 
promising concept, and all of its aspects should be exploited when analyzing the communication 
system design in order to come up with novel architectural options. 

 
5.3.3.3 Attitude Determination and Control System (ADCS) Subsystem Module 

In the context of this project, the primary tasks of the attitude determination and control 
subsystem (ADCS) are to provide attitude control and stability to the satellite and provide 
sufficient slew rate and course pointing accuracy to the science instruments on the space 
telescope.  In creating the ADCS model that would accomplish these tasks for this space 
telescope, much of the work was done without active feedback from other modules given the 
location of the ADCS module in the N2 diagram.  As a result, some assumptions needed to be 
made to create an effective ADCS.  The primary assumption was that the mass and inertia of this 
space telescope would be on the same order of magnitude as the mass and inertia of the 
Advanced Technology Large Aperture Space Telescope (ATLAST) design.  Given this 
assumption, the ADCS was designed such that the torqueing, slew rate, and momentum storage 
capabilities were on par with the capabilities of the ATLAST design.  If this space telescope is 
created such that it has substantially greater mass or inertia, but that mass or inertia are not an 
order of magnitude greater than what was assumed, the space telescope will still operate 
effectively but with a lower slew rate.  
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While the momentum wheels and star tracker were modeled using established commercial off 
the shelf parts, the solar sail will be a custom made part. Therefore, in modeling the solar sail in 
the module code, the volume, mass, and power requirements of the solar sail are estimates, 
which are based on the design features of other custom-made solar sails. These estimates are 
adjusted based on the varying sizes and mission requirements of the comparison solar sails. 

5.3.3.3.1 Pointing Control and Actuation  
The ADCS for this space telescope will use momentum wheels to achieve attitude pointing and 
stability because of the hardware robustness, flight heritage and proven performance, and the 
lack of plume impingement associated with this ADCS component.  In conjunction with the 
momentum wheels, this spacecraft will also utilize a solar sail to minimize the distance between 
the spacecraft center of gravity and the center point of the solar pressure from the sun.  Since the 
only significant external disturbance torque present at SE-L2 is solar pressure, the solar sail will 
reduce the momentum wheel sizing requirements by an order of magnitude.  The relatively small 
pointing requirement of 1 milliarcsecond (mas) will require the ADCS to have a star tracker and 
a fine guidance system (FGS) capable of actuating the telescope to that level of accuracy once 
the momentum wheels have achieved a less accurate pointing accuracy on the order of 0.1 
degrees. 

While this project explores a family of architectures rather than a single point design, certain 
components can be used in modeling the characteristics and requirements of a spacecraft.  For 
this space telescope, the Honeywell HR16 Momentum Wheel (100 N-m-s variant) will be useful 
in modeling the ADCS of the spacecraft.  The solar sail will be a customized solution with a two-
axis gimbal attached to the boom connecting the spacecraft bus to the solar sail.  This two-axis 
gimbal will allow for solar pressure torque modulation and allow the ADCS to dump the 
momentum from the momentum wheels without using propellant. The Ball Aerospace CT-633 
Stellar Attitude Sensor will be used to model the star tracker on this space telescope.  

Using this design architecture, the equations used to determine ADCS module outputs may be 
developed.  These equations with their accompanying explanations are shown below.  

The data rate required by the ADCS from Avionics subsystem will not constrain the capability of 
the Avionics subsystem because the computing requirements of the ADCS will be relatively 
constant, will not require a significant amount of memory for the inertial measurement unit 
(IMU) data, and will have allocated software and hardware specifically designed for the ADCS 
purpose.  For the same reason, the data volume required by the ADCS will not be an issue of 
concern.  Furthermore, the data throughput resulting from the images collected by the telescope 
will be orders of magnitude greater than the data throughput resulting from the ADCS.  The 
required equations are shown below.  Examples of support software include Kalman filter, 
Extended Kalman filter, noise filter, and mixer. 



 83 

 !!"#$% = !!" !!" + !!! !!! + !!" !!" + (!!")   
Eq. 16 

 
 !! = (!!"#$%)(!!)   

Eq. 17 
 
!!"#$% represents the total data rate of the ADCS, !!", !!!, and !!" represent the data rate of the 
momentum wheels, solar sail, and star tracker, respectively.  !!", !!�, and !!" represent the 
number of momentum wheels, solar sails, and star trackers, respectively.  !!" represents the 
support software data rate requirements.  !! represents the total data volume and !! represents 
the time over which IMU data is collected.   

As stated above, the ADCS will not require any propulsion to be used for momentum dumping.  
However, if solar pressure modulation will not be allowed or is infeasible, the following 
equations can be used.  Given that nine of the aforesaid momentum wheels would allow the 
spacecraft to operate for approximately 11 days before reaching momentum saturation and the 
pointing time requirement for the telescope is only two hours, the frequency of momentum 
dumps may be arbitrarily selected between 4 to 8 days and still allow a significant margin of 
error both for pointing time requirements and for momentum wheel saturation.  In order to 
determine the rate at which momentum builds up in the wheels, the following equation may be 
used.  

 !!" = !!
! !!!(1+ !)!!"#(!)!     

Eq. 18 
 

Let !!" represent the solar torque, !! represent the solar constant, ! represent the speed of light, 
!! represent the area of the satellite exposed to sunlight, ! represent the reflectance factor, ! 
represent the angle of incidence to the Sun, and ! represent the distance between the center of 
gravity of the spacecraft and the center of the solar pressure.  It may be assumed that the solar 
constant at SE-L2 is 1296!/!!, the speed of light is 3 x 108 m/s, the surface area is between 
1000 and 1500 !!, the reflectance factor is 0.6, and angle of incidence is 0 degrees, and the 
distance between the center of gravity of the spacecraft and the center of the solar pressure is less 
than 0.1 meter.  The following equation can be used to determine the amount of momentum build 
up between momentum dumps.  

 !! = !!"!!  
Eq. 19 

 
Let !! represent the total momentum and !! represent the time between momentum dumps. 

The operating temperature of the momentum wheels is between -30 and 70 degrees Celsius.  The 
operating temperature of the star tracker(s) is between 0 and 30 degrees Celsius.  The operating 
temperature of the solar sail is between -150 and 110 degrees Celsius.  
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The power dissipation of the ADCS will be the power required multiplied by some factor of 
inefficiency as represented in the equation below.  

 !! = !(!!)   
Eq. 20 

 
Let !! represent the power dissipation of the ADCS, let ! represent the factor of inefficiency of 
the ADCS, and let !! represent the power usage of the ADCS.  The vast majority of power usage 
within the ADCS will be used by the momentum wheels.  The equations below represent the 
worst case scenarios for steady state and peak power usage, respectively. 

 !!"" = 22!"##$ !!" + 25!"##$ !!! + (9!"##$)(!!")  
Eq. 21 

 !!" = 195!"##$ !!" + !!"" !!! + (!!"#)(!!")   
Eq. 22 

 
Let !!"" represent the overall steady state power usage of the ADCS, let !!" represent the overall 
peak power usage of the ADCS, let !!"" represent the peak power usage of the solar sail, and let 
!!"# represent the peak power usage of the star tracker.   

The momentum wheels are designed to last for over 15 years which is 5 years longer than the 
servicing option with the lowest frequency.  Solar sails can be produced with incredibly low 
mass and volume, the star tracker(s) are relatively small and light weight, and the FGS will be 
integrated with the telescope hardware.  Therefore, the momentum wheels will dominate the 
mass a volume requirements of the ADCS. The equations below represent these requirements. 

 !! = 12!" !!" + 20!" !!! + (5.5!")(!!")   
Eq. 23 

 

 !! = ! .!"#
!

!
. 178 !!" + . 125!! !!! + . 002025!! !!"   

Eq. 24 
 
Let !! represent the total mass of the ADCS and let !! represent the total volume of the ADCS. 
Since the telescope architecture tradespace does not encompass an option with multiple non-
physically connected segments in operational use and the lifetime of the components far exceeds 
the longest servicing period, the architectural choices will not have a dynamic impact on the 
design of the ADCS.  As a result, the Pareto front could be characterized largely without the use 
of the ADCS module.  However, the ADCS module does provide comprehensiveness and 
continuity in the model.  

5.3.3.4 Avionics Subsystem Module 

The avionics subsystem serves as the backbone for the data interface among all subsystems; it 
collects, processes, and stores data from the subsystems, schedules tasks, and transmits 
commands to the subsystems. The avionics subsystem is also responsible for formatting, packing 



 85 

and unpacking data to/from the ground stations.  The largest drivers of the avionics subsystem 
are the data rate/volume expected from optics, the communications architecture, and the 
assembly servicing technique.  The science data from optics is the largest contributor to the 
processing and storage demands of the avionics system while in operation.  The 
assembly/servicing technique could have a significant impact on the avionics system during 
assembly or servicing phases of operation, especially in the case of robotic arms or swarm 
robotics, which will be intensive from a processing and scheduling standpoint.  

 

 
Figure 35: Avionics subsystem inputs (left) and outputs (right) 

The majority of the avionics subsystem outputs (see Figure 35) are highly dependent on the 
selection of technology for each component.  Advances in electronics have demonstrated that in 
less than a decade, data storage capacities, for example, have increased dramatically while form 
factors have decreased dramatically.  As such, the approach for quantifying the avionics outputs 
will be to leverage the specifications of avionics components used in comparable systems or that 
have been space qualified by other means.  

A typical avionics subsystem is depicted below in Figure 36.  Using this diagram and 
documentation for the Hubble Avionics subsystem, the avionics components in the model are the 
Central Processing Unit (CPU), Random Access Memory (RAM), Data Management Unit 
(DMU), Data Interface Unit (DIU) and Power Converter Unit (PCU).  The main computer in the 
model is based off of the specifications for the Hubble Advanced Computer which is 20 times 
faster, 36% lighter and has 6 times more memory than the DF-224/coprocessor combination that 
was initially launched with Hubble and developed in the 1970’s.36  Maxwell’s Synchronous 
Dynamic RAM (SDRAM) is used for the volatile memory in the model as it represents one of 
the latest technologies in its class.37,38 The DMU and DIU are architecturally the same as Hubble. 
The DMU controls the central clock, interfaces with the DIUs and the CPU, whereas the DIUs 
are the data interface with the other subsystems.39  The PCU essentially consists of a number of 
DC-DC converters that step down a common voltage supply provided by the solar panels to a 
series of lower voltage levels suitable for various avionics components as specified by their 
voltage-current operation requirements. The PCU specifications used in the model are based on 
the TDK: Lambda PXD Series of radiation-hardened DC-DC converters, which have been 
chosen as candidate component choices for a number of satellite-based science instruments.40 
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Figure 36: Typical Avionics subsystem for satellite systems41 

The architecture of the avionics subsystem remains the same throughout all of the architectural 
decisions, i.e., data and physical connections are constant, but the quantity of each component 
changes in accordance with processing, memory, and reliability requirements.  Redundancy is a 
common practice with avionics components; for example, the Hubble DIU is composed of two 
complete units where each unit is capable of performing all of the required functions. 

The following sections briefly describe the key outputs of the avionics subsystem to other 
modules in the model. 

5.3.3.4.1 Processing Speed  
Processing speed represents the amount of data that a computer system can process in a given 
amount of time. Processing speed can play an important role in determining the amount of 
science data that can be collected, how that data is processed, and whether the data is processed 
on the satellite or on the ground. The amount of processing speed that a computer has impacts its 
ability to do onboard processing tasks that can improve the effectiveness of the satellite. 
Specifically, satellites can use onboard processing to overcome rain attenuation, utilize more 
efficient encoding, modulation, and multiplexing schemes, reduce the bit error rate, accelerate 
internet related throughput, mitigate problems associated with transmission delay, and allow the 
use of smaller aperture user antennas.  

The communications architecture, on-orbit assembly and servicing technique, and the primary 
mirror actuation method will all have dynamic impacts on the processing requirements of the 
satellite. Using a Federated Satellite System, increasing the autonomy of the satellite, and 
increasing the number and complexity of tasks the satellite is expected to perform are all aspects 
of the design that will levy greater demands on the processing capability of the onboard 
computer.   
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Furthermore, the effective processing speed of a computer is dependent upon several aspects of 
the onboard computing system including clock speed of the central processing unit, front side 
bus speed, back side bus speed, the amount of random access memory, the amount of cache 
memory, how the data protocols are set up, how well the software has been optimized, the 
temperature of the computer, and what information the computer is expected to process. For this 
reason, establishing a closed-form solution for the required computing capability will not be 
feasible. Extensive design analysis, experience, and intuition are all required to determine the 
processing requirements of a satellite. 

5.3.3.4.2 Mass and Volume  
Similar to the communications subsystem, mass and volume of all avionics will affect the form 
and architecture of the space telescope. This should be lightweight and compact without any 
compromise in its value or performance. They are estimated via dimension ranges of electronics 
subsystems onboard existing spacecraft. 

5.3.3.4.3 Power  
Power requirements of satellite avionics components such as microprocessors, memory and other 
electronic equipment are generally similar to that of Hubble or James Webb space telescopes. An 
estimation or extrapolation may be derived from them since their overall function and purpose 
are equivalent. A more accurate method would be to use peak and average voltage and current 
ratings obtained from component datasheets of potential avionics components. The overall power 
consumption for the avionics subsystem is simply the sum of the power consumptions of 
individual components. As every component has its own power efficiency rating, power loss and 
dissipation is expected. The overall power dissipation for the avionics subsystem is then the sum 
of the power losses of individual components. 

5.3.3.4.4 MTBF  
This metric will be similar to that used in the communication subsystem. The lifetime of the 
avionics subsystem can be predicted through calculating parameters such as probability of failure 
and average lifetime for a single or network of electronic components. These values may be 
available in component datasheets of existing avionics systems. The avionics subsystem is also 
assumed to be serviceable so that its predicted lifetime metrics do not necessarily have to meet or 
exceed the in-service lifetime of the entire system. The failure rate of the communications 
subsystem can thus be calculated via the multiplicative sum of communications components 
operating in a casual chain. 

5.3.3.5 Propulsion Subsystem Module 

The propulsion system must carry enough fuel to correct for orbital disturbances over the 
lifetime of the mission (station-keeping) as well as allow for servicing missions to be conducted. 
From an operational standpoint, there are two servicing decisions being traded: in-situ servicing 
and servicing at a lower orbit. For the latter case, enough propellant must be carried to allow for 
round-trip travel from Sun-Earth L2 to the servicing orbit multiplied by the desired number of 
servicing missions. For the former case, it is useful to calculate the amount of propellant required 
to transport a robotic servicing probe to Sun-Earth L2 to facilitate a cost comparison between the 
two servicing options. 



 88 

5.3.3.5.1 Assumptions 
Several assumptions were made in order to minimize the complexity of the propulsion system 
calculations. For the various servicing locations, transit times were referenced directly from 
texts. This eliminated the need to calculate transit times from Sun-Earth L2 to the various 
servicing orbits for each of the propulsion systems under consideration. Furthermore, this also 
eliminated the need to consider the thrust capabilities of individual models within the engine 
families under consideration.  

5.3.3.5.2 Lifetime 
This metric is set by the Operations team. There are three critical inputs: mission duration, which 
impacts the amount of propellant required for station-keeping maneuvers; servicing location, 
which determines whether extra propellant will be required for servicing; and servicing 
frequency, which will determine the amount of propellant required for servicing, given that 
servicing does not occur in-situ. 

5.3.3.5.3 Mass and Volume  
The propulsion system mass will be calculated as a fraction of the entire satellite mass, as the 
fuel required to achieve a specific velocity change (ΔV) increases as the spacecraft mass 
increases. The required ΔV for the mission is influenced by two factors: station-keeping and 
servicing. For spacecraft in halo orbits around the Sun-Earth L2 point, it is recommended that a 
ΔV of 4 m/s per year be allocated for station-keeping26. The total ΔV required for station-
keeping is then simply 4 (m/s)/year multiplied by the number of years in service. 

 Δ!!"#"$%&'(()$&* = !!"#$%!!"!!"#$%&"×4  
Eq. 25 

   
The ΔV required for servicing missions varies based on the servicing option specified in the 
design vector. For in-situ servicing, zero additional ΔV capability is required on the spacecraft. 
However, propellant is still required for the transit of the servicing probe from a parking orbit 
around Earth to the L2 location. This has been calculated for the transit of the James Webb Space 
Telescope beginning from a 250 km parking orbit, and will therefore be hard-coded into the 
module.42 

 Δ!!"#$% = 3.21×10!   
Eq. 26 

   
For the case where the telescope is brought closer to Earth for servicing, a separate method for 
finding the required ΔV must be employed. It has been shown that transfers between a halo orbit 
around the Sun-Earth L2 point to a halo orbit around the Earth-Moon L2 point can be 
accomplished with little ΔV – between 0 m/s to 20 m/s, depending on the initial and final orbital 
radii.43 Other studies have shown that transfers from Sun-Earth L2 to lunar orbit and to 
geosynchronous Earth orbits are possible, along with the required ΔV and transit times.44  

Figure 37 and Table XXIII summarize the ΔV requirements and transit times for several transfer 
trajectories. 
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Figure 37: ΔV requirements for transfers between various SE-L2 and EM-L2 orbits43 

Table XXIII: ΔV requirements for tarious transfer trajectories 
Trajectory ΔV (m/s) Transit 

Time (days) Reference 

LEO to SE-
L2 3210 63 Cattrysse 

SE-L2 to 
Lunar 

Circular 
1200 101 Truesdale 

SE-L2 to 
GEO 5000 109 Truesdale 

 

With the ΔVs known, the non-dimensionalized propellant mass (as a fraction of the total 
spacecraft mass) can be calculated as 

 
!!"#!$%%&'(
!!"!#$

= 1− !!!! !  
Eq. 27 

 
where c is the thruster exhaust velocity. Since the propulsion module is independently trading the 
performance of chemical and electric propulsion systems, the propellant mass calculation is 
performed for three characteristic thrusters. For station-keeping and orbital maneuvering, a 
monopropellant hydrazine thruster is the preferred engine, while arcjets and Hall Effect thrusters 
are candidate electric propulsion solutions.45,46 

Table XXIV: Performance characteristics for various thrusters45,46 

Thruster Isp (sec) Propellant Reference 
Monopropellant 

Hydrazine 230 N2H4 Sutton 

Arcjet 1000 H2 Lozano 
Hall Effect 1800 Xe Lozano 

 

The volume of the propulsion system is determined by the propellant mass fraction and 
propulsion system type. For the chemical propulsion design option, hydrazine is used as the 
propellant and has a density of 1011 kg/m3. Additionally, a tank containing a pressurized inert 
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gas (likely helium) will be needed to provide the desired mass flow rate of hydrazine. The 
specific volume (per unit spacecraft mass) can then be calculated as: 

!!!!" = !!"#!
!!!!!

 

 !!!!" = !!!!" !!"!#$ = !
!!!!!

!!"#!
!!"!#$

  

Eq. 28 
 
   
For the pressurization system: 

 
!!"#
!!"!#$

= !!!!!!"
!!!

!
!!!! !!

  

  Eq. 29 
 
where pp is the pressure in the propellant tank, vchem is the specific volume of the propellant tank, 
pg is the final pressure in the gas tank, and p0 is the initial pressure in the gas tank. Values for the 
aforementioned variables were collected from Tables 6-3 of Sutton45, and are summarized below 
in Table XXV. 

Table XXV: Values for pressurization system variables 
Variable Value 

!! 1 atm (101 kPa) 
!! 1 atm (101 kPa) 
!! 3600 psi (2.5 MPa) 

 

The total mass fraction for the chemical propulsion system is therefore the sum of the propellant 
specific mass and the pressurization system specific mass. 

 !!!!"
!!"!

= !!"#!$%%&'(
!!"!#$

+ !!"#
!!"!#$

  
  Eq. 30 
 

For the electric propulsion design case, if one assumes a particular exhaust gas, with a molar 
mass of Mgas and a tank pressure of P, then the specific volume (per unit spacecraft mass) can be 
calculated from the ideal gas law as: 
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  Eq. 31 
 

5.3.3.5.4 Power and Thermal 
Values for average power consumption and efficiency for each thruster were taken from Table 
19-7 of Wertz30, and are replicated in Table XXVI below. No power data was found for the 
monopropellant hydrazine thruster. It was assumed that since the propellant is gas-pressurized 
and undergoes catalytic decomposition, power would only be needed to actuate the flow valves, 
which is negligible compared to the power required by electric propulsion systems.    

Table XXVI: Power consumption and efficiencies for selected thrusters 
Thruster Architecture Power Required (W) Efficiency 

Monopropellant 
Hydrazine 0 0.9 

Arcjet 1000 0.4 

Hall 1000 0.5 
 

Average power dissipated was calculated based on the thruster efficiency and the input power, 
per the equation below 

 !!"##"$%&'! = 1− ! ×!!"#$%  
  Eq. 32 
 

5.3.3.6 Power Subsystem Module 

The electrical power system generates, stores, regulates, and distributes electrical power to 
instruments and other subsystems. Electrical power is vital for the operation of the whole 
spacecraft. If there is a fault in the power system, all the other systems are lost including the 
mission. Challenges for the power system include maximizing efficiency, safety, reliability, and 
radiation tolerance. Providing a solution with minimal mass, volume, thermal characteristics, and 
costs is of extreme importance. The power subsystem analysis relies on several important 
informed assumptions. These suppositions build upon several operational aspects of the 
telescope. For future explorations and research these assumptions will have to be revised to make 
sure the model is still accurate. A list of the assumptions made for the power system is presented: 

• The telescope will operate in a halo orbit around Sun-Earth L2, the spacecraft will orbit 
around this point at a radius much bigger than the Earth.  This position is very benign for 
the power system since it guarantees a constant solar flux with no eclipses, the large 
radius of the orbit also ensures the antumbra of the Earth does not obstruct solar flux 
reaching the solar panels. This advantage simplifies the solar array design along with the 
power storage unit (batteries).  
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• One of the architectural decisions is modularity. It was decided to model the power 
system as one module always. Its importance and size govern this decision. It is illogical 
to replace each individual solar cell when all of them will have the same level of 
degradation; same logic applies to the batteries. Power distribution systems will reside in 
each spacecraft module; this will allow servicing them in each segment, where they will 
be grouped with components that have similar failure rates. The power distribution 
scheme will be similar to a decentralized power architecture. 

• For this study all the spacecraft subsystems will be considered as a constant power 
demand system except for communications. Uploading and downloading data to the 
telescope will have a very profound effect on the peak power demands and therefore on 
the battery capacity. This implies that the communications system is the only one that has 
an effect on the battery sizing. To be more accurate, a small fraction (10%) of the total 
power demanded by the subsystems is stored on the batteries as a safety measure. 
Parameters of the communications system that affect the battery design are peak power 
demand, frequency of download, and download time.  State of the art lithium-ion 
batteries will be evaluated for this study. 

• Solar arrays analysis is simplified due to the advantageous orbit of the spacecraft. The 
sun always points in the same direction during operation and there are no eclipses. 
Following these characteristics the solar panels are fixed within the spacecraft and do not 
rotate or track the sun. Educated predictions on the performance of triple junction GaAs 
solar cells for 2020 are used on the model. 

• Besides power generation and storage, electricity has to flow to every subsystem that 
needs it. Distribution takes an important role on the whole system design. Since the 
specific electrical requirements of each subsystem are not known, the model relies on a 
general factor based on the total power generated. The factor is derived from averaging 
previous space missions, specifically the distribution mass per watt. This factor is the one 
with the most uncertainty on the power model. Further work and research can be done to 
model the distribution system with better accuracy. 

Due to our trade study architecture with no feedback loops, the power system is responsible for 
generating an estimate of the mass and volume for the spacecraft taking into account each system 
electrical requirements. The structures and thermal subsystems (located lower on the N2 diagram 
than power) will require a way to calculate the mass and volume needed for the power system 
once the electrical power equations have been solved. The best approach is to use a non-
dimensionalized volume and mass factor with units of kg/watts and m3/watts respectively. The 
solution will provide the most accurate results based on the total power requirements of the 
spacecraft.  

The following metrics will evaluate the performance of the electrical power system. 

5.3.3.6.1 Power and Power generation 
Generating enough power for all the subsystems is a vital element in the design. Power 
scheduling is also included in this metric (only communications subsystem is taken into account 
for power budget). To calculate the total power, all the power requirements of the subsystems are 
added together plus the power required to charge the batteries.  
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 !"#$%&"'() = (!"#$%!"#$%$&'($ + !"##$%&!!!"#$%#&'()")    
Eq. 33 

   
The power allocated to the batteries is based on the assumption that communications will happen 
few times a day, and not on a regular schedule. Therefore it is assumed that the battery has to be 
charged each day, giving 24 hours of allowable charging time. The battery power required is 
listed in Eq. 36, and it is derived from the communications peak power demand requirements. 
The next step is to calculate the array’s specific power. This is a factor that takes into account the 
amount of solar flux available at the operation point, the efficiency of the solar cells used and the 
degradation by radiation at the end of life,47 

 !""#$%&'()*)(+,-'" = !"#$%&#'()2 ∗ !""#$%&&'()'(*)$(1 − !"#$%&%'()*)!"#$%&%'()"#%*+  
  Eq. 34 

Using this factor the total solar array area needed is calculated as follows: 

 !"#$!""#$ = !"#$%&"'()
!""#$%&'()*)(+,-'"   

Eq. 35 
   

As mentioned previously solar flux will be constant, batteries are only needed for peak power 
demands. The only system that has considerable peak power demands is the communication 
subsystem. A safety margin will be added to the battery capacity in order to accommodate 
unplanned peak demands. The servicing frequency drives the Depth of Discharge (DOD) for the 
energy storage system. A relationship of DOD and number of cycles is calculated from SMAD.47  
Using this relationship, an allowable DOD is calculated from number of cycles required: 

 !"##$%&'"(")*#& = 1 + 1 − !"! !"#$!%&"' ∗ !"#$!%&"'()*" ∗ !"#$!%&"'('")*"+,-   
  Eq. 36 

5.3.3.6.2 Lifetime/MTBF  
Few systems really dictate the lifetime of the mission, power is the most obvious one. Being able 
to generate the necessary power for the required time generates constraints in the power 
generation scheme and size. This metric will measure the power generating performance of the 
system at the beginning and end of life. The system will be designed to be replaced with a 
predetermined servicing frequency. Servicing frequency will act as the lifetime of the whole 
system due to inherent degradation. 

5.3.3.6.3 Mass  
The mass of the power system will be dependent on the amount of power needed. The solar array 
plus all the necessary power switches, distribution systems, batteries, harness overhead, and 
different voltage buses will account for the total mass of the system. The total mass is calculated 
by adding the solar array mass, the energy storage unit mass, and the overhead mass. These are 
the main divisions of the power system. 

 !"#$%&$'' = !""#$%#&& + !"##$%!"#$$ + !"#$ℎ!"#$"%%  
Eq. 37 

 
 



 94 

Array mass is calculated using a specific mass factor extracted from SMAD47 also taking into 
account the inherent degradation and the lifetime of the system. State-of-the-art triple-junction 
Gallium-Indium cells will be considered for this study.  

 !""#$%#&& = !"#$%&%$'())∗!"#$%&$'()%$*
(!!!"#$%&%'()*)!"#$%&%'(!!"#$%&  

Eq. 38 

A similar approach is used to calculate the battery mass, using Lithium-Ion cells. 

 !"##$%&'"(( = !"#"$%&'
!"#$%&%$'(#)*+  

Eq. 39 
  
The mass of power switches, distribution systems, and harness overhead are difficult to calculate 
without going into a detailed component design, which is out of scope of this study. A standard 
factor will be used taking into account the solar array mass. Previous space missions have 
provided information that suggests that the overhead mass is proportional to the power required 
by the spacecraft and therefore the solar array mass. The overhead mass factor is extrapolated 
from SMAD data. 

 !"#$ℎ!"#$"%% = !""#$%#&& ∗ !"#$ℎ!"#$"%%&"'()*  
Eq. 40 

   
5.3.3.6.4 Volume  
The volume of the power system will be dependent on the amount of power needed. The solar 
array plus all the necessary power switches, distribution systems, modularity overhead and 
different voltage buses will account for the total volume of the system. The available volume is 
calculated in the same fashion as the mass metric.  

The total volume of the system is divided by the array, batteries, and overhead parts. 

 !"#$%&"%'() = !""#$%&'()* + !"##$%&'()*+$ + !"#$ℎ!"#$%&'(!  
Eq.  41 

 
The array volume is calculated by multiplying the array area by the array thickness. Thickness is 
derived from SMAD information. 
 

 !""#$%&'()* = !""#$!"%# ∗ !""#$%ℎ!"#$%&&  
Eq.  42 

   
Similar to the mass metric, the volume of the energy storage system is calculated using a power 
density factor taken from SMAD. 
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 !"##$%&'()*+$ = !"#"$%&' ∗ !"#$%&$'()*+  
Eq.  43 

   
Following the mass metric, the overhead volume is derived using an overhead volume factor, 
extrapolated from previous space missions.47 

 !"#$ℎ!"#$%&'(! = !"#$%&"'() ∗ !"!"ℎ!"#$%&'(!)"*+%,  
Eq.  44 

 
   

5.3.3.7 Thermal Subsystem Module 

In order to control the temperatures of the many critical subsystems on the spacecraft, paths for 
heat transfer will need to be designed in or around the assemblies throughout the space telescope.  
Different thermal control concepts will provide varying degrees of thermal balance, where 
thermal control mechanisms must be selected to maintain a component within its operating 
temperature range. Thermal balance is dictated by the following equation:  

 !!"# + !!"## + !!"#$%& = !!!"!! = !!"#$  
Eq.  45 

    
where Qabs is the heat energy absorbed from the environment, Qdiss is the internal heat energy 
from dissipated power loads, Qdesign is the heat energy that is put in or taken out of the system by 
design (by a thermal control mechanism), Ar is the radiative surface area, ε is the emissivity, σ is 
the Stefan-Boltzmann constant, and T is the desired operating temperature. Typically, this 
equation is used to compute a temperature for a given thermal design; this model does the 
opposite by computing how much energy must be applied or removed in order given a desired 
operating temperature. Also, thermal modeling typically performs this calculation over a range of 
environmental absorption and internal power load conditions; however, this model assumes these 
conditions to be constant. 

For this paper, the spacecraft’s thermal control was designed separately for three thermal-
evaluation blocks: (1) the Optics block, which is chiefly focused on controlling the temperature 
of the primary mirror; (2) the Instruments block, which contains three instruments to be kept at 
room temperature and one IR instrument to be kept near 60 K; and (3) the Bus block, which 
focuses on the electronics associated with the ADCS, avionics, communications, power, and 
propulsion subsystems.  The differences in how each thermal-evaluation block is handled within 
the thermal subsystem module code are shown in Table XXVII. 

The heat energy absorbed by each thermal block is dictated by the following equation:  

 !!"# = !!!!  
Eq.  46 

   
where S is the absorbed flux from the environment (assumed in this case to only be from the 
sun), Ap is the external surface area projected towards the flux source, and α is the absorptivity. 
The Optics block and the Instruments block area assumed to be behind a thermal shield, blocking 
the absorbed flux from the sun at a designed efficiency. For this project, this shield efficiency 
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was assumed to be 80%. For several reasons (primarily thermal isolation), the Bus block is not 
assumed to be behind the thermal shield. However, the Bus block is assumed to be marginally 
shielded by the solar-cell arrays. Thus, a shielding efficiency of 50% is assumed for reduction of 
solar flux on the Bus block. 

The internal heat energy from dissipated power loads for each thermal block is computed by the 
following equation:  

 !!"# = ! 1− !"" ! !"#!$!  
Eq.  47 

   
where eff  is the energy conversion efficiency of a given subsystem, and P is the average power 
draw of that subsystem. These values are summed up for each subsystem present per block. The 
Optics block is assumed to have zero power draw, the Instruments block adds up the power draw 
of each instrument, and the Bus block adds up the power draw from the ADCS, avionics, 
communications, power, and propulsion subsystems. 

The desired operating temperature of a given thermal block is selected by first determining the 
restrictive operating temperature range for a given thermal block. This is done by selecting the 
highest minimum threshold from all of the subsystems within the block as the minimum 
restrictive operating temperature, and the lowest maximum threshold as the maximum restrictive 
operating temperature. For the Optics block, the mirrors are assumed to be operated near room 
temperature (between 22 and 24 degrees Celsius), just as Hubble’s mirrors are. The Instruments 
block only considers the single cryogenic instrument’s temperature range, assuming that the 
other instruments thermal control will be eclipsed by the cryocooling for the IR instrument. The 
Bus block considers the operating temperature ranges from the ADCS, avionics, 
communications, power, and propulsion subsystems. Now, an all-encompassing operating 
temperature range has been established for all of the components/subsystems within the thermal 
block. The desired operating temperature is simply the average value of this restrictive range. An 
additional estimation is made for the radiative surface area, Ar, and the surface area projected 
towards solar flux, Ap, of each thermal block.  These surface areas are estimated using the 
volume of each subsystem, where each subsystem is modeled as a cube.  In the case of the Bus 
block, the propulsion subsystem (dominated by the propellant tanks) is not considered in the area 
calculations. 

Each thermal block contains one heating mechanism, one cooling mechanism, and a package of 
thermal sensors. Table XXVII displays the heating and cooling mechanisms per thermal block. 
Because this thermal model does not evaluate performance over a range of variable conditions, 
either a heating mechanism is selected for thermal balance, or a cooling mechanism.  In other 
words, the model does not account for a thermal block requiring both heating and cooling needs.  
The quantity of a heating or cooling mechanism is determined to satisfy the requirement set by 
solving for Qdesign in Eq. 45.  
The Instruments and Bus blocks are modeled to have a variable quantity of thermal blankets for 
insulation and shielding.  Thermal blankets are employed on the entire surface area of the 
Instruments block, and any surface area of the Bus block not used for an external radiator.  In 
total, there are 11 thermal component families that can be selected for a given spacecraft 
architecture design: 3 heating mechanisms, 3 cooling mechanisms, 3 suites of thermal sensors, 
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and 2 thermal blankets. See the Components Database in Appendix C to see individual properties 
of each thermal component family. 

Table XXVII: Summary of Thermal-evaluation Blocks and Assumptions 
 Optics Block Instruments Block Bus Block 

Contents Primary mirror 
and optical train 
to instruments 

3 Instruments at 
Room Temperature, 
1 Instrument at 60 K 

Electronics from 
ACS, Comm, Avionics, 
Power, and Propulsion 

Heating Mechanism Thermostatic Heater(s) Thermostatic Heater(s) Thermostatic Heater(s) 
Cooling Mechanism Thermoelectric 

Cooler(s) 
Cryocooler(s) Heatpipes + Radiator 

# of Thermal 
Sensors 

150 50 75 

Thermal Blankets -- Yes Yes 
Absorptivity 0.06 (gold coating) 0.05 (thermal blanket) 0.05 (thermal blanket) 
Emissivity 0.02 (gold coating) 0.02 (thermal blanket) 0.02 (thermal blanket) 
Solar Shielding 80% shielded by 

thermal shield 
80% shielded by 
thermal shield 

50% absorbed by 
solar-cell arrays 

 
The mass, power, volume, and lifetime performance metrics have been selected as most relevant 
to the thermal considerations of a next-generation space telescope design. Each metric will 
dictate the cost and certain design and development choices for the overall spacecraft, and will 
thus be used to determine and compare the values of varying architectures within the tradespace. 
The main resources for estimating the values of these metrics and other properties of the thermal 
control mechanisms (e.g., emissivity and absorptivity of the thermal blankets) are the Spacecraft 
Thermal Control Handbook by Gilmore48 and Donabedian49, along with parameterization from 
previous space telescope designs50,51 and currently available technologies52.  Validation of the 
thermal subsystem code module was performed by comparing mass and power output metrics to 
true values for the Hubble Space Telescope and the James Webb Space Telescope. 

5.3.3.7.1 Mass 
Different thermal control concepts will contribute varying ranges of mass to the overall 
spacecraft, though it is not as simple as claiming passive components to be less massive than 
active components.  For instance, a network of heat pipes leading to external radiators (passive) 
could be more or less massive than a thermal fluid loop (active) depending on the size, quantity, 
and degree to which components need cooling.  However, because this model has been 
simplified to only consider a single heating mechanism or cooling mechanism in order to satisfy 
the thermal balance, mass is not traded over various thermal design concepts.  Instead, it is 
simply summed up over the selected number of components, by the following equation: 
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 !"#!!"!#$ = (!"#!!)!!"#$"%&%'(
!!!   

Eq. 48 
 
The mass of individual thermal component families is catalogued in the Components Database, 
which can be seen in Appendix C. 
 
5.3.3.7.2 Volume 
Similar to mass, different thermal control concepts will demand varying ranges of volume from 
the overall spacecraft.  The total volume of the thermal subsystem is computed by adding up the 
selected number of components, by the following equation: 

 !"#$%!!"!#$ = (!"#$%!!)!!"#$"%&%'(
!!!   

Eq. 49 
   
The stowed volume of individual thermal component families is catalogued in the Components 
Database, which can be seen in Appendix C. 

5.3.3.7.3 Power 
Power is another performance metric that is dependent on the types of thermal control 
components that will be used to maintain thermal stability for all components.  Most active 
thermal control components, such as thermo-electric coolers, pumped fluid loops, and heaters, 
require power to operate, while passive thermal control components do not.  The total average 
power draw of the thermal subsystem is computed by adding up the selected number of 
components, by the following equation: 

 !"#$!!"!#$ = (!"#$!!)!!"#$"%!"#$
!!!   

Eq.  50 
   
The average power draw of individual thermal component families is catalogued in the 
Components Database, which can be seen in Appendix C. 

5.3.3.7.4 Lifetime/MTBF 
The lifetime metric is of particular interest to the overall mission of the space telescope, as the 
lifetime of thermal components will directly affect the lifetime of the on-board instruments.  The 
mass, volume, and power metrics are directly affected by the reliability requirement (design 
constant) of the spacecraft architecture, where redundant units of a component family are 
designed into the spacecraft in order to satisfy the minimum reliability threshold, increasing the 
total mass, volume, and power of the thermal subsystem. The lifetimes of individual thermal 
component families is catalogued in the Components Database, which can be seen in Appendix 
C. The Mean Times Between Failures (MTBF) of individual thermal component families is 
derived using the following equation:  
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 !"#$ = !!"#$%"&$
!"!(!"#$%&$#$'()  

Eq.  51 
   
The reliability of individual thermal component families is also catalogued in the Components 
Database. 

5.3.3.8 Structures and Mechanisms Subsystem Module 

The Structures and Mechanisms team is responsible for analyzing the structural components of 
the telescope and the mechanisms that actively modify the shape or performance of the structural 
elements. Consequently, the team is generally responsible for giving the telescope its overall 
shape and support, from integration into the launch vehicle through launch and transit to its 
operating orbit, to its assembly, operation, and periodic servicing.  

For the telescope on which the MIT team is conducting a tradespace analysis, the Structures and 
Mechanisms team has developed a suite of MATLAB functions that analyzes the metrics of: the 
level of jitter of the primary mirror; the mass, volume, and power of all structures and 
mechanisms; and the precision of assembly in assembling the structure for operation. 
Additionally, the telescope is divided into modules according to the aforementioned modularity 
metric. These metric functions are subsequently incorporated into the system level analysis 
MATLAB scripts in order to automate the analysis of the full tradespace for the telescope. This 
tradespace is fed a series of trades from each subsystem, and the Structures and Mechanisms 
team has generated a collection of trades that are analyzed by the Structures and Mechanisms 
metrics in the full code. Therefore, with these metrics, architectural decisions can be evaluated in 
a Pareto front analysis at the full system level. 

5.3.3.8.1 Structures and Mechanisms Code Description through Assumption and Component 
Selection  

The Structures and Mechanisms subsystem has a wide array of possible components from which 
to incorporate into the overall components vector for the telescope. The architectural decisions 
guide the determination of the structural components and the mechanisms required to operate the 
telescope. The Components Family DB contains the full properties of each of these components 
and the values assigned for each parameter. Though hardcoded in the database, they can easily 
be changed from their values, which have been determined through analysis of historical 
components and structures, if more accurate data are provided in the tradespace study. 
 
5.3.3.8.2 Mirror Actuation 
The mirror support decision constitutes one of the driving architectural decisions for the 
Structures and Mechanisms subsystem because of the number of components that are added to 
fully actuate the mirror. The mirror can be actuated with surface-normal actuators, surface-
parallel actuators, or a combination thereof, with surface-parallel actuators having a TRL value 
of 5 (as opposed to flight-proven TRL 9 surface-normal actuators) because they have not yet 
flown on large space missions. Table XXVIII shows the number of these actuators that are 
employed to shape the primary mirror based on the mirror support architectural decision chosen 
for a particular iteration.  
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Table XXVIII: Number of primary-mirror actuators for mirror support architectural 
decision 

 Surface-Normal 
Decision 

Surface-Parallel 
Decision Combination Decision 

Surface-Normal 
Actuators 252 0 144 

Surface-Parallel 
Actuators 0 306 168 

Total 252 306 312 
 
As can be seen in this figure, the total number of actuators is least for the surface-normal 
decision, but highest for the decision to incorporate both surface-normal and surface-parallel. 
Importantly, a backstructure element is added for each mirror segment in both the surface-normal 
and combination architectural decision cases in order to provide a structure against which the 
surface-normal components could actuate. In the surface-normal case, seven degrees of freedom 
are achieved per mirror segment with the total number of actuators representing seven surface-
normal actuators for each of 36 mirror segments. In the surface-parallel case, three actuators are 
used at each of 84 mirror segment boundaries, one actuator is used on the back of each mirror 
segment for segment curvature, and an additional actuator is given to the 18 segments on the 
outer ring because of the decreased number of segment neighbors. In the combination case, four 
surface-normal actuators are placed at each mirror segment, and two surface-parallel actuators 
are placed at each of the 84 mirror segment boundaries. In this manner, it is believed that full 7-
degree-of-freedom motion can be attained by any mirror segment. These placements can easily 
be modified to incorporate better placement data to improve the model. 

5.3.3.8.3 Secondary Mirror 
Secondary mirror components are added to complete the optical train. A single mirror segment 
with a back frame element is used to represent the secondary mirror, and three bus structure 
elements are added in order to represent the booms that hold the secondary mirror in place. The 
mirror segmentation architectural decision also affects the support of the secondary mirror, so 
additional surface-normal and surface-parallel actuators are added to provide action to the 
secondary. It is believed that full seven degree-of-freedom is achieved using the coded numbers 
of each: seven surface-normal, 18 surface-parallel, and a combination of six surface-normal and 
six surface-parallel actuators for the three mirror support decisions, respectively. Again, it is 
trivial to modify these values as additional information regarding mirror support with surface-
parallel actuators is included in the model analysis. 

5.3.3.8.4 Communications Structure and Mechanisms 
The communication architecture decision affects the number of gimbals, antenna deployment 
devices, and added bus structure mass in the Structures and Mechanisms code. The number of 
gimbals is incremented by two in each decision to account for the requirement that each antenna 
will need to be pointed in different directions than the optical direction of the telescope to allow 
for communications to occur. Additionally, the number of antenna deployment devices is 
incremented by two in order to deploy the antennas when the telescope is operational. To 
account for the increased structural support for the larger antennas required for all 
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communication types relative to laser communications, an added bus structure element is added 
to represent the added mass of this structural support. 

5.3.3.8.5 Solar Array Gimbals 
Gimbals are added not only for the antennas required for communications, but also for the solar 
panels. It is assumed that one gimbal is required for every kilowatt of generation power. These 
gimbals are added to allow the solar panels to track the sun for optimum power generation 
capability while the telescope is pointed in a different direction. Additionally, these added 
gimbals increase the jitter during operation, so a damper is added to the telescope architecture for 
each. 

5.3.3.8.6 Jitter Control Devices 
Determining the type of jitter control device to employ is based on the level of jitter as output 
from the separate jitter calculation code. A telescope was analyzed to determine the fundamental 
frequencies of the mirror and the wavefront error that is expected. Using these values, the jitter 
function generates a value for jitter to be used in the Structures and Mechanisms code. This value 
then determines the type of damper to be used, either magnetic isolation devices for jitter values 
less than 0.5, active dampers for jitter values above 1.5, or viscoelastic devices for all other jitter 
values. These three types of dampers are used because they represent three of the most common 
types of dampers used on spacecraft; their effective jitter ranges can be easily adjusted in the 
code in order to specify certain types or part numbers of each. Since the jitter is caused primarily 
by reaction wheels and gimbals, one damper of the jitter-level-determined type is added for each 
reaction wheel and gimbal included in the telescope. 

5.3.3.8.7 Modularity Level Overhead Mass 
The modularity decision is crucial in determining the overhead mass required for increasing the 
number of modules into which the telescope is divided. To obtain the mass overhead itself, the 
number of additional mass units, each 100 kg, was to be determined. By analyzing the increasing 
surface area cubes within an initially cubic structure, following the pattern of 8!"#$%&!!"!!"#$%&' 
(1, 8, 64, etc.), with the number of cubings representing the number of times each cube was 
divided into eight cubes of identical volume, it was determined that the increase in surface area 
follows the following equation: 

   
Eq. 52 

   
In this equation, Massadded represents the added number of mass elements added for the x number 
of modules. By determining the mass overhead after the modularity creation script is run, it is 
possible to adjust the mass overhead to each particular architecture. Eq. 52 was derived from 
comparing the ratio of surface area to volume, which means that it represents a square/cubed 
law. Therefore, the added mass is hardcoded into the code for each modularity level, though it is 
possible to add a more continuous and module size dependent model in the future. 
 
5.3.3.8.8 Assembly and Servicing Components 
The assembly/servicing technique architectural decision causes a large variability in the number 
of components due to the method selected for aggregating the modules together. In order to 
assemble the telescope with the first technique, the use of telescope robotic arms, it is assumed 

3
1

6xMassadded =
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that 1 arm is able to maneuver 10 modules, and each module includes 2 docking ports. 
Therefore, the number of arms is 1/10 the number of modules that are created in the module 
creation function. Additionally, it is assumed that all docking ports are of the same size and load-
bearing capacity. With these assumptions, the number of docking ports is twice the number of 
modules. In the second technique, the use of a separate servicer tug, arms also are used on the 
telescope to assist, and each module requires 2 docking ports. However, it is assumed that there 
is 1 arm per 20 modules because of the added capabilities of the tug itself. In the third technique, 
the use of self-assembling modules which maneuver with electromagnetic coils, it is required 
that each module be able to maneuver in all 6 degrees of freedom. Therefore, each module is 
equipped with 3 electromagnetic coils, which when assembled would be mounted orthogonal to 
one another. Additionally, it is again assumed that each module is equipped with 2 docking ports. 
Regardless of the number of docking ports, the numbers of power and communication interfaces 
are equal to the number of docking ports, since each docking port must be associated with both 
communications and data transfer capabilities. The code is able to add additional granularity, 
should it be required, because the modularity level can affect these current multiplication factors 
in determining the number of components per module. To cope with future changes, this section 
is already coded in a way that will allow separate component selection laws to be implemented 
for the seven different modularity levels. 

5.3.3.8.9 Light Protection 
A light shield is included to provide light protection for the optical train and instruments. The 
ATLAST light shield offers a baseline for the properties of the light shield.53 The other method 
of light protection, a tubular baffle, is encoded in the Structures and Mechanisms code, though it 
is not incorporated into this model. The design parameters for the baffle are obtained by scaling 
the Hubble Space Telescope’s baffle by the increased radius of the LTA design.54 The specific 
mass, volume, and other properties are listed in the Components Family DB. Therefore, the 
analysis code is able to adjust as needed to an additional architectural design choice in future 
iterations of the code. The analysis team has made the assumption for the current analysis that 
only the light shield will be incorporated. 

5.3.3.8.10 Structures and Mechanisms Subsystem Metrics 
The Structures and Mechanisms subsystem metrics are determined once all of the structural 
components have been selected. Using the Components Family DB, it is possible to determine 
the mass and volume of the subsystem directly by summing the dot product of the structures 
components vector with the respective column from the database. The average and peak power 
of the Structures and Mechanisms subsystem, however, adds the power required to operate the 
Communication subsystem’s antenna gimbals to the structures specific component power 
requirements because of the validation method chosen: since the Hubble Space Telescope 
included the mass of the gimbals in the Communication subsystem, the mass is treated as a 
Communications property, but the power is treated as a Structures and Mechanisms property 
because it is from a Structures and Mechanisms component family.54 

5.3.3.8.11 Finalizing Module Definitions 
The last operation conducted by the Structures and Mechanisms subsystem is to call the module 
creation function. Though called once before to determine the number of modules in the 
subsystem code, it must be called again to place the components added to the telescope after the 
initial call into module. These added components include the bus structure overhead based on 
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modularity level, robotic arms, docking ports, electromagnetic coils for assembly and servicing, 
and docking port data and power transfer units. Once these components are placed into their 
proper modules according to modularity level, this information is passed to the Systems function. 

5.3.3.8.12 Finite Element Model 
Accurate imaging through a space-based telescope requires very accurate pointing of the optical 
telescope assembly. Any oscillations in the primary mirror will cause wavefront error and 
therefore limit the science output. Thus, the amount of jitter that the mirror experiences due to 
reaction wheels, thrusters, or other active components on the spacecraft bus is important to 
quantify. In order to quantify this behavior, a finite element model (FEM) of the system must be 
created to analyze how vibrations in one area of the spacecraft affect motion in another area 
through a normal modes analysis.  

5.3.3.8.12.1 Creating the Model of the Telescope 
In this modeling scenario, it is important to simplify the model to a level of abstraction that will 
be relatively constant between the different architectures, but be able to differentiate between all 
combinations of the segmentation of the primary mirror and primary mirror actuation method 
architectural decisions. At this stage in the trade study, the structural design of the telescope bus 
has not been developed, so the 36-segment, 16.8-m mirror must remain the primary focus of the 
model. The bus is modeled as a concentrated point mass representing the sum of subsystem 
masses. The effective response of the reaction wheel set accounting for damping comes out of 
this bus node. This is the disturbance input to the jitter analysis. The model also takes the 
primary mirror actuation method and the segmentation of the primary mirror as inputs. In 
general, these inputs affect the FEM according to the diagram in Figure 38. 

 

Figure 38: Simplified visualization of surface-parallel vs. surface-normal configurations in 
the FEM 

The mixed configuration assumes that each major segment, or raft, from the segmentation of the 
primary mirror architectural decision will use surface-normal actuation internally, but surface-
parallel actuation is used between rafts. The trusses in Figure 38 show a visualization of the 
layout of connections only, and do not reflect actual truss structural members. Not all segments 
or mirrors are pictured in these diagrams for simplicity. To simplify the model, each segment of 
the mirror is considered to include and represent the mass and stiffness of a primary mirror 
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segment, its actuators and its individual backstructure. The connections between segments 
represent the overall backstructure stiffness and vary based on the architecture decision to be 
more or less stiff. 

 

Figure 39: Primary mirror mesh for the FEM of the 16.8-m, 36-segment, f/1.5 telescope, 
where (a) is a top-down view and (b) is a side view with the focal point 

The primary mirror is divided into 259 nodes or grid points in the mesh. One node is placed at 
the center of the segment and one node at each corner. These nodes are connected in a series of 
triangle and quadrilateral mesh elements with corners at the grid points. The final mesh of the 
mirror is shown in Figure 39, where the black lines show edges of triangle elements and the blue 
lines show edges of quadrilateral elements. The connection to the bus node is not shown, 
although the bus is connected with rigid bars to the edges of the first ring in the shown mesh. 
Shown in Figure 39, each grid point is also displaced vertically corresponding to the telescope’s 
f# of 1.5. The quadrilateral elements represent the connection between segments and their 
properties change depending on the architectural decisions. For example, a surface-normal 
configuration would have a uniform higher stiffness for all of these quadrilateral elements, while 
a surface-parallel configuration would have a uniform lower stiffness for all of these elements. In 
the mixed case, the edges between rafts are considered lower stiffness while internal connections 
within a raft are considered higher stiffness. See Figure 40, for a depiction of these mixed cases, 
where red represents the surface-parallel, lower-stiffness interface and the blue represents the 
backstructure, higher-stiffness interface. 
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Figure 40: Raft segmentation in the FEM where red shows surface-parallel connection 
between rafts and blue shows backstructure connection within rafts. Shown for three 

segmentations where (a) is the JWST-style fold, (b) the 12-segment, and (c) the 6-segment. 

5.3.3.8.12.2 Implementation and Output of the Model 
The development and coding of this model, mesh and normal modes analysis uses a combination 
of MATLAB functions and NASTRAN finite element analysis software. The MATLAB 
functions are used to generate the grid points, elements and material properties for a particular 
architecture. NASTRAN requires this information to be input in different “cards,” along with 
information on what type of analysis to perform. These cards each need to be written to a data 
text file before sending to NASTRAN. NASTRAN is executed from the MATLAB function and 
runs the normal modes analysis on the inputted cards. NASTRAN returns a large text file of 
output that includes mass properties, normal mode frequencies, and mode shapes for all six 
degrees of freedom at each node in the model. This text file is subsequently parsed to return a 
diagonal matrix of natural frequencies and a dense matrix of mode shapes. These matrices are 
computed for each of the architectural decision options: surface-normal, surface-parallel, and 
five mixed cases corresponding to the segmentation of the primary mirror options. These seven 
matrices are output to the jitter calculation code discussed in the next section.  

5.3.3.8.12.3 Validation of Results 
An important aspect of running this analysis is the verification that the outputted results 
accurately predict the natural frequencies and mode shapes of the particular architecture. To 
discuss this, comparisons between previous FEM model outputs and mode shapes must be shown 
to reasonably match. Scott Uebelhart55 analyzed a similar space telescope with hexagonal 
segments in his PhD thesis and saw a first mode of the primary mirror behave as a saddle 
bending mode at 6.15 Hz. Shown in Figure 41, the model used in the analysis outputs the first 
saddle bending mode at 6.09 Hz. Also, Rebecca Masterson, in an analysis of an interferometer, 
reports first bending modes of the mirrors to occur at 5.99 Hz.56 The remaining modes in the 
model behave similar to increasing order Zernike polynomials as expected. While this only 
validates the surface-normal case, due to the lack of information one must assume that the other 
architecture choices will be correct modifications of this validated model. As expected, 
architectures with more surface-parallel interfaces tend to react to lower frequency responses. In 
addition it is important that the model represents an appropriate mass when compared with the 
telescopes in the architecture enumeration. The average total system mass across all of the 
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architectures in a full enumeration is 13,982 kg compared to the FEM model average output of 
14,379 kg. With a difference of less than 3% from the computed average, it can be said that the 
model accurately represents the average architecture mass.  

 
  Figure 41: Normal modes for the primary mirror where (a) is the undeflected 
mirror, (b) is the 6.09 Hz, 1st, saddle bending mode and (c) is the 13.06 Hz, 7th bending 

mode 

5.3.3.8.13 Jitter  
The jitter analysis was done in a similar manner as that of Rebecca MastersonError! Bookmark 
not defined.. The first step in the jitter analysis was to create a Finite Element Model (FEM) to 
represent the telescope, described in the previous section. Once this FEM was created, there were 
three important steps to complete the analysis: creation of a transfer function for the system from 
the disturbance input to the performance outputs, modeling of the disturbance input, and 
propagation of the disturbance input through the transfer function to calculate the performance 
outputs. 
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5.3.3.8.13.1 Creation of the Transfer Function 
The normal modes analysis described in the previous section determined the modal frequencies 
and shapes of the FEM. NASTRAN outputted Ω, a diagonal matrix of natural frequencies, and 
Φ, which is a matrix containing the mode shapes, for each mirror support and mirror 
segmentation method, according to the various architectural decisions. These matrices were used 
to create a state-space model in MATLAB according to Eq. 53 and Eq. 54: 
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Eq. 54 

   

where q are modal coordinates, Z is a diagonal matrix of damping ratios, !!! is a mapping 
matrix between the disturbance forces and the physical degrees of freedom, ω is the disturbance 
input, z is the performance output, and !!! is a mapping matrix from physical states to the 
output. 

The matrix Z was set to 0.001 along the diagonal, according to Masterson’s thesisError! 
Bookmark not defined.. The matrix !!! was set to all zeros with ones along the diagonal of the 
final six rows, meaning that the six degrees of freedom of the disturbance input map to the six 
degrees of freedom on the single bus node. Finally, the matrix !!! was calculated using the 
function zernikes2_hex.m, taken from code used in an analysis done for the Modular Optical 
Space Telescope (MOST), which was an MIT Space Systems Laboratory project to develop a 
parameterized model for large space telescopes.56 The function zernikes2_hex.m takes in each of 
the grid points used in the FEM, along with the diameter of the mirror, and, using Zernike 
polynomials 3-48, composes the matrix !!!. Several of these Zernike polynomials are pictured in 
Figure 42.  
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Figure 42: Zernike modes, which describe how a wavefront is distorted by a specific 

aberration57 

Matrices A, B, and C, given in Eq. 53 and Eq. 54, are typically combined according to Eq. 55 to 
generate a transfer function,!!". 
 
 !!"(!) = ! !! − ! !!!   

Eq. 55 
   
For the purposes of this analysis, transfer functions were calculated using a function called 
qbode.m, which was written by Etienne Balmes in 1992. The function calculates the transfer 
function of the system from each input to each output at each frequency in a frequency vector. 
This frequency vector was generated using the function freq_gen.m, written by Homero 
Gutierrez.   

5.3.3.8.13.2 Modeling of the Disturbance Input 
The model was subjected to a single source of vibration for the analysis—a set of reaction 
wheels located at the single bus node. The reaction wheel assembly is typically considered the 
dominant disturbance source, which, for the purposes of this study, was modeled according to 
parameters taken from Ithaco E Reaction Wheel data in Masterson’s Master’s Thesis.58 The 
reaction wheel disturbance Power Spectral Density (PSD) was calculated using the function 
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psd_rwa_dist.m, written by Gutierrez and modified by Olivier de Weck in 1998. Inputs to the 
function include parameters taken from Gutierrez’s PhD Thesis59: nominal reaction wheel speed 
of 1500 RPM, variation in reaction wheel speed of 1500 RPM, uniform wheel speed distribution, 
Euler angles from the spacecraft axes to wheel axes, and the type of reaction wheel model. This 
function output the PSD shown in Figure 43.  

 
Figure 43: Ithaco E reaction wheel PSD 

This figure shows the expected “sawtooth” pattern as seen in Gutierrez59. 
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5.3.3.8.13.3 Calculating the Performance Output 
With the transfer functions at each frequency and the reaction wheel PSD, Sωω, the PSD of the 
output signal is calculated according to Eq. 56 
. 

 !!! = !!"!!!!!"!   
Eq. 56 

 
where ( )H is the matrix Hermitian. The output signal PSD, !!!, is then integrated over all 
frequencies to get the output covariance matrix, !!, as shown in Eq. 57. 
. 
 
 !! = !!! ! !"!

!!    
Eq. 57 

   
where the diagonal elements of the covariance matrix are the performance variances. This 
process was taken from Masterson’s thesisError! Bookmark not defined.. Finally, the root-
sum-square of the performance variances gives wavefront error, in meters. 

5.3.3.8.13.4 Results 
The requirement on wavefront error, taken from the ATLAST optical performance requirements 
given in Section 3.2, is 37 nm, with a goal of 0.07 nm. Thus, the output is expected to be near 
that range. The results for each case are shown in Table XXIX.  

Table XXIX: Jitter analysis results* 
Primary Mirror Segment 

Support Method 
Structural Segmentation 
of the Primary Mirror 

Wavefront 
Error [nm] 

Surface-normal 36 individual segments 2.12 
Surface-parallel 36 individual segments 0.39 
Mixed 3 “ring” segments 0.60 
Mixed 6 symmetric segments 0.51 

Mixed 7 segments (1 large, 6 
small) 1.99 

Mixed 12 segments 0.45 
Mixed 3 JWST-style segments 1.89 

*These results are subject to an unknown scaling error suspected to be due to unit mismatch which could 
not be resolved before the writing of this report. However, comparisons between results are still valid. 

These results make sense when compared against each other. The surface-normal segment 
support method, with its more rigid backplane, translates the jitter though the structure more than 
the flexible surface-parallel support method, which performs the best. Likewise, the cases in 
which the primary mirror is divided into many smaller segments perform more similar to the 
surface-parallel support method than do the cases with only a few segments, such as the JWST-
style segments.  

According to these results, wavefront error is approximately proportional to the stiffness of the 
structure. This may be due to the fact that most of the energy from the reaction wheel 



 111 

disturbances is concentrated at high frequencies, and most of the structural modes with high 
energy are at lower frequencies. With less stiffness, these structural modes drop in frequency, so 
the wavefront error scales appropriately. 

The calculations were done offline and these results are implemented in the model using a simple 
switch-case architecture based on the primary mirror segment support method and the structural 
segmentation of the primary mirror. 

5.3.3.8.14 Module Creation Code 
As described in Section 4.3.2, the architectural decision about modularity presents seven options: 
modularity levels 1-7. This section describes how these seven levels were implemented in the 
code. 

The module creation code takes in the overall components and MTBF columns of the component 
database, the DSM, and the architectural decisions of modularity level and assembly/servicing 
technique. The output is an m x n matrix containing the module definitions, where m is the 
number of modules and n is the number of component families in the component database. 
Therefore, each column represents a module. A sample module definitions matrix is shown in 
Figure 44. 

 
Figure 44: Sample module definitions matrix with three modules 

In this example, module one contains five instances of component one, zero instances of 
component two, zero instances of component three, and three instances of component four. 
Similarly, module three only contains one instance of component two. The module creation code 
utilizes a switch-case architecture to create the appropriate module definitions matrix depending 
on the modularity level. 

Modularity level 1 is the full telescope (no modularity). Thus, the module definitions matrix for 
level 1 only has a single column, and that column is simply equal to the overall components 
column in the component database. 

Modularity level 2 is the permanent infrastructure, the instrument package, and the spacecraft 
bus. Permanent infrastructure components include the bus structure and any instances of the light 
shield, primary mirror baffle, and secondary mirror segments, which are all placed into module 
one. All of the instruments are placed into module two, and every component that has not already 
been dealt with is placed into module three.  
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Modularity level 3 is the permanent infrastructure, the instrument package, and spacecraft bus 
assemblies. The permanent infrastructure and instrument package modules are dealt with the 
same as in modularity level 2. The bus assemblies are broken out according to the following rule: 
components with connections in the DSM and similar MTBFs are put in the same module (with 
the exceptions of propulsion components, thermal bus components, thermal optical components, 
and thermal instrument components, which are placed in their own modules). The code begins by 
working across each row of the DSM, placing connected components into the same module and 
components with similar MTBFs in the same module, and placing components into a new 
module when they have no connections or similar MTBFs as any component already placed in 
another module. Currently, the code checks to see if the difference in MTBFs between any two 
components is less than one, effectively checking if they are equal. In the future, this should be 
modified to be a more meaningful number. 

Modularity level 4 is the permanent infrastructure, the instrument package, and spacecraft bus 
component families. The permanent infrastructure and instrument package modules are dealt 
with the same as in modularity level 2. Then for each component family not already dealt with, a 
new module is created. 

Modularity levels 5, 6, and 7 are divided the exact same way as modularity levels 2, 3, and 4, 
respectively, with the only difference being that the four instruments broken out into their own 
modules for levels 5, 6, and 7. 

The final step for each modularity level is to add the appropriate number of assembly/servicing 
components to each module. Two UDPs are added to each module in every case. One robotic 
arm is added for every ten modules for each case besides formation flying; in that case, three 
electromagnetic coils are added to each module. 

5.3.3.8.15 Mass  
The mass of the structure and mechanisms within the telescope acts as one of the most tractable 
metrics, since the mass of the system must be kept low for cost, number of required launches, 
ground operations, and many other areas of the telescope’s lifespan.18,58 The mass is also crucial 
to determine the inertia of the assembled telescope, which subsequently drives the attitude 
determination and control design for the spacecraft. Consequently, the mass of the system must 
be analyzed as one of the key values to be determined by the Structures and Mechanisms team. 

To determine the mass of a particular architecture of both the Structures and Mechanisms 
subsystem mass and the entire telescope mass, two areas of the telescope must be massed and 
summed: the bus and connecting or supporting structures, as well as the mechanisms aboard the 
telescope themselves.  

The mass of the Structures and Mechanisms subsystem is determined based on the number of 
components that are selected from the Components Family DB. Given the number of each 
component as listed in the structures component vector, a dot product with the mass column from 
the Components Family DB provides the total subsystem mass. This subsystem mass is then 
added with the masses of the other subsystems to determine the overall telescope’s mass, as 
described in Eq. 58: 
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Eq. 58 

In this equation,  LTA.sys_mass is the total system volume in cubic meters, LTA.optics_m is the 
total Optics subsystem mass, LTA.acs_m is the total ADCS subsystem mass, LTA.avionics_m is 
the total Avionics subsystem mass, LTA.thermal_m is the total Thermal subsystem mass, 
LTA.structures_m is the total Structures and Mechanisms subsystem mass, LTA.power_m is the 
total Power subsystem mass, LTA.structures_pow_avg is the average power used by the 
Structures and Mechanisms subsystem in Watts, LTA.power_m_nd is the Power subsystem’s 
nondimensional value in kilograms per Watt, and LTA.prop_m_nd is the Propulsion subsystem 
nondimensional parameter for propellant mass fraction per unit system mass. 
 
Because the Structures and Mechanisms coding module is the last subsystem module to be run 
and there are no feedback loops, non-dimensional values for both Power and Propulsion are used 
to determine the overall mass of the telescope. As can be seen in the above equation, the masses 
for all subsystems are added, though there are two non-standard mass terms. The Power and 
Propulsion subsystems have provided to the Structures and Mechanisms subsystem non-
dimensional values to be used in determining mass. The power-based non-dimensional value is 
used to determine the added mass of power management and distribution electronics and wiring 
harnesses required to power the various mechanisms that are used by the Structures and 
Mechanisms subsystem. The propulsion-based non-dimensional value, however, is used in 
determining the required propellant mass; as the propulsion system is required to move the 
telescope in its entirety, the total propellant mass cannot be determined until all other 
components have been determined. Therefore, the mass of required propellant is added to the 
system mass with the use of a non-dimensional value as calculated by the Propulsion subsystem. 
To account for these mass effects in both the Power and Propulsion subsystems, their respective 
values are updated immediately following this system mass calculation. Additionally, the 
Components Family DB is updated to reflect the mass of the propellant that is used in each 
iteration for use in other sections of the code. 
 
Additionally, the validation process led to a change in the way that antenna gimbals are treated in 
the code. The mass of the gimbals required to operate the communication antennas have been 
incorporated not to the Structures and Mechanisms subsystem mass, but to that of the 
Communications subsystem. Though these components are added to the Structures and 
Mechanisms component vector, their mass properties are added to the Communication 
subsystem to aid in the validation process, since Hubble Space Telescope values combined 
gimbal and telescope mass together within the Communications subsystem.54 

5.3.3.8.16 Volume   
Due to the constraint of the limit on launch volume imposed by the launch vehicles’ fairings, 
only architectures that can be packed into launchable units may be deemed feasible architectures. 
Naturally, the fewer launches required, the less cost in launching the telescope’s components. 
Therefore, the volume of each architecture must be determined in order to ensure that each 
architecture can meet this launch constraint. This volume metric, however, is opposed by the 
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complexity metric. For example, although the packed volume of one architecture may be less 
than another, the complexity of the resulting on-orbit assembly may render the less voluminous 
architecture less desirable overall. 

To determine the volume of a particular architecture for both the Structures and Mechanisms 
subsystem and the entire telescope, the volume of the stowed configuration must be analyzed. 
This stowed configuration is determined in the Structures and Mechanisms coding module in a 
manner much like the calculation of system mass. To determine the total volume, the following 
simplified equation is executed: 

 

Eq.  59 

In this equation, LTA.sys_vol is the total system volume in cubic meters, LTA.optics_v is the total 
Optics subsystem volume, LTA.acs_v is the total ADCS subsystem volume, LTA.avionics_v is 
the total Avionics subsystem volume, LTA.thermal_v is the total Thermal subsystem volume, 
LTA.structures_v is the total Structures and Mechanisms subsystem volume, LTA.power_v is the 
total Power subsystem volume, LTA.structures_pow_avg is the average power used by the 
Structures and Mechanisms subsystem in Watts, LTA.power_v_nd is the Power subsystem’s non-
dimensional value in cubic meters per Watt, LTA.sys_mass is the total system mass, and 
LTA.prop_v_nd is the Propulsion subsystem non-dimensional parameter in cubic meters per 
kilogram. Just as in the system mass calculation, non-dimensional parameters are used by both 
the Power and Propulsion subsystems in determining the total volume of the telescope. Like the 
mass-based non-dimensional values, these values are necessary because the Structures and 
Mechanisms subsystem determines its components after the Power and Propulsion subsystems. 
They allow the system volume to be determined, and both the Power and Propulsion subsystem 
volumes are then immediately updated following this equation. 

Additionally, just as with the determination of the system mass, the volume of the gimbals 
required to operate the communication antennas have been incorporated not to the Structures and 
Mechanisms subsystem volume, but to that of the Communications subsystem. Though these 
components are included in the Structures and Mechanisms component vector, their volume 
properties are added to the Communication subsystem to aid in the validation process, since 
Hubble Space Telescope values combined gimbal and telescope volume together as part of the 
Communications subsystem.54 

5.3.3.8.17 Power  
The power of the Structures and Mechanisms subsystem is closely coupled with the Power 
subsystem, since the Power subsystem is responsible for generating, regulating, and distributing 
electricity throughout the telescope. In order to reduce the size and mass of solar panels, the 
power demands of all mechanisms must be kept low; the power metric allows the team to 
compare different architectures based on the power required to operate all components at both 
average and peak levels. 
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While the structure of the telescope itself does not have any power demands, there are 
mechanisms of the Structures and Mechanisms subsystem that levy power demands on the power 
management and distribution system. The trade decisions made at high systems levels, such as 
the modularity of the system, has a substantial effect on the total mechanism-required power of 
the telescope. Deployment mechanisms, such as high temperature superconductors, frangibolts, 
or burn wires significantly affect the peak power, but not the average power, because these large 
powered mechanisms are operated for only a few, short duration periods during the telescope’s 
operational phases. The average power, however, is dominated by the mirror segment actuators 
during image collection. The following equations are used in determining the power required of 
the power generation system: 

 

Eq.  60 

 

Eq.  61 

In these equations, LTA.sys_pow_avg is the total average system power in Watts, 
LTA.overall_components is the vector of all telescope components, LTA.compPowerAvgCol is 
the vector of the average required power in Watts for each component family as listed in the 
Components Family DB, LTA.sys_pow_peak is the total peak power for the system in Watts, 
LTA.sys_mass is the total system mass in kilograms, LTA.power_m_nd is the Power subsystem 
non-dimensional parameter in kilograms per Watt, and LTA.structures_pow_peak is the peak 
power required by the Structures and Mechanisms subsystem in Watts. The bounds for the 
summand range from the first to the Nth component. 

As can be seen, the Components Family DB is used in determining the average power for the 
telescope, and the non-dimensional parameter from the Power subsystem is used in determining 
the peak power of the telescope, since this non-dimensional parameter takes into account the 
duty cycling of upstream components. With these values of peak and average power, it is 
possible to determine the mass of the associated solar arrays and the power management and 
distribution system required to supply sufficient power. This mass calculation is conducted as 
part of the system mass calculation. 

5.3.3.8.18 Lifetime/MTBF 
Because the mechanisms of the Structures and Mechanisms subsystem have much shorter 
MTBFs than the spacecraft structure itself, the focus of the lifetime/MTBF analysis for this 
subsystem will be on the mechanisms rather than the structure itself. The permanent 
infrastructure – mostly structural components such as the mirror backframe, bus structure, 
secondary boom, and light shield – will not be able to fail in the analysis as their lifetimes are 
orders of magnitudes higher than the other components. Depending on the architecture selected, 
the MTBF of the appropriate components will be retrieved from the Components DB shown in 
Appendix C. After parsing the data from the database, the MTBF will be output in a predefined 
data structure to the operations module. The MTBF that are stored in the database are estimated 
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based on typical component family MTBFs and do not represent precise numbers, only 
estimates. In the operations module, these MTBFs are used to compute component reliabilities in 
the Monte Carlo simulation to determine if a component fails during operation. The fault tree 
diagram shown in Figure 45 shows which component failures lead to system failure. When any 
of these conditions are met, the telescope will fail and the utility to science will drop to zero until 
the next servicing mission.   

 

Figure 45: Fault tree diagram for the Structures and Mechanisms component failures that 
lead to system failure, where the numbers represent the corresponding row/component 

number in the Component DB shown in Appendix C. 

As shown in the fault tree diagram in Figure 45, different components lead to system failure in 
various ways. Some components can only cause system failure if all of them fail. These are 
depicted with an ellipsis (e.g., components 1, 9, 10, 11, 12, and 13). Others can cause system 
failure if a specific number of them fail. For example, components 2, 3 and 4 require 1, 2 and 5 
failures respectively. Components that only cause system failure when other components have 
also failed are grouped with an AND gate (e.g., components 9, 10, and 11). Components that will 



 117 

cause system failure by themselves are linked together with an OR gate leading to system failure 
as are most in the fault tree. 

The numbers in the fault tree diagram represent the components from the Component DB located 
in Appendix C. For example, robotic arms are component 1, electromagnetic coils are 
component 2, and docking ports are component 3. All robotic arms (component 1) need to fail 
before mission failure, as the design assumption is that all assembly/servicing maneuvers are 
able to be carried out by a single arm and others are included in the design for redundancy and 
ease of operation. One electromagnetic coil failure will cause that particular module to be 
unserviceable, since there are no robotic arms in those architectures in which electromagnetic 
coils are employed. Two docking port failures as well as the corresponding data and power 
interface failures (components 3, 14, and 15) are required to fail because all modules have two 
docking ports, so data and power could theoretically be routed to the module in two ways. Five 
failures of primary mirrors and surface-normal actuators (components 4 and 5) are assumed to 
degrade science utility to a level corresponding to mission failure. Alongside this five-mirror 
failure requirement, three surface-parallel actuators (component 6) would affect six mirror 
segments and thus drop the science utility below the threshold again. All vibrational dampers 
(components 9, 10, and 11) are required to fail before system failure. Nonetheless, in the Monte 
Carlo simulation, the utility to science parameter is scaled down for each failure of a component 
affecting science utility (e.g. mirrors, actuators, and dampers). Components in the primary 
infrastructure of the telescope are not included in the fault tree and are assumed to function for 
the full 40-year lifetime of the satellite. 

5.3.3.9 Systems Module 

5.3.3.9.1 Complexity  
The computation of a structural complexity metric for the telescope architecture has been 
developed by Sinha and the MIT Phoenix Team.60,61 The architectural study employs a 
simplified structural complexity metric because it has been shown to be a predictor of 
development cost across several types of complex systems.60 This complexity metric was chosen 
because of its ability to be applied to a wide array of systems covering a broad spectrum of both 
complexity and function. Specifically, its use in determining the complexity of a highly 
fractionated architecture for the DARPA Phoenix Project was a key benchmark, since the LTA 
will be comprised most likely of several modules, not dissimilar from Phoenix satlets. The 
structural complexity metric used in the cost analysis contains three complexity factors:  

 ! = !! + !!!! = ∝!!
!!! + !!"!!"!

!!!
!
!!! !" !   

Eq. 62 
 

In this equation, !! represents the complexity due to the number and flight readiness of the 
components, !! represents the complexity due to pair-wise component interactions, and !! 
represents the complexity due to the topology of the system architecture and the associated 
complexity of system integration.60 These three complexity terms are determined with the 
following equation with variable values from the DSM and the Components DB: 
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Eq. 63 

In Eq. 62, n is the number of components, m is the number of interfaces, A is the Design 
Structural Matrix (DSM), α is a function of Technology Readiness Level (TRL) as described by 
Eq. 63, β is the complexity of each connection between pairs of components, γ is 1/n, and E(A) is 
the graph energy of the DSM, which is the sum of the singular values of the DSM as determined 
using the “svd” command in MATLAB.60 In the complexity analysis, higher values of β were 
given to components that have greater software and integration effort required when they are 
present in the system. The values of the β terms are currently based upon those from the DARPA 
Phoenix Project61, though in the future, further iteration should occur to determine the proper 
values.  The addition of an optical-type interface is necessary for the telescope architecture, 
whereas in Phoenix no such interfaces existed. 

 ∝= 9 !"#!"#!!"#
!"#!"#!!"#!"#

       
Eq. 64 

The structural complexity metric for each subsystem is included in the cost metric, since it is an 
input to the development cost. Sinha has shown that a power law relationship exists between 
complexity (X) and development cost (Y), as denoted in Eq. 65. Sinha demonstrated the wide 
applicability of this approach for both terrestrial and space applications, including those in 
development stages.60 

 ! = !!!.         
Eq. 65 

Because the team is architecting, not designing, systems that fulfill the given high-level 
requirements, component families are included in the DSM and Components DB instead of 
specific components. There is no resultant specific design, but rather an estimate of the 
performance of the telescope system based on representative components for each component 
family.  For this reason, the DSM and Components DB are constructed at a higher level with 
rather generalized representations of each subsystem that go into enough design detail necessary 
to distinguish between different architectures. Consequently, the application of these complexity 
relationships is novel and unique to this project. The values of β have been adjusted to reflect the 
complexity of integrating different groups of subsystem components. 

5.3.3.9.2 Risk Analysis 
The complexity of the mission discussed in this report in terms of mission objectives, design and 
manufacturing, test and verification, operations and maintenance requires a risk analysis in order 
to study the impact of failures on mission capability, as well as understand how to best use the 
available resources to maximize mission success. If something does not work as planned or a 
failure occurs, the entire mission could be lost along with large amounts of money, time, and 
effort.  It becomes thus imperative to invest in such resources to protect against anomalies very 
early in the design process.  By so doing, a risk analysis becomes an integral component 
throughout this process and will guide the designer in his choices and decisions. 
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In order to quantify the concept of risk, risk is defined as the product of the probability of a 
negative event occurring and its impact.47 A risk analysis, therefore, encompasses a measure of 
the impact of the negative event, which can span from reduced performance to total mission 
failure.  Two types of risk exist in practice: mission risk and programmatic risk.  The former, 
also known as technical failure risk, has an impact on the total return from the mission and can 
be thought of as the amount of mission objectives that would be lost if the negative event 
occurred.  In the case discussed here, the utility to science would be negatively affected by a 
mission failure as no data could be collected and no discoveries would be made.  The latter type 
of risk, also known as implementation risk or management failure risk, affects budgets and 
reserves of several resources; its impact is translated into the amount of margin used to recover 
from the negative event.  Programmatic risk plays an important role before operations begin, that 
is during the design and development stages of the mission when schedules slippages are likely, 
budget variations might occur because of political or leadership changes, engineering resources 
may not be adequate, etc.  Both types of risk have been addressed in this study and will be 
presented in detail in this section. 

5.3.3.9.2.1 Mission Risk 
Whenever the overall return of the mission under consideration is affected by the timing of when 
a failure occurs, an Expected Productivity Analysis (EPA) is deemed appropriate to study 
technical failure risks.62  This applies to all missions returning data of some sort throughout time 
and for which the more data the more successful the mission. This is certainly the case of space 
telescopes but also robotic missions returning scientific data. As opposed to this, if the most 
important requirement for mission success is that the end goal be met, then the timing of when a 
failure occurs does not matter. Such is the case of sample return missions, human spaceflight 
missions, or commercial satellites needing to operate for a certain number of years to fulfill 
contract requirements. Under these circumstances, a Probabilistic Risk Assessment (PRA) would 
be used, because the probability of meeting that specific end goal is what ought to be 
optimized.47 Given the context of the mission described in this report, i.e., a large telescope array 
collecting and returning data to Earth, an extensive discussion of EPA will be carried out and 
numerical results will be presented. 

By definition, the expected productivity of a system is the product of the probability of being in 
each functional state and the productivity in that state, summed over all states and all time.  Here, 
this is to be considered as the expected value of the utility-to-science function over the entire 
mission lifetime.  The expected productivity is calculated by following three steps: 

1. Estimation of the probability of being in each state at each time 
2. Estimation of the productivity in each state 
3. Combination of the two previous steps to obtain the expected value of the total 

productivity by the end of mission life 

The first step is based on a Markov model applied to each subsystem under the hypothesis that 
the future states of the subsystems depend only on the current state and not on any previous state.  
To clarify this assumption, which does apply to the case discussed in this report, if the subsystem 
under consideration fails if at least 2 actuators fail, it is irrelevant whether the subsystem started 
with 6 actuators and 4 have already failed, or if the subsystem started with only 2. The 
conclusion remains the same, that is, from now on the subsystem has remained with only 2 
actuators and either one can fail at a given rate.  In order to determine the probability of being in 
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any state at any time, one needs to define the possible states in which a subsystem can be and 
how it would transition from one state to the next.  This can be accomplished by generating a 
state diagram, where each state is represented by a node and the transitions by the different 
interconnections among nodes.  Transitions occur because components fail; therefore, each 
transition is associated with the failure rate of the component causing the system to vary its state. 
As an example, Figure 46 illustrates the state diagram of the Attitude and Determination Control 
subsystem (ADCS), here modeled with 9 momentum wheels (mw), 1 star tracker (st), and 1 solar 
sail (ss). 

 
Figure 46: State diagram for the Attitude and Determination Control subsystem. Five 

different states were identified which lead to mission failure 

In order to determine the failure rates (or alternatively, the Mean Time Between Failures – 
MTBF – defined as the inverse of the failure rates) needed to perform the analysis mentioned 
above, the following approach was adopted. Reliability values were estimated for all components 
based either on data available in the literature47 or assumptions made to extrapolate the values of 
technology readiness levels (TRL) in the next decade for all components requiring substantial 
technology development. The following equation was used: 

 ! = !
!"#$ =

! !"!
!!   

Eq. 66 

where R is the reliability estimated at time Δt. The time span is equal to 40 years if the 
component being considered is assumed to never fail over the mission lifetime, otherwise it is set 
to values corresponding to the duration of operations before servicing, that is, 3, 5, or 10 years. 
The transitions are represented through the transition matrix, ! , which is needed to solve the 
following system of first-order linear differential equations: 

 ! ! = ! ∙ ! !   
Eq. 67 

   
where ! !  is the time rate of change of the state probability vector, ! ! . The elements of the 
transition matrix correspond to a different state and are determined by looking at what enters and 
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exits each node. As an example, for the case shown in Figure 46, the transition matrix would be 
as follows: 

  

 

Similar matrices were calculated for the following subsystems: Structures, Power, and Thermal. 
These matrices were then assembled into the final matrix as independent blocks. This rests on the 
simplifying hypothesis that no failures occur due to subsystems interaction. Although this is in 
partial agreement with the higher-level assumption that no loops were accounted for in the N2 
diagram (which would show how the different subsystems interact with one another), the 
subsystems teams reported no failure modes due to possible interactions among subsystems at 
this level of the architectural study. It is recommended that when more details become available, 
a more in-depth failure mode analysis be carried out and the transition matrix be updated 
accordingly to account for such interactions. Moreover, the Communications, Avionics, and 
Propulsion subsystems teams made the assumption that their subsystems never fail within the 
maximum time between servicing missions, 10 years, which is the worst-case scenario. 
Therefore, they are not part of the analysis being discussed in this section. These hypotheses rest 
on two factors: 1) the subsystems’ component families were selected so as to meet the 
requirement of being functional for at least 10 years, 2) the decision was made to take specific 
mitigating actions which would assure such a lifetime for these subsystems. For example, 
extreme temperature and radiation environments in deep space require that measures be taken to 
avoid environment-related avionics failures. Shielding, redundancy, design/processing methods 
are often employed in order to protect avionics equipment.63  Types of radiation effects include 
total ionizing dose, displacement damage dose, single event effects (SEE), and 
charging/electrostatic discharged caused by electron deposits.64  Shielding physically mitigates 
radon effects on avionics through the use of materials surrounding the electronics.  Redundancy 
involves increasing the number of components, subsystems or internal component parts.  Design 
techniques at the component level include dopant walls, isolation trenches, and chip layout, 
whereas design techniques at higher levels include decoupling, spacing, and circuit corrections63.  
Processing and manufacturing methods include the use of specific materials and processing 
techniques63.  The avionics subsystem has selected all radiation-hardened components and many 
space-qualified components in order to reduce avionics failures due to environmental factors.  
Furthermore, the avionics subsystem will also employ redundancy at the component level to 
mitigate the impact of avionics failures, environmental or otherwise, on the system. 

The solution to the system of differential equations62 provides the probability of the system being 
in any given state at any given time. Initial conditions are needed to solve these equations. From 
a purely technical perspective, there is a 100% probability to be in state 1, which is when all 
subsystems are functioning, and 0% probability to be in all successive states. Indeed, right before 
launch, everything is expected to be working properly, whereas afterwards components and 
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subsystems start having higher probabilities of failure due to launch vibrations, environmental 
factors, degradation, and so on.  

In the second step, the productivity, C(t), in any given state is defined as the fractions of 
elements that can be completed per unit time, where an element is a single unit of the subsystem 
metric for the given mission. Examples of elements that could be selected in this context are an 
image, a gigabyte of data, a measurement, etc. In the case presented here, the productivity is the 
utility-to-science function defined in the Trade Metrics Calculation section. 

Finally, in the last step, the expected productivity, E[Prod], can then be computed by the 
following equation: 

 ! !"#$ = !! ! !!(!)!
!!! !"!"#$%"&$

!   

Eq. 68 

This methodology was systematically applied at the subsystem level. Namely, failure states in 
each subsystem were identified at the level of detail allowed by this tradespace study. While 
some subsystems could be characterized by component failure modes, others did not have this 
type of information and remained at a more general level (the subsystem level). Indeed, it is 
beyond the scope of this work to perform a detailed design of the telescope and all its 
subsystems. 

Figure 47 shows the state probabilities as computed by the Markov model. In black are the states 
corresponding to “all instruments working” for each subsystem (the “1” nodes of the state 
diagrams), whose probability decreases with time, whereas in different colors all other 
intermediate states whose probability is 0 at the beginning of mission but increases with time. 
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Figure 47: State probabilities as a function of time. The timespan was fixed to 10 years, as 

this could be the longest time interval without servicing. Since significant technology 
advancements may occur in such a long period of time, this type of analysis can be rerun 

for the remaining 30 years of the telescope’s lifetime by ensuring the failure rate values are 
updated. 

Figure 48 illustrates the probabilities of failure of each of the subsystems previously analyzed as 
well as of the telescope. Such probabilities were calculated by estimating the probability that 
each subsystem will fail entirely due to its not being in one of the states shown in Figure 47. The 
same applies to the whole telescope. The equation used is the following: 

 !!_!"# = 1− !!(!)!
!!!   

Eq. 69 
   
where !!_!"# represents the probability for each of the entire subsystems to be in a non-
functioning state, and i varies from 1 to the total number of functioning states. By assuming that 
the telescope will fail if at least one of the abovementioned subsystems fails, the same equation  
Eq. 69 can be applied, where now !!(!)  is replaced by each !!_!"# to yield the probability for the 
entire telescope to be in a non-functioning state. 
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Figure 48: Probability of failure for the subsystems affected by mission risk over a time 

span of 10 years, which is the longest time interval that could exist between servicing 
missions 

It can be seen the structural system is the one with higher risk, given the large number of 
mechanisms used. According to this model, the entire telescope could fail with a probability 
about 0.2% after 10 years of operations. 

5.3.3.9.2.2 Implementation Risk and Schedule 
As far as management failure risk is concerned, attention was paid to three factors: technology 
infusion, manufacturing processes, and test and verification. These are risk elements, which 
either decrease the probability of beginning operations in the nominal state or increase the 
probability that a particular subsystem will begin operations with degraded performance. These 
risk elements have a negative impact before launch, and thus before any utility to science is 
returned. In this sense, they affect the probability that a particular subsystem may be in a 
perfectly functioning state at t = 0. Such risk components result in an immediate change to the 
initial conditions used to find the probability of being in each state (Eq. 69). This approach 
enables to quantify potential schedule slippages that might occur due to the three aforementioned 
risk elements. However, one should remain cautious that this type of risk analysis rests on a 
number of assumptions made by each subsystem, which affect to some extent the uncertainty of 
the results discussed previously. These will be discussed separately for the subsystems involved 
in the remainder of this section. It will be illustrated what the technological challenges to develop 
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such a new large telescope array are and what their implications are on both programmatic risk 
and schedule. 

5.3.3.9.2.2.1 Attitude and Determination Control Subsystem 
In ADCS, the solar sail will require further advancements in technology and more testing before 
it can be qualified for flight with a TRL of 9. It is assumed today that solar sails have achieved a 
TRL equal to 7. It was thought to be highly likely that they will reach level 9 by 2020, but 
uncertainties remain which were estimated around 5%. The initial condition was therefore 
lowered from 1 to 0.95. 

5.3.3.9.2.2.2 Communications 
Free-Space Optical (FSO) solutions have been validated as viable radio-frequency (RF) 
communications substitutes in terrestrial systems to date.  Larger bandwidth and higher data 
capacity capabilities for FSO, such as those needed for the communications subsystem of 
telescope system of study, were demonstrated in a recent NASA launch of Laser 
Communications Relay Demonstration (LCRD). FSO technologies for deep-space 
communications is a current area of development as evidenced by the NASA LCRD and other 
funded research activities.65  As a consequence, FSO readiness by 2020 poses both technical and 
schedule risk to the telescope for FSO options. 

The concept of Federated Satellite Systems (FSS) is a paradigmatic shift in how satellites share 
resources, e.g., processing capabilities and access time, thus impacting future satellite designs.  
Resource allocation is dynamic, based on the need, availability, and line of sight of participating 
suppliers and customers in FSS.  These exchanges can be arranged by monetary or reciprocal 
resource sharing agreements as FSS transforms satellite resources to marketable commodities.  
Distributed Satellite Systems (DSS), where groups of satellites collectively perform a mission, 
have been demonstrated by NASA’s A-Train and the Iridium satellite constellation.  However, a 
market-based resource-allocation approach for FSS has not yet been implemented, nor has a 
deep-space multi-system intersatellite link (ISL) network been demonstrated.  FSS is still in the 
conceptual phase and requires significant development of the protocols, algorithms, and 
technologies that would enable dynamic, secure, timely, and quality transaction.  In addition, 
because FSS is a new paradigm for space operations based on a space market economy, there are 
also challenges to developing the economic, business, policy, and regulatory infrastructure 
necessary for FSS. 

5.3.4 Operations Module 

The Operations code module is a simulation of the telescope architecture’s 40-year lifetime from 
launch to decommissioning. The simulation takes as an input a telescope architecture (defined by 
a component set generated by the subsystem code modules), as well as mission parameters and 
the architectural decision vector, and follows the process outlined in Figure 49 to produce data 
that are analyzed by the trade metric characterization code. Stochastic component failures are 
included in the simulation in order to model their impact on telescope operations and servicing; 
in order to account for behavior from probabilistic events, a 10-iteration Monte Carlo simulation 
loop was utilized for each architecture. The results of each iteration are averaged to produce the 
final outputs for a given architecture. 
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Figure 49: Code structure diagram for the operations module. 

When an architecture (in the form of a MATLAB struct) is input into the Operations code 
module, it is translated into an architecture matrix that encodes the relevant values of the 
architecture into an easily accessible format. The architecture matrix is an !!×!7 matrix, where ! 
is the total number of components within the architecture. Each row of the architecture matrix 
corresponds to a particular component, and the columns encode the relevant data for that 
component. In order from left to right, the columns represent: 

• Components Database Row Number 
• Mass (in kg) 
• MTBF (in weeks) 
• Module Number 
• Clock 
• State 

The component clock is an entry that documents how long that particular component has been in 
operation; this entry is updated at each timestep and is reset when a component is serviced. The 
component state is an indication of whether the component is failed or operational at a given 
timestep, with 1 indicating an operational component and 0 indicating a failed component. The 
simulation incorporates a stochastic element that fails components based upon their reliability 
values to simulate component failure in the real-world telescope. When a component fails, the 
state flag is set to 0; when the component is serviced, the state flag is reset to 1.  

This simulation uses one week as a timestep, and incorporates the three mission phases of the 
telescope: Assembly/Transit, Science, and Servicing. In order to minimize computational time, 
the timesteps can advance in jumps over sections of time that have no significant change – 
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specifically, the Assembly/Transit and Servicing Phases – while advancing step-by-step during 
science operations. The simulation begins at launch and enters the Assembly/Transit Phase. Once 
the Assembly/Transit Phase is complete, the telescope enters nominal operations, starting with 
Science. When a timestep corresponding to a servicing mission is reached (as defined by the 
servicing frequency architectural decision), the simulation enters the Servicing Phase. The 
timestep then advances to the end of the Servicing Phase and reenters the Science Phase, and the 
process repeats until the end of mission lifetime. Each mission phase is discussed in more detail 
in the following sections. The outputs of the simulation are: 

• Utility to Science Vector: a vector indicating the utility to science of the telescope at 
each timestep 

• Failed Downtime Fraction: the fraction of the mission lifetime that the telescope was 
not producing science because of a component failure 

• Servicing Downtime Fraction: the fraction of the mission lifetime that the telescope was 
not producing science because of servicing operations 

• Serviced Mass Vector: the vector of length !, where ! is the number of servicing 
missions, encoding the amount of mass that was serviced during each servicing mission 

• Mean Serviced Mass: the mean of the serviced mass vector, indicating the average mass 
serviced for a given servicing mission 

• Number of Servicing Missions: the number of times that the telescope was serviced 
• Failure Matrix: an !!×!! matrix, where ! is the number of component families in the 

components database and ! is the number of timesteps in the simulation, encoding the 
number of components of that family (row index) that are in a failed state in that timestep 
(column index) 

• Module Replacements Matrix: an !!×!! matrix, where ! is the number of modules in 
the telescope and ! is the maximum possible number of servicing missions, encoding 
which module (row index) was replaced during each servicing mission (column index) 
 

Assembly/Transit Phase 
The Assembly/Transit phase begins at launch and ends when the telescope is fully assembled and 
is in place at SE-L2. It is assumed that assembly of the telescope takes place during transit. The 
transit time from LEO to SE-L2 is 63 days (or 9 weeks) and it is assumed that the telescope is 
fully assembled by the time it reaches SE-L2.66 The Operations code module simulates this phase 
by advancing the timestep to step 9, the week where the telescope arrives at SE-L2 and begins 
the Science phase. 

Science Phase 
The Science Phase mode calculates the instantaneous utility to science of the telescope by 
multiplying the sum of the utilities of the four instruments on-board the telescope by the 
instantaneous observational efficiency.  In addition, timesteps in the science phase “roll the dice” 
to determine which components fail, using a random number generator and the reliability of each 
component at that timestep; the instantaneous observational efficiency changes according to 
which components are failed. The utility is calculated for each week of the 40-year lifetime. The 
telescope enters Science Phase on all timesteps except for the beginning of the mission when it 
enters the Assembly/Transit Phase and at the servicing frequency when it enters the Servicing 
Phase. 
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Mirroring Baldesarra, the initial discovery efficiency of a given instrument type starts at an 
arbitrary value and increases in time due to technological advances that enable additional 
throughput or increased field of view for the same cost, mass, power, etc.13  Once an instrument 
is installed on the telescope, its discovery efficiency is assumed to slightly degrade with time due 
to radiation damage or similar effects. The formula for instrument utility is: 

 !! ! = !!!(!!!"!#!!) ∙ !!!!   
Eq. 70 

   
where ui(t) is the utility of each instrument, A is a constant that specifies discovery efficiency at 
the beginning of the mission in arcmin2*photons/second, T is the year the instrument was 
installed on the telescope, L is the latency from ground development and flight implementation 
of an instrument design in years, b is a constant that specifies the improvement rate of discovery 
efficiency over time, r is the decay factor, and t is the year of operation. Both r and b were taken 
from Baldessarra and are 0.99 and 0.3218 respectively.13 b was then adjusted off its baseline 
value to examine the sensitivity of utility to science to the assumed growth rate as described in 
Section 7.4.1.3.  A was initialized to 10 for all instruments and L was assumed to be 3 years. 

In order to simulate component failures, the reliability of each component at each timestep is 
calculated and compared to a random number in order to determine via a “dice roll” whether or 
not a given component fails in the given timestep. The expression used to evaluate whether or 
not a component has failed is 

 !!
!!

!"#!! ≤ !   
Eq.  71 

   
where !! the time in weeks that component ! has been in operation (from the component clock 
entry in the architecture matrix), !"#!! is the MTBF value in weeks for component !, and ! is a 
random number between 0 and 1. The left side of this expression represents the reliability 
(between 0 and 1) of component ! at a given timestep; this expression evaluates as true if the 
reliability of component ! is less than the random number. If the expression evaluates as true, the 
component is considered to be failed, and the state flag for the component in the architecture 
matrix is changed to 0. Thus, a component with a reliability of 0.8 in a given timestep has a 20% 
chance of failing in that timestep. Once failed, a component remains in a failed state until the 
next Servicing Phase occurs. 

The utilities of all four instruments are then summed and multiplied by the observational 
efficiency.  The observational efficiency will change with time as the telescope changes modes 
and as components on board fail. In science mode, the observational efficiency will be 90% per 
the requirement in Table IV. During the initial transit to the operational location and during 
servicing or transit to or from the servicing location, the observational efficiency will drop to 0% 
as the telescope is assumed to be incapable of doing science. The observational efficiency will 
also drop below 100% and possibly to 0% when failures aboard the telescope degrade its ability 
to conduct science operations. Some component failures result in degradation of the overall 
scientific output of the telescope (either as a geometric series or proportional to the ratio of failed 
to operational components for a given component family), while others result in complete loss of 
scientific output. The instantaneous utility to science equation therefore is: 
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 !"(!) = ! ! ∗ !! ! + !! ! + !! ! + !! !   
Eq. 72 

   
where US(t) is the instantaneous utility to science of the telescope, O(t) is the observational 
efficiency, and ui(t) is the utility of each instrument. The different Monte Carlo runs in 
Operations will capture different sets of failures that will yield slightly different instantaneous 
utilities to science as the set of instruments and the observational efficiency will be slightly 
different in each case. 

Servicing Phase 
The Servicing Phase begins when the timestep of the simulation coincides with a servicing 
mission, at which point the servicing mission counter is increased by 1. First, the model 
determines which instruments to replace and marks them for replacement. Instrument 
replacement during servicing missions is the primary means of increasing the utility to science of 
a given telescope architecture. As the discovery efficiency of instruments improves, the existing 
instruments on the telescope are replaced with newer, more capable instruments. To model real-
world decision-making, instruments were marked for replacement if the discovery efficiency of 
the new instrument was five times greater than the discovery efficiency of the current instrument. 
The threshold value of five times the current discovery efficiency was chosen so that every 
instrument is not replaced on every timestep (as they would be if the rule were to replace any 
instrument that had seen a rise in discovery efficiency). The threshold creates a balance between 
the need to upgrade the instrument, the need to allow instruments to operate for a sufficient 
lifetime to generate enough utility to science to merit their cost, and the need to prevent serviced 
instrument mass from being the maximum value at every servicing mission. 

Next, the components that are in a failed state or below a reliability threshold are marked for 
replacement. The rows in the architecture with a state flag of 0 indicate that that component is in 
a failed state, and those indices are marked for replacement. The reliability threshold is a way to 
enable preemptive replacement – that is, the replacement of a component that has not yet failed. 
If a component is still operational, but its reliability has fallen below a threshold value, then the 
probability of that component failing before the next servicing mission is higher than the 
probability for components that do not have reliabilities below the threshold value. Thus, that 
component is considered “unreliable” and is marked for replacement. The expression used to 
determine whether or not a component is below the reliability threshold is 

 !!
!!

!"#$ ≤ !!!!"#!  
Eq. 73 

   
where !! is the component time in weeks, !"#$ is the component Mean Time Between Failure 
in weeks, and !!!!"#! is the reliability threshold (unitless). For this simulation, the reliability 
threshold was taken to be 0.7, meaning that components with a greater than 30% probability of 
failure are replaced. This threshold value is an operational decision related to how far mission 
controllers are willing to allow components to degrade before replacing them. As such, the 
reliability threshold is the subject of a sensitivity analysis to a change in ± 0.05 (i.e., changing 
the threshold value to 0.65 or 0.75), which is described in Section 7.4 Sensitivity Analysis. 
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Once all components and instruments needing replacement are marked as such, the 
modularization of the telescope is taken into account by translating the component and 
instrument replacement marks into module replacement marks. If any element within a module is 
marked for replacement, the whole module is marked for replacement. This is due to the fact that 
for this model “servicing” is defined as the act of removing a module and replacing it with an 
identical (but potentially upgraded, if the module includes an instrument) module; the smallest 
unit of the telescope that can be serviced is a module. Thus, when an element is replaced all other 
elements in its module must be replaced as well. 

Finally, all modules that are marked for replacement are replaced, meaning that all elements in 
that module are replaced. When a component or instrument is replaced, the component clock is 
reset to 0, which resets the reliability of the component to 1; in this way, the simulation 
represents the component as being new. In addition, the state flag is set to 1 to indicate that the 
replaced component is now operational. Once these replacements are complete, the mass of all 
modules that were replaced is summed to give the serviced mass for this servicing mission, and 
the value is stored in the serviced mass vector. Next, the servicing downtime is calculated. 

The servicing downtime is informed by the assembly/servicing technique and the number of 
modules replaced. The self-assembly case is assumed to require 2 hours per module, the case 
using tugs is assumed to require 6 hours per module, and the case using formation flying is 
assumed to require 4 hours per module. These values were chosen to reflect the relationships 
between these three techniques. First, in the self-assembling case, the robotic arms which are 
incorporated directly into the telescope design have a clear and unchanging relationship between 
end effector location and orientation and the telescope itself; therefore, the arms may perform 
more complex and rapid preprogrammed motions to remove and insert modules. For this reason, 
self-assembly is assumed to be the fastest method. The use of a tug for servicing requires that the 
tug dock with the telescope, implying that there will be more uncertainty in the relative location 
and orientation of end effectors and telescope modules; therefore arm motions will have to be 
more carefully and slowly executed. For this reason the servicing by tug is the slowest technique. 
Finally, formation flying involves more complex movement of modules using electromagnetic 
(EM) coils. Since all elements are floating in free space and all forces are internal resulting from 
interactions between EM coils, the center of mass of the system must remain unchanged; 
therefore the movement of any one component will cause movement in the others. However, 
complex preprogrammed motion is still available for servicing operations, though it will be more 
complex than the simple use of robotic arms. For this reason, the formation flying 
assembly/servicing technique is assumed to be at a medium value, between self-assembly and 
tugs. 

Once the time for actual servicing operations is calculated, the transit time for movement of the 
telescope from SE-L2 to the servicing location and back is added in to determine the total 
amount of time that the telescope was offline due to servicing: 

 !! = !!"#! + !!"#$%&!  
Eq.  74 

   
where !!"#$ is the servicing time, !!"#$%&! is the transit time to and from the servicing location, 
and !! is the total downtime due to servicing. In the servicing code, all of these time values were 
documented as days; once the value is computed, the total downtime in days is divided by seven 
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to convert to weeks to match the timestep length. At this point servicing is complete, the timestep 
is advanced to the end of servicing, and the telescope enters the Science Phase. 

5.3.5 Trade Metrics Calculation 

5.3.5.1 Utility to Science 

The Trade Metrics module receives the instantaneous utility to science of the telescope for each 
week of the forty-year lifetime from the Operations module. Trade Metrics integrates this input 
against time to find the total utility to science for each Monte Carlo run and then averages across 
the Monte Carlo runs. The equation for total telescope utility to science is: 

 ! = !
! !"! ! !"!"#"

!
!
!!!   

Eq.  75 
   
where U is the total utility to science of the telescope, N is the number of Monte Carlo runs, i is a 
particular Monte Carlo run, USi(t) is the instantaneous utility to science from the Operations 
module, and t is the number of weeks the telescope has been operating. 

5.3.5.2 Serviceability 

The Servicing Phase begins when the timestep of the simulation coincides with a servicing 
mission, at which point the servicing mission counter is increased by 1. First, the model 
determines which instruments to replace and marks them for replacement. Instrument 
replacement during servicing missions is the primary means of increasing the utility to science of 
a given telescope architecture. As the discovery efficiency of instruments improves, the existing 
instruments on the telescope are replaced with newer, more capable instruments. To model real-
world decision-making, instruments were marked for replacement if the discovery efficiency of 
the new instrument was five times greater than the discovery efficiency of the current instrument. 
The threshold value of five times the current discovery efficiency was chosen so that every 
instrument is not replaced on every timestep (as they would be if the rule were to replace any 
instrument that had seen a rise in discovery efficiency). The threshold creates a balance between 
the need to upgrade the instrument, the need to allow instruments to operate for a sufficient 
lifetime to generate enough utility to science to merit their cost, and the need to prevent serviced 
instrument mass from being the maximum value at every servicing mission. 

Next, the components that are in a failed state or below a reliability threshold are marked for 
replacement. The rows in the architecture with a state flag of 0 indicate that that component is in 
a failed state, and those indices are marked for replacement. The reliability threshold is a way to 
enable preemptive replacement – that is, the replacement of a component that has not yet failed. 
If a component is still operational, but its reliability has fallen below a threshold value, then the 
probability of that component failing before the next servicing mission is higher than the 
probability for components that do not have reliabilities below the threshold value. Thus, that 
component is considered “unreliable” and is marked for replacement. The expression used to 
determine whether or not a component is below the reliability threshold is 
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!!

!"#$ ≤ !!!!"#!  
Eq. 76 

   

where !! is the component time in weeks, !"#$ is the component Mean Time Between Failure 
in weeks, and !!!!"#! is the reliability threshold (unitless). For this simulation, the reliability 
threshold was taken to be 0.7, meaning that components with a greater than 30% probability of 
failure are replaced. This threshold value is an operational decision related to how far mission 
controllers are willing to allow components to degrade before replacing them. As such, the 
reliability threshold is the subject of a sensitivity analysis to a change in +/- 0.05 (i.e. changing 
the threshold value to 0.65 or 0.75), which is described in the Sensitivity Analysis section of this 
report. 

Once all components and instruments needing replacement are marked as such, the 
modularization of the telescope is taken into account by translating the component and 
instrument replacement marks into module replacement marks. If any element within a module is 
marked for replacement, the whole module is marked for replacement. This is due to the fact that 
for this model “servicing” is defined as the act of removing a module and replacing it with an 
identical (but potentially upgraded, if the module includes an instrument) module; the smallest 
unit of the telescope that can be serviced is a module. Thus, when an element is replaced all other 
elements in its module must be replaced as well. 

Finally, all modules that are marked for replacement are replaced, meaning that all elements in 
that module are replaced. When a component or instrument is replaced, the component clock is 
reset to 0, which resets the reliability of the component to 1 – in this way, the simulation 
represents the component as being new. In addition, the state flag is set to 1 to indicate that the 
replaced component is now operational. Once these replacements are complete, the mass of all 
modules that were replaced is summed to give the serviced mass for this servicing mission, and 
the value is stored in the serviced mass vector. Next, the servicing downtime is calculated. This 
value is informed by the assembly/servicing technique and the number of modules replaced. The 
self-assembly case is assumed to require 2 hours per module, the case using tugs is assumed to 
require 6 hours per module, and the case using formation flying is assumed to require 4 hours per 
module. These values were chosen to reflect the relationships between these three techniques. 
First, in the self-assembling case, the robotic arms, which are incorporated directly into the 
telescope design have a clear and unchanging relationship between end effector location and 
orientation and the telescope itself; therefore, the arms may perform more complex and rapid 
preprogrammed motions to remove and insert modules. For this reason self-assembly is assumed 
to be the fastest method. The use of a tug for servicing requires that the tug dock with the 
telescope, implying that there will be more uncertainty in the relative location and orientation of 
end effectors and telescope modules; therefore arm motions will have to be more carefully and 
slowly executed. For this reason the servicing by tug is the slowest technique. Finally, formation 
flying involves more complex movement of modules using electromagnetic (EM) coils. Since all 
elements are floating in free space and all forces are internal resulting from interactions between 
EM coils, the center of mass of the system must remain unchanged; therefore the movement of 
any one component will cause movement in the others. However, complex preprogrammed 
motion is still available for servicing operations, though it will be more complex than the simple 
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use of robotic arms. For this reason, the formation flying assembly/servicing technique is 
assumed to be at a medium value, between self-assembly and tugs. 

Once the time for actual servicing operations is calculated, the transit time for movement of the 
telescope from SE-L2 to the servicing location and back is added in to determine the total 
amount of time that the telescope was offline due to servicing: 

 !! = !!"#$ + !!"#$%&!  
Eq. 77 

   
where !!"#$ is the servicing time, !!"#$%&! is the transit time to and from the servicing location, 
and !! is the total downtime due to servicing. In the servicing code, all of these time values were 
documented as days; once the value is computed, the total downtime in days is divided by seven 
to convert to weeks to match the timestep length. At this point servicing is complete, the timestep 
is advanced to the end of servicing, and the telescope enters the Science Phase. 

5.3.5.3 Failed Downtime 

The Failed Downtime is calculated using the results of the simulation from the Operations 
Module. The time vector of Utility to Science, which encodes the Utility to Science of the 
telescope during each week of the telescope’s lifetime, is analyzed to determine how many 
weeks show a Utility to Science of 0. This is accomplished by evaluation of the equation 



 134 

 !!!"!#$ = (!" == 0)   
Eq. 78 

   

where !" is the vector of Utility to Science values for each timestep in the simulation and 
!!!"!#$ is the total downtime in weeks. By taking the sum of the number of elements in !" for 
which the expression !" == 0 evaluates to true (and returns a 1), the total number of timesteps 
for which the Utility to Science was 0 can be calculated. A Utility to Science of 0 indicates that, 
during that timestep, the telescope was not operational either due to component failures or 
servicing operations. In order to isolate the number of weeks that the telescope was down 
specifically for component failures, the number of weeks of downtime due to servicing is 
calculated by summing the servicing downtime for each servicing mission; this value is 
subtracted from the total downtime in order to yield the downtime due to failures: 

 !!!"#$ = !!!"!#$ − !!!"#$   
Eq. 79 

   
where !!!"#$ is the vector of servicing down times for each servicing mission in weeks, !!!"!#$ 
is the total downtime in weeks (from Eq. 78), and !!!"#$ is the total amount of downtime due to 
component failures in weeks. The Failed Downtime for each architecture is reported as a fraction 
of the total mission lifetime spent in a non-operational state due to component failure, therefore 
the output from Eq. 79 is normalized by the total mission lifetime: 

 !" = !!!"#$
!∗!"    

Eq. 80 
   

where !!!"#$ is the number of weeks of downtime due to a component failure, ! is the mission 
lifetime in years, and !" is the failed downtime metric, the fraction of mission lifetime spent 
down due to a component failure. 

5.3.5.4 Cost 

5.3.5.4.1 Flight System Development 
As described in the Trade Metrics Descriptions section, the cost of the flight system 
development, which includes the design, manufacture, and testing for the entire space telescope 
assembly, is estimated using three models.  The function that performed this calculation is called 
Cost_Flight System.  This function simply summed the individual cost of each phase of the 
mission for each design architecture. The assumptions and characteristics of those models are 
presented here. 

5.3.5.4.1.1 Stahl Ground-Based Telescope Cost Model 
The use of the Stahl Ground-Based Telescope model implies the assumption that the costs 
forecasted by this model is indicative of similar space-based telescopes.  The model takes into 
account the unique prescription segments, the number of repeated segments, the segment 
diameter, wavelength performance, and the overall diameter of the telescope.  Notably, the 
model takes into account manufacturing learning curve considerations based on the number of 
repeated segments fabricated.  This portion of the code simply outputs a cost for the optical train 
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of the telescope.  The original model estimated this cost in year 2000 dollars, therefore an annual 
discount rate of 2.01% was assumed to convert these into year 2013 dollars. 

The Stahl Ground-Based Telescope Model is a parametric cost model, shown as  
Eq. 81.  It predicts the cost to produce an optical telescope assembly, which consists of the 
primary mirror, secondary mirror, auxiliary optics, and support structure.25  

 !!"# = (0.68)(!")!!!.!!!!.!!!.!" !    
Eq. 81 

 
where COTA is the cost of the optical telescope assembly, SF is a segmentation factor, D is the 
aperture diameter,  ! is wavelength diffraction limited performance, and Y is the difference 
between the year of development and the year 2000.  For segmented mirrors, SF is defined in Eq. 
82 as: 

 !" = !!!!!.!(!! !)!.!  
Eq. 82 

   
where Pn is the number of unique prescriptions, Rn is the number of repeated segments, Ds is the 
diameter of the repeated segments, and D is the diameter of the primary mirror.  For monolithic 
mirrors, the SF value is 1.  The bounds implied by the data set upon which this model is based 
include a maximum mirror diameter of 14.142 meter and a segment diameter of 1.0-8.41 meter.  
The 16.8-meter assumption for the aperture violates this boundary condition.  However, as 
discussed, the absolute cost estimate reliability is less important for this trade than the relative 
costs, therefore any loss in accuracy resulting from using this model is viewed as acceptable.  
Moreover, this model is intended for ground-based telescopes.  The effects captured in this 
model, specifically changing cost with segmentation, learning curve considerations, and 
economies of scale are all expected to provide similar relative results on the optical train of a 
space telescope.  These benefits were deemed to outweigh the loss of absolute accuracy 
associated with using a ground-based model for a space-based application. 

5.3.5.4.1.2 NASA Instrument Cost Model (NICM) 
The NASA Instrument Cost Model (NICM)25 estimates the cost of instrumentation aboard a 
spacecraft.  The specific version of the model used here is intended for interplanetary spacecraft.  
This was considered the most appropriate model for the mission being considered for this 
project.  The ATLAST requirement of four science instruments was assumed to be the case for 
this mission, as well.  The NICM outputs costs in year 2010 dollars.  An annual discount rate of 
2.01% was used, and the NICM outputs restated in year 2013 dollars.  The model itself takes in 
peak power, instrument weight, and replacement frequency to determine a lifecycle cost for each 
of the science instruments aboard individually. 

This model provides cost estimating relationships for several different types of instrumentation.  
The NICM predicts the development and single-unit fabrication costs without management and 
systems engineering “wrap” factors.26   
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The model is defined in Eq. 83 as 

 !!"#$ = 328 ∗!!.!"#!!.!"!!"!.!"#   
Eq. 83  

   
where CNICM is the cost of instruments,  M is total instrument mass in kilograms, P is maximum 
instrument power in watts, and DL is design life in months.26  The NICM was produced from 159 
instrument cost sets and has some bounds associated with that data set to ensure reliable 
estimates.  The bounds for the mass input are 1-75 kg.  The bounds for the instrument power are 
1-75 W.  The bounds for total design life are 10-150 months.  As with the USCM8, the NICM 
will allow for differentiation of the design architectures based on cost. 

5.3.5.4.1.3 USCM8 Cost Model 
The Unmanned Spacecraft Cost Model (USCM8) was developed by Tecolote Research for the 
US Air Force, Space and Missile Systems Center.26  The model provides cost estimating 
relationships for non-recurring and recurring cost for large spacecraft buses, including the 
development, ground equipment, launch operations and orbital support, and communications 
payload.  The non-recurring costs included are design and development, manufacturing, and test 
of one spacecraft, and acquisition of peculiar support equipment.26  Recurring costs include 
fabrication, manufacturing, integration, assembly, and test of the spacecraft.26  The full model is 
not presented in this document, however the inputs to the USCM8 are the weights of the various 
subsystems, the volume of the reaction control system (RCS) tanks, the number of 
communication channels, burn time to get to the final location, orbit location, and mission of the 
spacecraft (communications or non-communications).  The USCM8 model is a set of cost 
estimating relationships derived from 44 satellites.  Based on the data set provided by these 44 
satellites, the USCM8 model has a recommended range for each input.  For the entire spacecraft 
bus, the input range is 114–5,127 kg.  Should the architectures fall outside of this or any of other 
input ranges, as is quite possible, the USCM8 model will be less reliable than intended.  
However, the relative differences in cost between architectures should still provide useful, 
discriminating information as discussed earlier. 

5.3.5.4.1.4 Complexity 
A value for structural complexity is determined in the Systems code module and is incorporated 
into a “complexity factor” that is used as a multiplier onto the programmatic and spacecraft bus 
design costs.  This is intended to reflect the increased project management and systems 
engineering workload associated with the design of a more structurally complex system.60 The 
calculation of complexity is discussed in Section 5.3.3.9.1.  The complexity factor (!") is of the 
form 

 !" = !"#$%&'"!!"#"$%&'"()!!"#$
!"#$%&'()$!!"#"$%&'"()!!"#$ = !×!!.!  

Eq. 84 
 

where ! represents the architecture’s structural complexity and ! is determined using HST as a 
validation point, solving the following relation: 
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 !"##$%!!"#$%&!!"#"$%&'"()!!"#$!
!"##$%!!"#$%&'()$!!"#"$%&'"()!!"#$ = !×!!!.!  

Eq. 85 
 

The complexity factor defined above was used to adjust the development cost predicted for HST 
by our model to HST’s actual development cost.67 This relationship between development cost 
and complexity has been adjusted from its original implementation.60,61 This is because only one 
validation point for complexity (HST) is available, and to get accurate values of β one would 
need several validation points.  Additionally, the value of the exponent here is assumed to be 1.2 
based on past space systems60,61, but ideally that would also be solved for using several 
validation points.  In light of this, complexity is only used as an adjustment onto the predicted 
development cost of an architecture in the model presented in this report. 

5.3.5.4.2 Launch  
To find the launch cost for a given telescope architecture, data was collected on various launch 
vehicles, either currently operational or in development, that may be potentially used for this 
program (Table XXX). This provided important information such as the mass that each vehicle 
can send to the desired Geo-Transfer Orbit (GTO), the cost charged per launch, and allowable 
payload volume.  

Table XXX: Launch vehicle properties and cost estimates 

Launch Vehicle 

Cost Per 
Launch 
(FY2013 
Dollars) 

Payload Mass (kg) to Specified Orbit 
Diameter 

(m) 
Height 

(m) 
GTO LEO LOTUS 

and EM-L2 

Space Launch 
System68 

500000000 23000 70000 35814.6 8.384 17 

Falcon 969 56000000 5760 10454 7112.8 4.6 11.4 
Falcon Heavy69 128000000 12000 53000 20836.2 4.6 11.4 
Atlas V70 130000000 13605 29400 17967 5 26.5 
Delta IV 
Heavy71,72 

300000000 12980 22950 15870 5 19.81 

 

To find the total cost required for launch, the number of launches that will be necessary is also 
required. Determining the number of launches required for a telescope architecture involves, in 
some manner, packing the telescope into the launch vehicle(s) in order to ensure that the launch 
system can support the program. The first step in the packing process is to analyze three things: 
component dimensions, system mass, and system volume. The launch cost MATLAB code 
checks the maximum dimensions of components included in a given architecture. If the largest 
component dimension exceeds the payload height offered by a particular launch vehicle, that 
launch vehicle is immediately removed from the analysis. If the maximum component dimension 
does fall within the height offered by the payload fairing of the vehicle, the code checks the other 
dimensions to determine if the component fits within the fairing diameter, possibly in a rotated 
manner. In the case that it fits with rotation, or in the more common case that all dimensions fall 
within the payload fairing height and diameter, the vehicle remains a viable option.  During this 
process, the code determines which launch vehicles are able to fit the particular 
folding/segmentation method of the primary mirror, by far the largest component in the system. 
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For example, based on the dimensions given in Table XXX, only the Space Launch System 
(SLS) is capable of fitting Segmentation of the Primary Mirror option #5, the JWST folding style 
mirror. However, all launch vehicles are capable of launching Segmentation option #1, the case 
that uses individual uncombined segments. The next step is to determine the maximum number 
of launches required based on mass and on volume. Total system mass is directly divided by the 
launch vehicles' capabilities so that there exists a step function of number of launches required 
for mass. The total system volume is scaled by a conservative packing efficiency of 70%73 and 
divided again by the launch vehicles' capabilities. The results of the mass-based and volume-
based “number of launches” calculations are compared, and the total number of launches 
required for a particular vehicle is taken as the larger of the two. Once the total number of 
required launches is known for each viable launch vehicle, these values are multiplied by the 
corresponding vehicle’s cost per launch (Table XXX) to determine the total launch cost.   

A similar approach is used to determine cost of launches for servicing missions. In the servicing 
case, however, the mass capabilities of each launch vehicle vary depending on the desired 
servicing location. Also, because the telescope is already in orbit, and the module or component 
sizes for servicing are known to fit in the various payload fairings, only the mass capabilities of 
the launch vehicles are considered. By removing unnecessary consideration of volume or 
dimensional constraints, the code becomes more efficient within the servicing code module.  

5.3.5.4.3 Servicing$Cost$
As described in the Serviceability section, this model does not estimate the cost of a servicer due 
to the lack of a valid servicer cost model. However, servicing operations still contribute to the 
overall cost of the mission in two ways. First, the cost of the development of replacement 
components is considered; second, the cost to launch those components to the servicing location 
is considered. These two cost elements sum to make up the cost to produce and launch 
replacement parts over the telescope lifecycle; once again, it is important to note that this cost 
does not include the cost of a servicer – this only includes the elements of servicing cost which 
can be estimated with confidence. 

In order to calculate the development cost of the replacement components that were produced 
and used during servicing, it is assumed that the development cost per kilogram of new modules 
is approximately the same as the development cost per kilogram of the initial telescope. Thus, 
the total flight system development cost from the first build is multiplied by the ratio of total 
serviced mass to the system mass: 

 !!"#$! = !!"!× ! ∑!!"#$
!!"!

  

  Eq. 86 

where !!" is the flight system development cost in dollars as described in the Flight System 
Development Cost section, ∑!!"#$ is the total serviced mass in kg, !!"! is the mass of the 
telescope system in kg, and !!"#$!  is the cost to develop replacement parts in dollars. 

In order to calculate the launch cost of replacement parts, the location of servicing, the mean 
serviced mass per servicing mission, and the number of servicing missions are taken into account 
along with data for the mass-to-orbit capability as well as the launch cost of various launch 
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systems to various orbits, displayed in Table XXX. The servicing launch cost is determined for 
each servicing mission using the same algorithm as the initial launch cost, except that the lift 
capability of the vehicles is changed to the appropriate values for the servicing location (i.e. if 
the current architecture utilizes LEO as the servicing location then the launch vehicle’s mass-to-
LEO capability is utilized instead of its mass-to-SE-L2 capability) and the launch mass is the 
serviced mass for that particular mission. The sum of the launch cost for each individual mission 
is the overall servicing launch cost, !!!"#! . 

Once the development and launch costs for servicing have been calculated, the overall servicing 
cost is calculated by adding them together: 

 !!"#$ = !!"!!! + !!"#$!   

  Eq. 87 

where !!"#$!  is the cost to develop replacement parts in dollars, !!"#$!  is the cost to launch the 
replacement parts in dollars, and !!"#$ is the overall servicing cost (not including the cost of 
servicers). 

5.3.5.4.4 Cost Output 
As a way of interpreting the outputs of the cost model, historical missions are compared to the 
outputs of the model.  The at-launch cost of the Hubble Space Telescope was $1.5 billion in 
1990 US dollars.74  The five servicing missions of the Hubble Space Telescope had a cost of $9.6 
billion in 2009 US dollars.75  The James Webb Space Telescope (JWST) is estimated to cost at 
least $8 billion over its lifespan.  Figure 50 shows a comparison of those historical costs with the 
TITANS AE model cost output for both modular (Modularity Level 2-7 and non-modular 
(Modularity Level 1) architectures averaged over the lifetime of each mission.  A breakdown of 
the sources of these costs is also presented.  A “Hybrid Hubble” space telescope architecture was 
evaluated using the TITANS AE model.  This architecture was intended to resemble the Hubble 
Space Telescope; however, due to assumptions made in the model, this Hybrid Hubble 
architecture is very different from the actual Hubble mission architecture (e.g., it would be 
stationed at SE-L2, have a 16.8-m segmented mirror, and have a lifespan of 40 years).  Because 
of these differences, the cost of the Hybrid Hubble is not a highly accurate reflection of the 
actual Hubble costs.  However, it is a useful comparison to make for the purposes of evaluating 
the output of the model.  As can be seen in Figure 50, the Hubble Actual and Hybrid Hubble 
lifecycle costs are similar.  Notably, Average of TITANS AE is slightly more expensive than 
Hybrid Hubble.  This comparison does not reflect the other measures of performance or utility 
for these architectures, such as utility to science.  The Hubble Actual, Hybrid Hubble, and 
Modular TITANS AE Architectures have lower lifecycle costs than the JWST, though the 
overall cost estimate of the JWST is smaller than that of the average modular TITANS AE space 
telescope.  This is due to the much shorter lifespan of the JWST, 5 years, relative to the lifespan 
of the TITANS AE mission, 40 years.  It can also be seen, as expected, that modular TITANS 
AE architectures have lower lifecycle costs (not including most servicing costs) than non-
modular TITANS AE architectures. This comparison supports the notion that the cost model is 
giving reasonable estimates for the lifecycle costs of architectures being evaluated. 
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Figure 50: Comparison of cost model output to actual space telescope programs, 

normalized by total years of operation 
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6 MODEL VALIDATION 

One dimension of validating the accuracy and comprehensiveness of the TITANS AE model 
encompasses the comparison of the actual Hubble Space Telescope (HST) and James Webb 
Space Telescope (JWST) mass and power values with the mass and power values of HST and 
JWST as predicted by the TITANS AE model given architecture decision vectors similar to the 
actual spacecraft. Ideally, the model predictions would be within ± 30% of the actual HST and 
JWST values. Given that some of the characteristics of HST and JWST are not captured by the 
decision vector and the limited scope of the model, this validation was completed with as few 
code modifications as possible. 

The following characteristics of HST and JWST were not captured in the architecture decision 
vector and were not accounted for in the code modifications: HST uses a monolithic mirror 
whereas the TITANS AE model uses only segmented mirrors, and JWST has no servicing 
implemented whereas the TITANS AE model does. Additionally, the model was run with a 40-
year lifetime, compared to 23-and-counting for Hubble and a goal of 10 for JWST. 

TITANS AE model also exhibits different modularity options; therefore, the code has been run 
with modularity level 6 for HST, which corresponds to the instruments being in individual 
modules, and the spacecraft bus is in assemblies. For JWST, the modularity level is assumed 1 
(spacecraft level of modularity).  

For the communication architecture: Hubble uses TDRSS, so the code has been run with the 
TDRSS option and JWST uses the DSN, so the JWST validation was run with the DSN option.  

Another difference between the design presented here and HST is that HST is in LEO and 
experiences eclipses. Appropriate modifications in the code were implemented to reflect this: the 
power subsystem incorporated higher capacity batteries to be able to sustain the telescope 
consumption during eclipses and the ADCS system incorporated magnetorquers (an added mass 
of 180 kg). Due to technological advances, the fine guidance sensors are lighter and the batteries 
in the model are lighter as well. 

The results of the validation are illustrated in Table XXVI. 

Table XXXI: TITANS AE model validation against HST and JWST 
Variable 
name 

Model 
value 

HST value JWST 
value 

Explanations 

Power mass 504 kg 757.1kg77  - The TITANS AE model incorporates lighter 
batteries (lithium) than HST (nickel metal) 

Propulsion 
mass 

0 076 - HST does not have a propulsion system 

Avionics 
mass 

532 kg 600  kg77 - 12% difference, attributed to technological 
advances  

ADCS mass 133.5 kg 1074 kg77 - For HST, each fine guidance sensor weighs 220 
kg and there are three of them on the HST. The 
HST also has 4 reactions wheels at 45 kg a piece 
and 4 magnetorquers at 45 kg apiece. It has an 
emergency system of computers and IMUs for 
safe mode which weighs 39 kg. It may be 
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assumed that the IMUs weigh something on the 
order of 15 kg total. If all of these components are 
added up, it may be determined that the mass of 
HST ADCS is actually 1074 kg which leaves 
quite a discrepancy between the HST and the 
133.5 kg shown for the TITANS AE model. 
However, fine guidance system mass in TITANS 
AE is counted under the science subsystem. Also, 
TITANS AE does not use any magnetorquers 
because it is not in LEO. The reaction wheels 
have less mass on TITANS AE which may cause 
a slower slew rate. However, this slew rate is on 
the right order of magnitude and is acceptable 
within the operational time frame of the mission. 
Part of the emergency system would fall under the 
avionics subsystem and IMUs were not accounted 
for in the code because TITANS AE will probably 
be able to have IMUs of negligibly small mass, 
volume, power etc. when TITANS AE is built. 

Comms 
mass 

46.79 kg 47.71kg77 - 1.9% difference 

Optics mass 2300 kg 3860 kg77 - Difference attributed to the different instruments 
installed on TITANS AE and HST 

System 
mass 

11473 kg 11110 kg77  3.2% difference, coming mainly from the optics 
mass difference and the ADCS subsystem 

Comm 
average 
power 

200 W - 211 W78 5.5% difference 

ADCS 
average 
power 

232 W  147 W78 The average power is higher due to the fact that 
the TITANS AE model’s ADCS components 
consume more power than the ones on JWST, 
thus leading to the 57.8% difference (the reaction 
wheels take 22W at steady-state, and there are 9 in 
the design) 

Avionics 
power 

200 W  187 W78 6.9% difference 

Thermal 
power 

207.75 W - 250 W79 The difference comes from the fact that the 
temperature of JWST’s instruments is supposed to 
be kept at 7K. In the code, the value is 60K, 
hardcoded in the optics module and was not 
changed for the purpose of this validation. 
20% difference 

 

Some values for JWST or HST were difficult to find on the Internet or in the available 
references, so the comparison could only be performed on a subset of the model outputs.  
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7 RESULTS AND ANALYSIS 

7.1 Tradespace Exploration and Analysis 
Tradespace exploration was applied to the study of the next-generation space telescope design 
and it facilitated the structured consideration of a large number of design alternatives for the 
space telescope in terms of desired trade metrics, while avoiding the premature focusing on point 
solutions. Instead of simply identifying “optimum” or “best” design solutions, this approach uses 
both graphical and quantitative means to evaluate the architectural decisions that drive the spatial 
distribution and orientation of all possible alternatives within the considered system design 
space. “Non-optimal” or “bad” designs will also be evaluated to reveal the multi-dimensional 
tradeoffs inherent in a complex design problem presented by the space telescope. Ultimately, 
tradespaces allow the comparison of point designs or sets of point designs to alternatives and 
accelerate the identification of both physical and preference constraints on feasible solutions. 

The tradespace of the space telescope was generated by the complete enumeration of all design 
variables, which yielded a total of 15,120 design points. The metrics of utility to science, cost, 
servicing margin, and total failed downtime were previously conceptualized to help identify 
“good” designs. As these metrics have different units of measurement, they were normalized to 
facilitate effective and convenient comparison of architectural solution points on a common, 
quantitative basis. Hence, a solution with a normalized cost near 0 implies that it is relatively 
cheaper as compared to other solutions in the tradespace, and does not imply that the lifecycle 
cost is low in terms of absolute monetary value.  

2-D and 3-D visualizations of the tradespace bounded by different combinations of metrics were 
then generated to analyze the interactions, tradeoffs and sensitivities of all design points. In-
depth evaluation was then performed on the 2-D tradespaces bounded by cost and utility to 
science, where sets of design points were evaluated to determine the single or combined 
architectural decision that would allow one set to dominate another in the tradespace. Complete 
evaluation also enabled the identification of the Pareto fronts on 2-D and 3-D tradespaces, on 
which the Pareto Front subset solutions that offer the best tradeoffs between the metrics of 
interest can finally be identified and analyzed.  
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7.1.1 2-D visualization of tradespace: normalized Utility to Science vs. normalized 

Lifecycle Costs 

 
 

Figure 51: Pareto front solutions (in red) for tradespace bounded by cost and utility to 
science. 

2-D visualizations of system tradespaces were first generated, and a tradespace bounded by cost 
and utility to science was analyzed and shown in Figure 51. An additional dimension was also 
reflected in the tradespace to include servicing margin as the third metric, where its value is 
directly proportional to the size of the point. Therefore, the 2-D tradespace representation can 
illustrate the interactions between three different trade metrics. The “Pareto Optimal” points 
were highlighted in red. They were identified using multi-objective optimization and non-
dominated sorting, which were algorithms commonly used to establish the Pareto front on a set 
of points. Points closest to the utopia point would be considered “Pareto Optimal” and the utopia 
point has the lowest cost, highest utility to science, and highest servicing margin. Conversely, the 
so-called “bad” designs are characterized by high cost, low utility to science, and low servicing 
margin.  

In Figure 51, clusters of architectural point solutions can clearly be seen on the tradespace, with a 
high concentration of points in the region with low utility to science and increasing cost. Clusters 
of larger points are seen closer towards the utopia point, reflective of designs with increasingly 
lower costs, higher utility to science, and higher servicing margin. Points on the right-hand side 
are generally smaller, reflecting lower servicing margin. The dominated solutions (in blue) were 
then removed, leaving a filtered tradespace containing only the “Pareto Optimal” solutions. This 
is shown in Figure 52 and a total of 8 clusters were visually and cognitively identified in the 
filtered tradespace for further analysis. 
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Figure 52: 2-D view of filtered 3-D tradespace of “Pareto Optimal” solutions for the space 
telescope bounded by utility to science and cost. 
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Cluster 1, which is the identified subset of “Pareto Optimal” solutions closest to the utopia point 
was further evaluated and each constituent design point was then labeled with its unique 
architectural vector to determine any commonalities that may be characteristic of the overall 
subset. This is shown in Figure 53 below. A brief analysis of the points directly reveals that the 
subset of “Pareto Optimal” solutions is dominated by the “7-1-1” architectural vector elements. 
“7-1-1” represents the identification numbers of the assigned alternative for the first three 
architectural decisions in order: the highest modularity level possible of 7, Sun-Earth L2 as the 
servicing location, and a servicing frequency of 3 years. The same evaluation may also be 
performed for the other subsets. However, the “7-1-1” subset of architectural solutions will be 
the focus of evaluation in this report. 

 

 
 
Figure 53: “Pareto Optimal” subset solutions closest to the utopia point (Cluster 1) on the 
filtered tradespace bounded by utility to science and cost, dominated by solutions with “7-

1-1” architectural vectors. 

A modularity level of 7 would constitute the combination of highest instrument modularity and 
spacecraft bus modularity. As explained previously, the MTBF of an assembly is equivalent to 
the lowest MTBF of the components within it and this drives the grouping of component 
families. As such, the highest level of modularity with each component family as an individual 
module will yield the most physically robust system with the highest MTBF values for 
component families and subsequently the entire system. A servicing location at SE-L2 will 
ensure that the space telescope never experiences downtime, thereby providing the highest utility 
to science. A servicing frequency of 3 years also ensures that onboard instruments and 
component families remain in pristine operating condition throughout their mission lifecycles. 
These reasons thus collectively explain why solutions with the “7-1-1” architectural vector 
would be dominant in the “Pareto Optimal” subset closest to the utopia point. A small number of 
solutions identified by the “4-1-1” architectural vector were also observed in the subset, where 
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‘4’ represents Modularity Level 4 and the space telescope architecture is defined by instrument 
packages and spacecraft bus component assemblies.  

The “7-1-1” architectural vector for the visually identified “Pareto Optimal” subset of solutions 
closest to utopia point was reaffirmed using the Polar plot shown in Figure 54 below. The Polar 
plot illustrates the frequency of occurrence within the filtered Pareto set of solutions for every 
possible alternative in each architectural decision on a circular plane based on random sampling. 
Sampling from a smaller set of solution points can help identify architectural alternatives that 
dominate the same set. With increasing number of samples, the frequencies of occurrence for all 
architectural alternatives will become equal as a direct result of sampling across a large 
distribution. Each arrow on the circle corresponds to each alternative, and it is matched in 
accordance to the legend shown on the left in an anti-clockwise order. Color families distinguish 
the 7 key architectural decisions. The frequency of occurrence has also been normalized and it is 
directly proportional to the length of the arrow representing its corresponding architectural 
alternative. The opaque circle in the center of the plot has a radius of 1 and arrows protruding out 
of this circle can be easily identified as prominent architectural alternatives. 

 
Figure 54: Polar plot indicating frequency of occurrence for every alternative in each 
architectural decision for Pareto Optimal solutions. ML: Modularity, SL: Servicing 

Location, SF: Servicing Frequency, CA: Communications Architecture, PMA: Primary 
Mirror Actuation, AST: Assembly/Servicing Technique, SSPM: Structural Segmentation 

Primary Mirror Gray circle of radius 1 represents expected radius of any architecture 
decision if it is not associated with Pareto solutions. 

Figure 54 clearly shows that Level 7 (Individual Instruments and Bus Component families) 
dominates the modularity architectural decision. Both SE-L2 and LEO dominate other solutions 
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for the Servicing Location decision while a 3-year frequency dominates the Servicing Frequency 
decision. As such, the “7-1-1” subset of “Pareto Optimal” solutions comprise the dominant 
alternatives shown in the Polar plot, thereby verifying its close proximity to the utopia point. In 
other architectural decisions, laser communications is slightly dominant for communications 
architecture, surface-normal and hybrid assemblies are equally dominant for primary mirror 
actuation architectures, and space tugs and robotic self-assemblies are also distinctly dominant 
for assembly and servicing techniques. 36 segments and 12 structural segments are slightly 
dominant for the decision on mirror segmentation. The large variation in the other 4 architectural 
decisions thus account for the distribution of architectural solutions in the identified “Pareto 
Optimal” subset of solutions closest to utopia point. 

 

 

Figure 55: Polar plot array illustrating dominant architectural alternatives in every 
identified cluster. 

The same procedure is then repeated to evaluate the dominant architectural elements in every 
cluster. An array of Polar plots is shown in Figure 53, where each numbered Polar plot is 
representative of its corresponding cluster on Figure 52. In Cluster 2, the dominant architectural 
alternatives are still the Sun-Earth L2 servicing location and a servicing frequency of once every 
3 years (“X-1-1”). However, modularity is no longer as dominant in this cluster. In fact, lower 
levels of modularity become more prominent, and this results in increased cost due to higher 
launch costs required for high launch masses of instrument packages instead of individual 
components. As such, the solutions of Cluster 2 are located just to the right of Cluster 1 and in a 
region with higher normalized cost. 
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The dominant architectural alternatives in Cluster 3 are Level 1 modularity, SE-L2 servicing 
location and a servicing frequency of once every 3 years (“1-1-1”). This cluster is located in the 
top-right region of the tradespace and comprises solutions with generally high cost and high 
utility to science. Costs are exceptionally high for these solutions, as the lowest level of 
modularity and the highest frequency of servicing meant replacing the entire telescope once 
every 3 years. Utility to science is also highest due to regular servicing and replacement of every 
instrument and component onboard the spacecraft without any downtime.  

The architectural alternatives of Level 7 modularity, servicing location at LEO and servicing 
frequency of one every 10 years dominate the solutions in Cluster 4 (“7-3-3”). Modularity Level 
4 is also prominent, thus accounting for the presence of “4-3-3” solutions amongst the majority 
of “7-3-3” solutions. Cluster 4 is located below and to the left of Cluster 1 because servicing at 
LEO is a lot cheaper, but it also incurs higher downtime. Also, servicing the telescope once 
every 10 years means that there is a higher probability that certain instruments or components 
could fail without being replaced for long periods. This results in a loss of utility to science.  

The Polar plot of Cluster 5 is almost similar to Cluster 4 (“7-3-3”), except that it reveals some 
alternatives for other architectural decisions have become more prominent. “4-3-3” points are 
also present in this cluster. These alternatives are laser communications architecture, surface-
normal primary mirror actuation, assembly and servicing with tugs and 36 mirror segments. 
Normalized costs of solutions in Cluster 5 are lower than that of Cluster 4 because laser 
communications and the use of tugs, which are external to the space telescope system, entail 
lower launch mass. As such, Cluster 5 is located to the left of Cluster 4. 

Cluster 6 has modularity level 7, servicing location at LEO and servicing frequency of once 
every 3 years as the dominant architectural alternatives (“7-3-1”). While it might be cheaper to 
service at LEO, a much higher frequency of servicing would result in higher total launch costs 
for the space telescope across its mission lifecycle. As such, the solutions in this cluster would 
have a higher normalized cost and they are located to the right of Clusters 4 and 5. 

Finally, Clusters 7 and 8 are generally characterized by modularity levels 2 and 3, servicing 
location at LEO and servicing frequency of once every 3 years as the dominant architectural 
alternatives (“2/3-3-1”). Lower levels of modularity, near-Earth servicing location and high 
frequency of servicing collectively imply that large instrument packages or component families 
are being taken out and replaced frequently during its mission lifecycle. The high frequency of 
servicing drives the normalized costs up, while servicing a minimally modular spacecraft means 
that downtime will be a common occurrence, leading to lower utility to science. As such, these 
solutions are located in the region of increasing costs and low utility to science. 

Through analyzing the clusters of solutions in the tradespace of “Pareto Optimal” points, it is 
evident that the architectural decisions of modularity, servicing location and servicing frequency 
have huge leverage on the spatial distribution of solutions in the utility-cost space. Higher 
modularity, servicing at its SE-L2 operating location, and high servicing frequency generally 
drive solutions towards the utopia point. Low modularity will generally drive solutions towards 
the high cost end while servicing at LEO or at a lower frequency will drive solutions towards the 
low-cost/low-utility end.  
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5 architectural solutions were then chosen at random from the “Pareto Optimal” subset (“7-1-1”) 
and plotted on a Pareto Trace plot shown in Figure 56 to demonstrate that they are always on or 
close to the Pareto front for all the trade metrics of interest. These points may eventually be 
recommended architectural solutions, but they have chosen simply for illustrative purposes. The 
Pareto Trace plot is a collective 3-D representation of tradespaces bounded by the fixed axis of 
cost and each of the remaining trade metrics to illustrate how a single architectural solution point 
transits across different tradespaces defined by different metrics. The x-axis defines the number 
of tradespaces, each defined with different metrics, to be plotted for Pareto tracing. Each 
tradespace in this plot can have different utopia points.  

A “Pareto Optimal” point will thus move along the Pareto front for each tradespace shown in this 
representation. The 5 chosen points were then traced across the three different tradespaces and 
the traces demonstrate that these points are always on or close to the “Pareto Optimal” region in 
each tradespace. Therefore, these “Pareto Optimal points can be shown to have the best tradeoffs 
for utility to science, downtime and service margin against costs. As such, the Pareto trace plot 
can facilitate the illustration of the position of an architectural solution relative to other points 
across multiple tradespaces.  

 

 

Figure 57: Pareto trace of solutions across different tradespaces defined by combinations of 
various trade metrics with a fixed bound of cost. 
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This procedure for tradespace exploration and analysis can be conducted for the other trade 
metrics like downtime or service margin so that further evaluations can reveal the tradeoffs that 
are driving the distribution and location of other architectural solutions. However, utility to 
science versus cost will be the focus of analysis and evaluation at this stage.  

7.1.2 3-D Visualization of Tradespaces 

3-D visualizations of tradespaces can also be plotted for encompassing illustrative purposes. 
While 3-D tradespaces are much more difficult to interpret, they are reflective of the inherent 
tradeoffs between the four metrics of interests. The spatial distribution of solutions within a 3-D 
space can thus provide new and useful insights into performing evaluation and analysis.  

Two 3-D tradespace plots were generated for this illustrative, with the X-Y plane established by 
the dominant metrics of total lifecycle cost and utility to science. The vertical Z-axis was varied 
in these two plots, with Failed Downtime and Service Margin as the third metric shown in Figure 
58 and Figure 59 respectively. The three metrics in each case have been normalized to compare 
their interactions on a common quantitative basis. A restructuring of the system design 
tradespace was also clearly evident with the change in third metric. 

 

 

Figure 58: 3-D tradespace of the space telescope bounded by cost, utility to science and 
failed downtime 
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Figure 59: 3-D tradespace of the space telescope bounded by cost, utility to science, and 
service margin 

Figure 59 shows the distribution of the same set of design points restructured by a change in the 
third metric from downtime to service margin. An elevated slope of design points is observed, 
with most points concentrated at regions with low utility to science and increasingly spare sets of 
points tapering towards the utopian point with low cost, high utility to science and high service 
margin. This distribution can be explained with the underlying scientific principles and 
assumptions used to develop the trade metrics of interest in this case. The service margin is a 
monetary metric, quantified by the baseline cost less the development cost, launch cost and 
servicing cost. Clearly, the lower the costs of launching a particular service mass, the higher the 
service margin.  

New relationships between the metrics have also been observed from these two plots. The 
servicing location of the space telescope has a direct impact on its downtime, where Sun-Earth 
L2 is the best location since there is no change in operating location and subsequently no 
downtime. This is followed by the Earth-Moon L2 location, the Lotus orbit, and finally LEO as 
determined by proximity from the designated operating location. Utility to science is generally 
inversely proportional to downtime. However, the cost to launch servicing mass demonstrates an 
inverse trend, as it entails the lowest cost for LEO owing to close proximity from Earth and the 
highest cost for Sun-Earth L2. Therefore, the service margin would be inversely proportional to 
downtime. Combining these two relationships would then imply that the service margin is 
directly proportional to utility to science. This implied relationship is thus evident in the upward 
slope observed in the tradespace of Figure 59 as “Pareto Optimal” design solutions move and 
taper towards the utopia point. 
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Instead of a Pareto front, a Pareto surface can be identified in 3D space and the “Pareto Optimal” 
points are highlighted in red as shown in Figure 62 below. A total of 202 solutions was found in 
this Pareto set. Dominated solutions can then be removed to yield the filtered tradespace shown 
in Figure 63. The procedures used to analyze and evaluate tradespaces in 2D can then be applied 
in the same manner with the added dimensionality.  

 

 
Figure 60: 3-D tradespace of the space telescope bounded by cost, utility to science and 

failed downtime, with “Pareto Optimal” solutions highlighted in red 
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Figure 61: Filtered 3-D tradespace of “Pareto Optimal” solutions for the space telescope 

bounded by cost, utility to science and failed downtime 

Continued exploration and analysis of tradespaces can reveal further complex interactions among 
trade metrics and architectural decisions. In the evaluation and analysis thus far, architectural 
solutions with the “7-1-1” configuration of full modularity, SE-L2 servicing location and a 
servicing frequency of once every 3 years, have been found to constitute the “Pareto Optimal” 
subset of solutions closest to utopia point. Decreasing modularity generally increases cost due to 
higher masses of instrument packages required to be launched during every servicing trip. 
Hence, solutions with lower modularity levels tend to fall on the high-cost/high-utility region of 
the tradespace.  

Servicing locations closer to Earth generally lead to decreased utility to science, as the 
movement from its original operating location at SE-L2 coupled with high servicing frequency 
results in increased downtime. As such, solutions with servicing locations at LEO and other 
alternatives are found in the low-cost/low-utility region of the tradespace. The servicing 
frequency has a strong proportional impact on cost, but an inversely proportional effect on utility 
to science. Its variation thus leads to a wide distribution of solutions.  

From the analysis of clusters, Polar plots and Pareto trace plots, the effects of different 
architectural combinations are clearly reflective in the tradespaces. Therefore, tradespace 
exploration motivates the process of making a priori design or architectural selections that are 
“Pareto Optimal” through rigorous analysis and consideration of other options. 
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7.2 Interactions and Main Effects 
7.2.1 Science Utility 

The main effects plot shows the impact that a single architectural decision has on a particular 
trade metric.  In this case, the trade metric is science utility.  Science utility is defined as the 
contribution of the spacecraft to the scientific community and is calculated by taking the integral 
of the sum of the field of view multiplied by the throughput of all the science instruments on the 
spacecraft. 

 

Figure 62: Main effects plot for Science Utility 

With respect to modularity level, modularity level 1 is the most useful for science utility while 
the rest of the modularity levels exhibit approximately the same level of science utility.   This 
occurs because modularity level 1 requires the entire satellite to be replaced, which will rapidly 
upgrade the science capability: 3-D tradespace of the space telescope.  With respect to servicing 
location, SE-L2 is by far the most useful to science.  This is attributed to the fact that the 
telescope does not have to relocate to be serviced, thus the bounded by cost, utility to science, 
and failed downtime value is minimized.  With respect to the servicing frequency, servicing 
every three years provides the greatest science utility while servicing every ten years provides a 
drastically lower science utility.  This occurs because shorter frequencies allow for the satellite to 
be repaired and upgraded more frequently. With respect to communication architecture, no major 
effects were observed.  With respect to mirror support method, mixed surface-normal and 
parallel actuators provide the most utility to science because they allow for a more effective 
actuation capability.  The surface-parallel option provides the lowest science utility because of 
the low MTBF values associated with this system.  For the servicing and assembly technique, as 
well as the segmentation method, no major effects were observed. 

An interaction plot was generated to show the effect that each architectural decision, in 
combination with every other architectural decision, had on the total science utility.  Because 
there are seven architectural trades being conducted, the resulting plot was a 7-by-7 grid of 
graphs, with each sub-plot showing the impact that a given combination of two architectural 
trades have on science utility.  Each row of the plot grid represents one set of architectural trades 
as data sets, with the number of distinct lines equal to the number of different architectures 
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within that tradespace. Each column of the plot grid represents the architectural decisions within 
that particular tradespace as distinct points along the independent axis. For all plots, science 
utility is represented on the dependent axis. 

 

Figure 63: Interaction plot for Science Utility 

The most interesting plot encompassed within the graph above shows the interaction between the 
servicing location and the servicing frequency.  The servicing location of SE-L2 provides the 
greatest science utility when a servicing frequency of three years is used because SE-L2 requires 
no down time for transit to the servicing location.  The science utility falls as the servicing 
frequency is decreased causing more parts of the space telescope to fail.  For all of the other 
servicing locations, the servicing frequency of three years provides a low science utility because 
of the tremendous amount of time spent in transit.  In these cases, the ten year servicing 
frequency also causes a low science utility because of the bounded by cost, utility to science, and 
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failed parts.  The 5-year servicing time strikes an optimal balance for architectures serviced 
somewhere other than SE-L2. 
 
7.2.2 Cost 

The main effects plot shows the impact that a single architectural decision has on a particular 
trade metric. In this case, the trade metric is cost. 

 

Figure 64: Main effects plot for Cost 

Cost most strongly depends on servicing frequency and modularity.  Servicing frequency directly 
affects the number of servicing missions.  With each additional servicing mission, the cost will 
increase due to an additional launch and additional mass being added to the telescope to replace 
broken or unreliable components.  Modularity affects the mass that is replaced in each servicing 
mission.  When many components are grouped together in one module, the entire module must 
be replaced when any component in the module fails or becomes unreliable.  Therefore, as 
modularity increases, less and less mass is replaced over the lifetime of the telescope.  With less 
mass being replaced, fewer additional components need to be developed and lower cost launch 
vehicles can be used for each servicing mission.  Of the remaining architectural decisions, the 
biggest dependency is on mirror support method and this dependency is entirely caused by the 
varying number of actuators involved in the mirror actuation techniques.  The remaining 
architectural decisions (servicing location, communications architecture, Assembly/Servicing 
Technique, and Mirror Segmentation) have little direct effect on cost.  

These interaction plots show the same information as the interaction plots above except for the 
trade metric of cost. 
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Figure 65: Interaction plot for Cost 

With respect to the interaction between servicing frequency and modularity level, the higher the 
modularity level of the spacecraft, the less expensive that it will be.  However, the cost gap 
between levels of modularity is greater for more frequent servicing than for less frequent 
servicing.  This dependency on servicing frequency exists because the proportional cost of 
replacing large modules when only a few components within have failed is decreased with less 
frequent servicing because modules will tend to have more components that need servicing.  
Another interesting dependency is the divergence between modularity levels 3/6 and 2/5 for 
servicing at LEO. This divergence occurs because servicing missions using higher modularity 
levels and servicing at LEO are able to use smaller rockets whereas servicing missions associated 
with lower modularity still need to use larger more expensive rockets to move large amounts of 
mass into LEO and have the added cost of moving the space telescope over large distances. 
Lastly, there is a small dependence of cost for high modularity levels on assembly/servicing 
technique. The swarm assembly/servicing technique adds additional equipment necessary for 
assembly to each module, increasing the mass and cost. 

7.2.3 Servicing Margin 

The main effects plot in Figure 66 shows the impact that each architectural trade had on down 
time. Servicing margin was defined as cost difference between the “baseline” design for a given 
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set of architectural decisions – that is, the design with a monolithic bus (modularity level 1) – 
and an identical design with a higher level of modularity, normalized by the total mass that can 
be launched across all of the servicing missions. 

 
Figure 66: Main effects plot for Servicing Margin 

As can be seen from the main effects plot, not all architectural trades had a significant impact on 
the total mission down time. In particular, Communications Architecture and Mirror 
Segmentation Method showed nearly flat trends across the different design decisions within 
those trades. Meanwhile, Modularity Level, Servicing Frequency, and Assembly/Servicing 
Technique showed noticeable trends across the different design decisions within those trades. 

An interaction plot was generated to show the effect that each architectural decision had on the 
total servicing margin. Because there are seven architectural trades being conducted, the 
resulting plot was a 7-by-7 grid of graphs, with each sub-plot showing the impact that a given 
combination of two architectural trades had on serviceability. Each row of the plot grid 
represented one set of architectural trades as data sets, with the number of distinct lines equal to 
the number of different architectures within that trade-space. Each column of the plot grid 
represented the architectural decisions within that particular trade-space as distinct points along 
the independent axis. For all plots, servicing margin was represented on the dependent axis. 

7.2.3.1 Modularity0

 
Figure 67: Service margin trends for different modularity levels 

It was observed across all of the interaction plots that modularity levels 4 and 7 had the highest 
servicing margins. This corresponds to the two most modular design options: modularity level 4 
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represents a single instrument package with separate structures for each component family; 
modularity level 7 represents individual instruments packages with separate structures for each 
component family. Modularity level 7 was the most serviceable across all other design trades, 
since individual instruments are less costly to service/replace than a single, integrated instrument 
package. 
 
7.2.3.2 Servicing0Location0

 
Figure 68: Service margin trends for different servicing locations 

Results showed that of the four servicing locations, LEO (servicing location 3) generally 
provided the most servicing margin. However, interesting trends were detected when looking at 
both servicing location and servicing frequency. For a servicing frequency of 3 years, servicing 
at Sun-Earth L2 (servicing location 1) provides the most servicing margin. For servicing 
frequencies of 5 and 10 years, servicing in LEO provides the most servicing margin. This is 
thought to happen because the serviced mass at LEO is lower than the serviced mass at other 
locations as the telescope will use electric propulsion to get to/from LEO. That is, for a fixed 
payload mass launched to orbit, the mass of propellant required to refuel the telescope for its 
return journey to L2 is lower than the mass of chemical propellant that would be required to 
propel the servicing probe to any location outside of LEO.  This leads to the launch cost/kg is 
lowest at LEO. 
 
7.2.3.3 Servicing0Frequency0

 
Figure 69: Service margin trends for different servicing frequencies 

As can be seen in the above figure, shorter servicing frequencies lead to more servicing margin. 
The shortest servicing frequency – three years between servicing missions – consistently has the 
highest servicing margin for all architecture combinations. Likewise, the longest servicing 
frequency – 10 years between servicing missions – has the lowest servicing margin for all 
architecture combinations. This is thought to happen because having frequent servicing missions 
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leads to fewer components being replaced per mission, which cheaper rocket with lower payload 
capacities can be used. Infrequent servicing missions would be replacing more components per 
mission, requiring launch vehicles with larger payload capacities.  
7.2.3.4 Communications0Architecture0

 
Figure 70: Service margin trends for different communications architectures 

Communications architecture has little impact on servicing margin across all other design trades. 
Communications architecture 1 (DSN) is marginally better than the other three options, which is 
interesting because it the most massive and most expensive out of the four possible architectures, 
and therefore should have the lowest servicing margin. 
 
7.2.3.5 Mirror0Support0Method0

 
Figure 71: Service margin trends for different mirror support methods 

The Mirror Support Method trade also showed little variation across the three possible 
architectures. Results showed that support method 2 (surface parallel) was provided a marginally 
higher servicing margin than the other two support methods. This is because the surface parallel 
support method lacks a back-structure, and therefore has the lowest mass of the three options. 
 
7.2.3.6 Assembly/Servicing0Technique0

 
Figure 72: Service margin trends for different assembly/servicing techniques 
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Assembly/Servicing Technique had a noticeable impact on servicing margin. Techniques 1 and 2 
(self-assembly and tugs, respectively) had the highest servicing margins and were nearly 
identical. Servicing technique 3 (formation flying individual components) had drastically lower 
servicing margins across all other design trades. Of the three options, servicing technique 2 had 
the highest servicing margin. It is believed that this is because tugs have the lowest cost. 
 
7.2.3.7 Mirror0Segmentation0

 
Figure 73: Service margin trends for different mirror segmentation methods 

Mirror segmentation has no noticeable effect on servicing margin, as can be seen by the fact that 
the lines for all five segmentation types overlay each other. 
 
7.2.4 Downtime 
The main effects plot shown in Figure 74 shows the impact that each architectural trade had on 
downtime. Failed downtime is a combination of the time during which no science can be done 
due to the failure of a component and the time it takes to complete a servicing mission. 

 
Figure 74: Main effects plot for Downtime 

As can be seen from the main effects plot, not all architectural trades had a significant impact on 
the total mission down time. In particular, Communications Architecture, Assembly/Servicing 
Technique, and Mirror Segmentation Method showed nearly flat trends across the different 
design decisions within those trades. Meanwhile, options within the Servicing Frequency trade 
showed a significant variation between each other, with the most frequent servicing option (3 
years between missions) having the least amount of failed down time, and the least frequent 
servicing options (10 years between missions) having the highest amount of failed downtime.   



 163 

7.2.4.1 Modularity0

 
Figure 75: Downtime trends for different modularity levels 

The above graphs show that there is little difference in down time between the different 
modularity levels. Modularity levels 4 and 7, the two most modular levels, have marginally 
higher down times than the other options. This is due to the fact that more modules require 
longer time to service. 
 
7.2.4.2 Servicing0Location0

 
Figure 76: Downtime trends for different servicing locations 

Servicing location 1 (in-situ servicing at Sun-Earth L2) has the highest amount of down time out 
of the four locations. This trend is interesting, considering the travel time from Earth orbit to SE-
L2 is shorter than the transit time from ES-L2 back to Lunar or Earth orbit, by about 40 days. 
LEO, lunar, and LOTUS servicing locations all have similar down times. This makes sense, 
because the transit times from Earth-Sun L2 to these three locations are similar to within a few 
days. 
 
7.2.4.3 Servicing0Frequency0

 
Figure 77: Downtime trends for different servicing frequencies 
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As mentioned in the discussion of the Main Effects plot, the total percentage of failed downtime 
increased with time between servicing missions. The lowest servicing frequency, 3 years 
between missions, has the lowest amount of failed down time. The highest servicing frequency, 
10 years between servicing missions, has the highest amount of failed down time. If more time is 
allowed between servicing missions, more components are going to fail, leading to reduced 
science capacity. 
 
7.2.4.4 Communications0Architecture0

 
Figure 78: Downtime trends for different communications architectures 

There were no noticeable differences between the downtime that resulted from different 
communications architectures. 
 
7.2.4.5 Mirror0Support0Method0

 
Figure 79: Downtime trends for different mirror support methods 

Mirror support method 2 – surface parallel actuators – had the highest downtime out of the three 
options. Support method 3 – mixed surface normal and surface parallel actuators – had the 
lowest amount of down time. 
 
7.2.4.6 Assembly/Servicing0Technique0

 
Figure 80: Downtime trends for different assembly/servicing techniques 
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There were no noticeable differences between the downtime that resulted from different 
assembly/servicing techniques. 
 
7.2.4.7 Mirror0Segmentation0

 
Figure 81: Downtime trends for different mirror segmentation levels 

There were no noticeable differences between the downtime that resulted from different mirror 
segmentation levels. 
 
7.3 Tradespace Characterization 
 

7.3.1 Principle Component Analysis (PCA) 

A principle component analysis was performed in order to determine the trade metrics that 
contributed the most to the overall variation. Principle component analysis decomposes a vector 
space into orthogonal components, the first of which maximally explains the variation in the 
data. Successive components explain the maximal amount of remaining variation under the 
constraint that they must be orthogonal to all previous components. Singular value 
decomposition (SVD) was used to deconstruct the trade space into principle orthogonal 
components and associated eigenvalues. The magnitude of the eigenvalue corresponds to the 
amount of variation explained by that component. 
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Figure 82: Eigenspectrum of non-normalized (top) and normalized trade metrics after 
performing PCA. 

The eigenvalues corresponding to the first four principle components are shown in Figure 81. 
The principle component analysis was performed on the raw output trade metrics from our 
model. We found that the variation in certain trade metrics (particularly cost) was so large that 
they dominated the eigenspectrum. In order to address this large variation we performed a 
normalization of the trade metrics as seen in Eq. 88. 

!! =
!! −!"#(!!)

max!(!! −!"# !! )
 

 Eq. 88 

In order to assess which trade metrics contributed the most to the trade space variation, the sum 
over all eigenvalues for each eigenvalue multiplied by the eigenvector component corresponding 
to each trade metric was determined per the equation below as seen in Table XXXII. 
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 Eq. 89 

Trade space analysis should be performed on trade metrics that are independent, and this analysis 
allows proper testing of this assumption. It is apparent that cost and failed downtime are primary 
drivers of tradespace variation. Complexity also appears to an important factor in tradespace 
variation (Table XXXIII), but since it makes a small contribution to cost. As such it was not 
considered as an independent trade metric. 

Table XXXII: Contributions of Each Trade Metric to Overall Variation 
Trade Metric Relative Contribution 

Cost 47.4 
Science Utility 23.6 
Service Margin 23.5 

Failed Downtime 66.8 
 

 
Table XXXIII: Contributions of Trade Metrics to Overall Variation including Complexity 

Trade Metric Relative Contribution 
Cost 45.3 

Science Utility 23.6 
Complexity 53.4 

Failed Downtime 62.8 
 

 

7.3.2 Hierarchical Clustering 

As a next step in determining the overall structure of the tradespace, hierarchical clustering was 
performed on the entire tradespace as well as on the Pareto efficient architectures (Figure 82). 

This hierarchical clustering was performed on the normalized trade metrics (between 0 and 1). 
We see two important features, clustering corresponding to similarities in trade metrics (top 
dendrogram) and similarities corresponding to architectural decisions (left dendrogram). It is 
apparent from both principal component analysis and hierarchical clustering that our four trade 
metrics can be reduced to two independent metrics. 
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Looking more globally at an assortment of trade metrics and performance metrics collected, it is 
apparent that there are three primary clusters of trade metrics (Figure 83). Weighting trade 
metrics according to their relatedness, as quantified in the dendrogram, achieves a similar 
function to using PCA to deconstruct maximally independent metrics. This approach has the 
benefit of not being constrained by an orthogonality requirement, and offers a novel means of 
rationally weighting the contributions of each trade metric or identifying maximally independent 
trade metrics from a set of performance metrics. 

Figure 83: Hierarchical biclustering of Pareto Architectures. There are two main clusters 
for our trade metrics (1) cost and utility to science (2) failed downtime and service margin. 
There are also emergent clusters for different Pareto architectures (hierarchical branches 
on the left) In particular we identify the 7-1-1 set of architectures that was determined to 
have a high amount of science utility at relatively low cost. 



 169 

 

Figure 84: Hierarchical biclustering of all architectures and performance metrics. There 
are three main clusters for our trade metrics (1) cost and risk dominated (2) science utility 
and servicing dominated. (3) mass, volume, and complexity dominated. There are also 
emergent clusters for different architectures (hierarchical branches on the left). 
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7.4 Sensitivity Analysis 
An analysis was conducted in order to understand the model’s sensitivities to a selected number 
of assumptions/design parameters. Sensitivity analysis was performed on assumptions that 
effected many code modules that were hypothesized to directly impact trade metrics and/or were 
implemented in the model in such a way it was efficient to vary design parameters and run 
multiple iterations. These assumptions included the mean time between failure (MTBF) of all 
components and the Reliability Threshold at which servicing of a component will occur. 

 
7.4.1 Assumptions 

This section describes the design parameters or assumptions that were varied in order to conduct 
the sensitivity analysis.   
 
7.4.1.1 Component MTBF 

Component MTBF levels are provided for each component in the model, and are located in the 
Component Family DB; these values are based on years of lifetime and reliability values from 
data sheets, or estimates where data sheets are not available or where components leverage to-be 
developed technologies without existing MTBF analyses. Component MTBF values are used in 
the calculations of initial system cost and the failure rates. For the sensitivity analysis, the MTBF 
value for each component was increased or decreased by a certain percentage (this change is 
constant for all components within a single run). In order to implement this analysis, an MTBF 
multiplier was added into the code for each sensitivity run to increase or decrease the MTBF 
values of all of the components by the specified amount. The MTBF multiplier was run at values 
of [0.50, 0.85, 0.90, 0.95, 1.00, 1.05] to investigate a range of component MTBF values and 
understand how those values impact the model output. 
 
7.4.1.2 Reliability Threshold 

The Reliability Threshold is the threshold at which a decision is made to perform servicing on a 
non-failed component.  During each servicing mission, if a component’s reliability has dropped 
below the reliability threshold, it is replaced. This value is a representation of a program 
management decision of how far mission managers are willing to allow a component to degrade 
in reliability before replacement. This design parameter impacts serviced mass and failed 
downtime. For the sensitivity analysis, the Reliability Threshold was varied over the range of   
[0, 0.50, 0.60, 0.65, 0.70, 0.75, 0.80, 0.90, 1] in order to investigate a broad range of possible 
values for the Reliability Threshold. The two extreme values (0 and 1) were selected in order to 
examine the effect on telescope performance of the two extremes of the programmatic decision 
of when to service components. A reliability threshold of 0 indicates that components are never 
serviced due to low reliability; they are only serviced when they fail. A reliability threshold of 1, 
on the other hand, indicates that every component will be serviced during every mission, since 
any period of operational time will decrease a component's reliability below 1. The intermediate 
values were chosen to examine the range of reliability threshold values surrounding the nominal 
model value of 0.7, using two steps of 0.05 followed by a step of 0.1 in both directions. 
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7.4.1.3 Instrument0Growth0Rate0Sensitivity0
To examine the effect of varying rates of growth of discovery efficiency, each of the four 

instruments was assigned a different discovery efficiency growth rate by altering the baseline 
value of 0.3218 from Baldesarra13.  Instrument A was assigned (4/3)*0.3218 or 0.4291.  
Instrument B was assigned the baseline value of 0.3218.  Instrument C was assigned 
(2/3)*0.3218 or 0.2145.  Instrument D was assigned (1/3)*0.3218 or 0.1073. By looking at the 
relative contributions of the different instruments to the overall utility to science, the dependence 
on instrument growth rate can be determined. 

Figure 85 shows the utility to science of each instrument for a typical architecture. The x-
axis shows time in weeks and the y-axis shows the utility to science on a logarithmic scale. The 
instruments are clearly sorted according to their assigned discovery efficiency growth. But most 
importantly, the utility of the fast-developing instruments vastly outpaces that of the slow-
developing instruments. The contribution of Instruments C and D to the telescope utility to 
science is almost negligible. Therefore, the calculation utility to science is highly sensitive to the 
assumed discovery efficiency growth rate. For use in this model, this sensitivity is acceptable as 
utility to science is a relative metric for differentiating among architectures. But this sensitivity 
also illuminates the importance of investing in instrument development. Such investment has a 
direct payoff in terms of scientific output and a small difference in technology growth rate can 
greatly affect the scientific utility of a telescope. 

 
Figure 85: The utility to science of each instrument for a typical architecture. The x-axis 

shows time in weeks and the y-axis shows the utility to science on a logarithmic scale. The 
instruments are clearly sorted according to their assigned discovery efficiency growth rate. 

7.4.2 Sensitivity of Trade Metrics to Assumptions 
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7.4.2.1 Interquartile Range of Percent Change in Trade Metrics 

These charts demonstrate the spread of the differences of trade metric values between each 
baseline architecture (enumerated with the baseline case for the assumption) and the same 
architecture enumerated with a variance the assumption of interest. This method enables an 
examination of the effect of this parameter on an architecture-by-architecture basis, thus 
illuminating which metric is most affected by the parameter for a given architecture. The 
following plots show the effect of changing the Component MTBF and Reliability Threshold 
values across a certain range for all architectures. Each row of the tornado plot corresponds to a 
trade metric, and shows the 25th and 75th percentile values for the data set of delta values for that 
metric, defined as  

 !(!) = !!(!)!!!(!)
!!(!)

!×!100   
Eq. 90 

   
where ! is the index for a particular architecture, ! is the metric under investigation (with !! 
indicating the value with the changed parameter and !! indicating the value for the baseline 
case), and ! is the trade metric delta value, defined as the percent change in the metric. Figure 86 
represents this data for Component MTBF values changed by ±10%.  Figure 87 represents this 
data for Reliability Threshold changed by ±0.05.  

 
Figure 86: Tornado chart of component MTBF delta values 
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Figure 87: Tornado chart of reliability delta values 

As can be seen in both sensitivity analyses, Utility to Science has the largest spread in the 
interquartile delta values, varying more than 30% in the positive direction, !"!! !! > !"!!(!!), 
and more than 25% in the negative direction, !"#! !! < !!"#!(!!), where !! is the ith 
architecture, !"!! is Utility of Science for the baseline case and !"!!!is the Utility of Science 
where a design parameter was altered for the sensitivity analysis.  This analysis indicates that 
over half of the architectures have over 25 percent change in the Utility to Science metric in the 
independent cases where Component MTBF is varied ±10% (Figure 86) and Reliability 
Threshold is varied ±0.05 (Figure 87) in comparing architecture to architecture. Therefore, there 
are many architectures whose Utility to Science Metric is sensitive to both Component MTBF 
and Reliability Threshold.  A closer inspection of the data shows that the Utility to Science 
produces high variance in values for the extremes in high and low values, making Utility to 
Science very sensitive to perturbations according to the percent change metric used in Figure 86 
and Figure 87.   The source of this variance requires further investigation. 

Similarly, component family MTBF also produces delta change percentages in the ±5% range for 
Downtime and Servicing Margin and ±1% for Cost.  Most architectures are not as sensitive in 
the Downtime, Servicing Margin, and Cost metrics as they are for Utility to Science when 
Component MTBF is varied.  The same is true for the sensitivities of Downtime, Servicing 
Margin, and Cost metrics when the Reliability Threshold is varied (not as sensitive as Utility to 
Science is to varying Reliability Threshold).  

7.4.2.2 Crossover 

The distribution of values for per architecture percent changes reveals the percentage of the time 
that a specific trade metric delta was negative, i.e., !! !! < !!(!!); this percentage will be 
referred to as the crossover percentage.  For the metrics of Cost and Downtime, negative delta 
values and larger crossover percentages indicate better performance for a specific design 
parameter change.  Note that this data is calculated with respect to the baseline case, so it is not 
necessary for the baseline case to be represented. For Utility to Science and Servicing Margin, 
positive delta values and lower crossover percentages indicate better performance with a specific 
design parameter change.  A chart of the crossover percentages for each trade metric across 
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varying sensitivity levels is shown in Figure 88 for Component MTBF and Figure 90 for 
Reliability Threshold. 

 
Figure 88: Crossover percentages for component MTBF variations 

As expected, lowering the MTBF lowers the percentage of architectures for which !! !! >
!!(!!). Due to increased failures and increased downtime, the crossover values that exceed 50% 
for MTBF factors less than 100% and the greater the MTBF, the higher the crossover value 
(Figure 88). For the 50% MTBF case, 76% of the time the model produced a lower cost for the 
same architectural decision. Decreasing the MTBF values per component in the majority of 
architectures lowers the initial system cost.  This result is because lower MTBFs correspond to 
less expensive components in the model; the driving assumption being components that tend to 
fail more often are either less expensive to make or purchase.  The cost metric is determined by 
multiplying the initial telescope cost by the ratio of serviced mass to telescope mass.  The 
serviced mass in the model does not fluctuate greatly with decreases in MTBF for modularity 
levels 1-3 and 5-6 because entire modules are replaced if at least one component has failed or is 
expected to fail soon, so an increase in failures does not correspond to a large increase in 
serviced mass.  The exceptions, then, are modularity 4 and 7, where individual component 
families are serviced and significant increases are observed in serviced mass for increased 
failures (Modularity Levels with Higher Costs). For the 50% MTBF data set, the 24% of 
architectures for which a decreased MTBF yielded an increased cost were almost entirely 
composed of architectures with Modularity level 4 or 7 (Figure 89). 
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Figure 89: Modularity composition of architectures with higher costs at MTBF 50% 

Servicing Margin is decreased when Component MTBF is decreased, as expected, due to the fact 
that serviced mass is not changed (for modularity levels 1-3 and 5-6) but servicing missions are 
increased. Decreasing the Component MTBF increases telescope downtime due to increased 
failures.  A 50% decrease in Component MTBF is almost always worse than the baseline for the 
metric of downtime (Figure 88).   

Trends in Figure 88 also show relationships between the trade metrics and the MTBF values of 
the components. It is important to note for this analysis that in this analysis the intervals between 
the MTBF multipliers are not constant, so it is not appropriate to comment directly on the rate of 
change of a metric with respect to the parameter without careful consideration of the variation in 
step size; that is the subject of future analysis. However, trends are shown and can be analyzed. 

Cost shows an interesting trend. In general, lowering the MTBF values decreases the cost for 75-
80% of the architectures; this makes sense, as the NICM cost model used to determine the cost of 
the instrument package is based in part on the MTBF values of the instruments, with lower 
MTBF values resulting in lower instrument costs. This also explains the cost increase for 20% of 
the architectures when the MTBF values are increased. However, it is interesting to point out 
that, while the proportion of architectures with decreased cost for decreased MTBF is steady at 
approximately 80% for MTBF multipliers of .85, .9, and .95, for an MTBF multiplier of .5 (the 
case where the MTBF values are reduced by half) the proportion of architectures with decreased 
cost drops to 75%. This implies that there is another effect that takes hold to increase the cost for 
lower MTBF values, but only when the change in MTBF values is low. This is most likely an 
increase in the serviced mass, which results in increased costs both in launch and development of 
replacement parts. While this increase in serviced mass is likely present for the other sensitivity 
analyses with reduced MTBF values, it is only when the magnitude of the reduction of MTBF 
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values is higher (reducing to 50% of the original value) that the effect of increased serviced mass 
overrides the effect of decreased cost. 

The other trade metrics display more monotonic behavior. In general, lowering MTBF values 
lowers the Utility to Science with an effect proportional to the MTBF multiplier; the proportion 
of architectures with lower Utility to Science ranges between approximately 57% and 90% 
across the range of MTBF multipliers tested that were less than 1. For an increase in MTBF 
values, approximately 43% of the architectures exhibited increased Utility to Science. While 
more data from analyses with increased MTBF values would be required to verify this, these 
results seem to indicate that the effect of MTBF is similar for both increases and decreases, 
resulting in a proportional change in the percentage of architectures with increased Utility to 
Science. 

The proportional relationship between MTBF values and Utility to Science makes sense, because 
the primary impact of component MTBF values on Utility to Science is in the amount of Failed 
Downtime; the lower the MTBF values of the components, the more often those components are 
expected to fail, resulting in lower downtime. To investigate this hypothesis, the Failed 
Downtime metric is investigated. Failed Downtime exhibits the inverse trend – the higher the 
MTBF values, the greater the percentage of architectures for which Failed Downtime was 
reduced. This supports the hypothesis. In fact, for the MTBF multiplier of 0.5, the percentage of 
architectures with decreased Failed Downtime is 0; for this MTBF multiplier, every architecture 
experienced increased downtime. This is again reflected in the fact that this MTBF multiplier 
experiences the highest percentage of architectures with decreased Utility to Science. 

The trend in the Specific Servicing Margin shows that as the MTBF multiplier increases, the 
percentage of architectures with decreased Specific Servicing Margin decreases; in general, 
lowering the MTBF of the components in an architecture tends to decrease the Specific Servicing 
Margin. In fact, for an MTBF multiplier of 0.5, nearly all of the architectures experienced a 
decreased Specific Servicing Margin. This makes sense, as lower MTBFs result in more 
component failures and thus higher serviced mass. The definition of Specific Servicing Margin 
from Eq. 1 shows that a higher serviced mass results in a lower Specific Servicing Margin. 
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Figure 90: Crossover percentages for reliability threshold variations 

The higher the Reliability Threshold, the greater the cost due to increased module servicing that 
increases serviced mass while not changing the initial system mass. The higher the Reliability 
Threshold, the greater the Utility to Science because modules are being maintained at higher 
reliabilities, thus decreasing downtime due to failures. On the other hand, decreasing the 
Reliability Threshold to values below 0.65 does not have a large impact on Utility to Science: 
Utility to Science is lowered but does not continue to degrade with decreasing Reliability 
Threshold.  This trend indicates that Utility to Science is sensitive to increased changes in 
Reliability but not sensitive to decreases below 0.65.  Similarly, Servicing Margin experiences 
the same sensitivities to increasing the Reliability Threshold above 0.65, but not to decreasing it. 

In summary, Cost, Utility to Science, and Specific Servicing Margin are all much more sensitive 
to increases in the Reliability Threshold than deceases. This makes sense, as the primary 
interaction between these metrics and the Reliability Threshold is through the replacement of 
components that would not otherwise be replaced, i.e. components that are not failed but have 
fallen below the reliability threshold. It is expected that as the Reliability Threshold decreases 
the number of components serviced decreases as well, but only up to a certain point. Because 
random failure is also incorporated into the model, a certain number of components will be 
replaced regardless of the Reliability Threshold; as the Reliability Threshold decreases, the 
number of operational components with reliabilities below the threshold decreases due to their 
higher probability of having failed already. Thus, at a certain point the Reliability Threshold 
becomes low enough that the number of components that survive long enough for their reliability 
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to drop to that level is negligible, and reducing the Reliability Threshold further has no effect. 
Increasing the Reliability Threshold above this value, however, has a significant effect, as it 
significantly increases the number of components that require replacement that are not failed. 
Based upon this analysis, the level of Reliability Threshold at which the simulation begins 
replacing a significant number of components that are not failed is somewhere between 0.8 and 
0.9, as this is the point where the effects in Cost and Specific Servicing Margin begin to manifest 
themselves. 

The center of the distributions for Downtime across the varying Reliability Threshold changes is 
relatively constant, indicating that Downtime is not sensitive to changes in Reliability Threshold. 

7.4.2.3 Cumulative Distribution Functions 

For each sensitivity impact on a trade metric, Cumulative Distribution Functions (CDFs) were 
plotted to show the distribution of the Trade Metrics and percent change metric (Figure 91 and 
Figure 92).  The steeper slopes in the CDFs indicate ranges for a metric for which there are many 
architectures.  These CDFs also depict changes in center, spread, and shape of the data and 
regions where certain architectural sets are stochastically dominant.  Though Figure 86 and 
Figure 87 allow conclusions to be more readily determined, the same conclusions can also be 
drawn from the CDF plots. Therefore, the CDF plots can provide the same conclusions, though 
they represent the data in a less concise manner as with the Tornado and Crossover figures.  An 
example of each type of CDF is shown below.   

 
Figure 91: CDF of cost varying reliability threshold (comparing distributions) 
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Figure 92: CDF of percent change in cost varying reliability threshold (comparing 

architectures) 

7.4.2.4 Sensitivity of Pareto Frontier to Assumptions 

In order to investigate the sensitivity of the Pareto frontier to the assumptions, a trade space 
exfoliation method was developed to identify layers of Pareto frontiers and the movement of 
architectures along the layers as a result of altering an assumption.  In order to understand the 
results, a detailed explanation of tradespace exfoliation and Pareto layers is necessary.  The 
following steps detail the tradespace exfoliation method: 

1. For the baseline data set, identify the metrics that are traded and the number of 
dimensions 

2. Normalize the data 
3. Determine the Pareto frontier and label those architectures as Pareto layer i=1 
4. Remove the ith Pareto frontier from the data set 
5. Determine the Pareto frontier of the reduced data set (the data set without the 1:ith 

frontier) and label as Pareto layer i+1  
6. Continue for i = 1:N, with N being the number at which the frontier is empty, i.e., until 

there are no points in the data set 
7. Repeat steps 2-6 for the set of architectures for which an assumption was changed 
8. Compare the Pareto layer numbers for each architecture in the first Pareto layer in the 

baseline data set to the Pareto layer in which that architecture now resides as a result of 
the change in the assumption/design parameter 

Figure 93 depicts the cumulative distribution of the percentage of the baseline Pareto frontier that 
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was moved to a given Pareto layer or lower, i.e., the tradespace with the altered assumption 
contains y percent of the Pareto layer 1 architectures in layers 1 to x, where y is the vertical axis 
and x is the horizontal axis. The solid lines in Figure 93 correspond to the distributions for 
changes in Component MTBF of ±5% and the dotted lines correspond to the distributions for 
changes in Reliability Threshold of ±0.05. 

With respect to change in Component MTBF values, only 10% of the Pareto-Optimal 
architectures of the baseline data remain in the first Pareto layer when the MTBF values are 
changed. Thus, the Pareto front itself is sensitive to change in Component MTBF values. 
However, this analysis technique allows an investigation of “Pareto zones” rather than simply 
fronts; the data reveal what proportion of Pareto-Optimal architectures from the baseline data 
moved to each Pareto layer. Approximately 60% of the Pareto-Optimal architectures remained 
within the first 5 Pareto layers when the parameter was changed, indicating that over half the 
architectures remained fairly close to the Pareto front. Given the margin for error in the 
calculation of model outputs, the first 5 Pareto layers represent architectures that may be 
considered “pseudo-Pareto-Optimal” within the accuracy of the model. The farthest that any 
Pareto-Optimal architecture fell is 24 Pareto layers (out of a total of approximately 40). 

For change in Reliability Threshold values, approximately 20% of the Pareto-Optimal 
architectures remained in the first layer, and approximately 80% fell no further than 5 Pareto 
layers. The farthest that any Pareto-Optimal architecture fell is 14 Pareto layers. Therefore, the 
Pareto frontier is more sensitive to changes in Component MTBF values than changes in 
Threshold Reliability. The Pareto frontier itself is quite sensitive to changes in model parameters, 
but inclusion of the first 5 Pareto layers as “pseudo-Pareto-Optimal” shows that the Pareto zone 
is more robust to changes in the model parameters. 

 
Figure 93: Pareto movement of baseline frontier  
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8 FUTURE WORK 

There is a considerable amount of future work that can be done on this project both to increase 
the validity of the model and to extend the reach of conclusions achieved thus far.  The main 
contribution of this work has been to set up a tool to evaluate possible large telescope 
architectures that meet the ATLAST science requirements, but many alterations should be made 
before the model’s evaluation of architectures is to be cited confidently.  As with any model and 
tradespace analysis, there are a great deal of points for further work and exploration; however, 
these are some of the immediate points that the TITANS AE team would have liked to 
incorporate and investigate.  

8.1 Next steps to increase the validity of the model 
The model serves as a tool with which the tradespace of large telescope architectures can be 
explored.  There are many sources of uncertainty in the existing model due to, for example, low 
level of maturity for several considered technologies, unavailability of a full set of cost models 
with the appropriate ranges of validity, etc. 

• Decrease the discretization of the subsystem modules: Because the focus of this study has 
been on the architecture evaluation tool, the subsystem models achieve a low level of 
fidelity by defining a small number of component families each subsystem can choose 
from.  This resulted in some of the subsystem models producing only discretized 
architectures, which caused the trade metrics values across architectures to be less 
continuous than they likely are in reality. 

• Incorporate feedback loops into model: The model does not incorporate feedback for 
several reasons (see Section 5.1 which talks about the N2 and the lack of feedback).  The 
addition of feedback into the models would decrease the number of assumptions and 
increase the fidelity of the subsystem architecture models. 

• Reconsider the rate of improvement in instrument discovery efficiency over the 40-year 
mission lifetime: As discussed in Section 5.2.1 (utility-to-science section), the instrument 
improvement rate has been shown to increase exponentially, but it may not be realistic at 
this time to project the rate of improvement as exponential over the next 55 years. 

• Incorporate upgrades in satellite bus components: The model incorporates advances in 
science instrumentation but not in engineering instrumentation.  Over time, these 
components will only improve (i.e., become less massive, more reliable, more capable, 
etc.).  If a model exists to obtain projected performance of engineering components, it 
should be implemented in order to more accurately reflect increasing engineering 
component capability over the telescope lifetime, which would, by extension, reflect 
increasing telescope capability. 

• Increase the range of validity of our architectural model so it may be further validated:  
One of the biggest limitations to the model is its inability to be properly validated against 
even the most similar large telescope missions (i.e., JWST and HST).  The assumptions 
made (e.g., 16.8-m-diameter primary mirror) and the way the scientific requirements 
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were incorporated (e.g., science data rate is a requirement for the communications 
system) does not make the model applicable to JWST and HST.  As is natural with an 
ambitious study of this sort, validation is difficult and largely unattainable, but it would 
be useful to be able to relax the assumptions and account for requirements in a more 
general way so that the model can be minimally validated. 

• Track the consumption of consumables over time:  The study has assumed that the 
telescope will have enough consumables (e.g., propulsive fuel, coolant) to last the time 
between servicing missions, and that consumables are replaced during servicing missions.  
In the future, consumables should be considered something to be “serviced,” in the sense 
that they can fail by being depleted between servicing missions. 

• Account for different signal latency in servicing operations:  The differences in signal 
latency for various assembly/servicing locations has not been taken into account in this 
analysis, though it surely affects operational downtime as well as the feasibility of 
different types of assembly/servicing technique. 

8.2 Next steps for tradespace exploration 
This initial tradespace exploration should be expanded upon to increase its ability to accurately 
differentiate between architectures based on the four trade metrics considered.  Generally, the 
addition of and improved implementation of architectural decisions will extend the conclusions 
of the trade study by allowing for a more detailed analysis of architectures’ cost and utility. 

• Estimate cost of servicing: An estimate of servicing cost is critical to the evaluation of 
possible architectures for this mission.  Such an estimate would be based on a currently 
nonexistent servicing cost model that could be developed based on further research and 
development effort on assembly and servicing methods for large space telescopes. 
 

• Improve the implementation of some architectural decisions considered in the study: 
There are some architectural decisions that were implemented in a way that they did not 
result in interesting trades.  For example, from our main effects plots, it is evident that the 
decisions of segmentation of the primary mirror and the communications architecture did 
not interface with other architectural decisions and did not significantly affect the trade 
metrics.  Launch costs were the only thing affected by the segmentation of the primary 
mirror, and these are small compared to lifecycle cost.  The different data transmission 
capabilities (i.e., data rates) of different communications architectures were not taken into 
account, so this choice did not change utility to science the way it likely would in reality. 
 

• Consider the baffle design: The type of baffle could be made into an architectural 
decision or considered in a separate analysis.  As a starting point, the baffle design could 
either be similar to the JWST baffle or Hubble baffle. 
 

• Consider assembly and servicing techniques separately: Making these separate 
architectural decisions would allow for the consideration of different approaches to these 
distinct operational phases.  Breaking these decisions out separately may produce 
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interesting results especially in distinguishing between designs with very different levels 
of modularity and segmentation. 
 

• Consider on-demand servicing: It is assumed that servicing would be regularly scheduled 
to simplify the analysis.  This is one of the most important architectural decisions that 
impact lifetime servicing cost. The implications of employing on-demand vs. scheduled 
servicing, or a hybrid of the two, are discussed in detail in Section 4.3.4.  
 

• Consider an external coronagraph: It was assumed that the telescope system would not 
have a separate formation-flying coronagraph.  However, such a coronagraph was 
proposed for ATLAST, and it this study would be remiss to explicitly not consider an 
external coronagraph in the future. 
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9 CONCLUSION 

The steps outlined in this document describe the process for the tradespace analysis which was 
conducted in course 16.89, Space Systems Engineering, at MIT. The team investigated past 
designs of space telescopes and conducted a stakeholder analysis in order to determine the seven 
most important architectural decisions and enumerate an appropriate tradespace of alternatives 
associated with those decisions. The team determined the necessary system metrics (cost, utility 
to science, failed downtime, and servicing margin) which were used to evaluate each 
architecture. 

The development of these metrics into a fully-functional and streamlined program enabled the 
team to efficiently evaluate the full set of enumerated architectures. Analysis of the outputs of 
the model has revealed a number of important dependencies.  Utility to science depends most 
strongly on servicing frequency and servicing location, with the focus on upgrading the 
instruments often and minimizing downtime. Cost most strongly depends on modularity level 
and servicing frequency with architectures requiring a large serviced mass being most expensive. 
Failed downtime most strongly depends on servicing frequency, with the other architectural 
decisions contributing in minor ways. Architectures with infrequent servicing are more likely to 
experience failures leading to lengthy downtimes. Serviceability most strongly depends on 
modularity, servicing frequency, and assembly/servicing technique. Architectures with strong 
modularity serviced often with cheap servicing techniques exhibit the lowest cost per unit 
serviced mass. In the sensitivity analysis, utility to science was the sole trade metric to 
significantly feel the effects of the changes in MTBF and reliability threshold. 

These dependencies reveal themselves in the analysis of the Pareto front. Clusters towards the 
higher end of the Pareto front use frequent servicing at Sun-Earth L2 and low modularity to 
achieve high utility to science but with high cost. Clusters near the middle of the Pareto front use 
high modularity to achieve lower cost by changing to high levels of modularity while losing 
some utility to science. Architectures near the bottom of the Pareto front use high levels of 
modularity and less frequent servicing at LEO to achieve very low cost with relatively little 
utility to science. The Pareto Optimal architectures changed with the variation of MTBF and 
reliability threshold. However, most of the original Pareto Optimal architectures remained close 
to the new Pareto fronts, indicating moderate sensitivity. While the other architectural decisions 
affect the trade metrics in small ways, our analysis has shown that servicing frequency, servicing 
location, and modularity are the most important decisions when architecting a space telescope—
essential information for stakeholders in the selection of an optimal architecture for the next 
generation space telescope. 
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APPENDIX A: VARIABLE LIST 
Code 

Module Variable Description Units 

Main 
LTA Structure to contain each architecture's design variables [varies] 
res_vec Results vector [varies] 

Sensitivity 
Analysis 

modlevsensitivity Sensitivity analysis variable - Multiplier of number of 
bus-segments needed per module [unitless] 

MTBFsensitivity Sensitivity analysis variable - Multiplier of MTBF 
column [unitless] 

R_threshold 
Sensitivity analysis variable - Required reliability of a 
given component family for a given servicing mission 
(would be pre-emptively replaced if below threshold) 

[unitless] 

Design 
Constants 

reliability_req Required reliability of a given subsystem for initial 
design (0.90) [unitless] 

mirror_diam Primary mirror diameter (16.8) m 
mirror_temp_range Mirror operating temperature range (20-22) deg C 
shield_efficiency Thermal shield efficiency (0.80) [unitless] 
total_mass_estimate Estimate of total spacecraft mass (15000) kg 
R_earth2telescope Distance from earth to the telescope (1.5 billion) m 
acs_pointing_error Pointing requirement taken from ATLAST reqs (1) milli-arcsec 
unique_prescr Number of unique prescriptions (6) prescriptions 
num_rings Number of mirror segment rings (3) rings 
segment_diam Diameter of mirror segments (16.8/7 = 2.3) m 
rep_segments Number of repeated segments (6) segments 
lifetime_req Requirement of mission lifetime (40) years 

Components 
DB and 
DSMs 

costCol Column of cost/unit per component family, imported 
from Components DB spreadsheet $1K US FY13 

massCol Column of cost/unit per component family, imported 
from Components DB spreadsheet kg 

dimCol Column of mass/unit per component family, imported 
from Components DB spreadsheet m 

volCol Column of stowed-volume/unit per component family, 
imported from Components DB spreadsheet m3 

compPowerAvgCol Column of avg-power-draw/unit per component family, 
imported from Components DB spreadsheet W 

compPowerPeakCol Column of peak-power-draw/unit per component 
family, imported from Components DB spreadsheet W 

powerCol Column of avg-power-generated/unit per component 
family, imported from Components DB spreadsheet W 

TRLCol Column of total-readiness-level/unit per component 
family, imported from Components DB spreadsheet level number 

MTBFCol 
Column of mean-time-between-failure/unit per 
component family, imported from Components DB 
spreadsheet 

years 
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lifetimeCol Column of lifetime/unit per component family, 
imported from Components DB spreadsheet years 

StructuralDSM 
Design structure matrix for structural interactions 
between component families,imported from DSM 
spreadsheets 

binary matrix 

ThermalDSM 
Design structure matrix for thermal interactions 
between component families,imported from DSM 
spreadsheets 

binary matrix 

DataDSM Design structure matrix for data interactions between 
component families,imported from DSM spreadsheets binary matrix 

PowerDSM Design structure matrix for power interactions between 
component families,imported from DSM spreadsheets binary matrix 

LTA Structure to contain each architecture's design variables [varies] 

OpticalDSM Design structure matrix for optical interactions between 
component families,imported from DSM spreadsheets binary matrix 

Design 
Vector 

servicing_loc Servicing Location selection number 
servicing_freq Servicing Frequency years 
comm_arch Communications Architecture selection number 
mirror_support Mirror Support Method selection number 
a_s_technique Assembly/Servicing Technique selection number 
mirror_segmentation Segmentation Technique of the Primary Mirror selection number 
modularity_level Modularity Level level number 

Optics 

optics_m Total mass of Optics subsystem (inst. only) kg 
optics_v Total volume of Optics subsystem (inst. only) m3 

optics_avg_power_req Average power required by Optics subsystem (inst. 
only) W 

optics_temp_range Operating temperature range of Optics subsystem (cryo 
inst. only) deg C 

optics_power_diss Average power dissipated by Optics subsystem (inst. 
only) W 

inst_perf_decay_rate Rate paramter for performance decay of an instrument 
over time [unitless] 

optics_data_rate Rate at which data is transmitted from the telescope to 
avionics  Mbps 

optics_components Component family choices for Optics subsystem (inst. 
only) units of comp. family 

num_segments Total number of primary mirror segments segments 

discovery_efficiency_inst_a Discovery efficiency (FOV*throughput) of instrument 
A arcmin2*photons/sec 

discovery_efficiency_inst_b Discovery efficiency (FOV*throughput) of instrument 
B arcmin2*photons/sec 

discovery_efficiency_inst_c Discovery efficiency (FOV*throughput) of instrument 
C arcmin2*photons/sec 

discovery_efficiency_inst_d Discovery efficiency (FOV*throughput) of instrument 
D arcmin2*photons/sec 

vol_data_to_ground Quanity of data that needs to be transmitted to ground, 
largest contributor is optics/science data Mb 

Comm comm_power_diss Average power dissipated by Comm subsystem W 
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comm_temp_range Operating temperature range of Comm subsystem deg C 
comm_avg_power_req Average power required by Comm subsystem W 
comm_peak_power Peak power required by Comm subsystem W 
comm_peak_length Time for which the peak power is needed s 
comm_peak_frequency How often the peak power is needed Hz 
comm_timedelay Transmission delay of the data s 
comm_m Total mass of Comm subsystem kg 
comm_v Total volume of Comm subsystem m3 

comm_MTBF Mean time between failure (MTBF) for Comm 
subsystem years 

comm_QOS_BER Quality-of-signal / Bit-error-rate of selected Comm 
architecture [unitless] 

comm_SNR Signal-to-noise ratio of selected Comm architecture [unitless] 
comm_components Component family choices for Comm subsystem units of comp. family 

comm_components_MTBF Mean time between failure (MTBF) of individual 
"component families" selected for Comm subsystem years 

ADCS 

acs_temp_range Operating temperature range of ADCS subsystem deg C 
acs_avg_power_req Average power required by ADCS subsystem W 
acs_m Total mass of ADCS subsystem kg 
acs_v Total volume of ADCS subsystem m3 
acs_components Component family choices for ADCS subsystem units of comp. family 

acs_components_MTBF Mean time between failure (MTBF) of individual 
"component families" selected for ADCS subsystem years 

acs_MTBF Mean time between failure (MTBF) for ADCS 
subsystem years 

Avionics 

avionics_m Total mass of Avionics subsystem kg 
avionics_v Total volume of Avionics subsystem m3 
avionics_avg_power_req Average power required by Avionics subsystem W 
avionics_power_diss Average power dissipated by Avionics subsystem W 
avionics_temp_range Operating temperature range of Avionics subsystem deg C 
avionics_components Component family choices for Avionics subsystem units of comp. family 

avionics_components_MTBF Mean time between failure (MTBF) of individual 
"component families" selected for Avionics subsystem years 

avionics_MTBF Mean time between failure (MTBF) for Avionics 
subsystem years 

avionics_data_rate Avionics data rate bps 

Propulsion 

prop_m_nd Propellant mass fraction (per unit spacecraft mass) kg/kg 
prop_v_nd Propellant volume fraction (per unit spacecraft mass) m3/kg 
prop_svc_time One-way travel time between L2 and servicing location days 
prop_avg_power_req Average power required by Propulsion subsystem W 
prop_temp_range Operating temperature range of Propulsion subsystem deg C 
prop_power_diss Average power dissipated by Propulsion subsystem W 
prop_components Component family choices for Propulsion subsystem units of comp. family 
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prop_transit_time One-way travel time between earth and L2 days 

Power 

power_m Total mass of Power subsystem kg 
power_v Total volume of Power subsystem m3 
power_m_nd Non-dimensionalized mass (per Watt required) kg/W 
power_v_nd Non-dimiensionalized volume (per Watt required) m3/W 

power_avg_power_diss Average power dissipated due to power distribution 
inefficiencies W 

power_array_area Area of solar arrays m2 
power_temp_range Operating temperature range of Power subsystem deg C 
power_components Component family choices for Power subsystem units of comp. family 

Thermal 

thermal_m Total mass of Thermal subsystem kg 
thermal_v Total volume of Thermal subsystem m3 
thermal_avg_power_req Average power required by Thermal subsystem W 
thermal_components Component family choices for Thermal subsystem units of comp. family 

thermal_components_MTBF Mean time between failure (MTBF) of individual 
"component families" selected for Thermal subsystem years 

thermal_MTBF Mean time between failure (MTBF) for Thermal 
subsystem years 

Structures 

structures_components Component family choices for Structures subsystem units of comp. family 
structures_pow_avg Average power required by Structures subsystem W 
structures_pow_peak Peak power required by Structures subsystem W 
structures_v Total volume of Structures subsystem m3 
structures_m Total mass of Structures subsystem W 

structures_components_MTBF Mean time between failure (MTBF) of individual 
"component families" selected for Structures subsystem years 

overall_components Compiled "component family" choices for entire 
spacecraft units of comp. family 

sys_pow_avg Total average power of entire spacecraft W 
sys_pow_peak Total peak power of entire spacecraft W 
sys_mass Total mass of entire spacecraft kg 
prop_m Final mass of Propulsion subsystem kg 
sys_vol Total volume of entire spacecraft m3 
prop_v Final volume of Propulsion subsystem m3 
jitter Jitter of the System (RMS) mm 

module_definitions Vector that captures which module each component is 
in module number 

Systems 
sys_reliability Total system reliability [unitless] 
sys_complexity Total system complexity (based on DSMs) N/A 

Operations 

inst_del_rate Rate parameter for the increase in instrument utility 
over time [unitless] 

num_mod Number of modules in spacecraft modules 

t_end Monte Carlo simulation variable - Time at which 
simulation ends weeks passed 

dt Monte Carlo simulation variable - Time-step of 
simulation weeks 
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time Monte Carlo simulation variable - Vector of evaluation 
times for simulation weeks passed 

architecture 
Monte Carlo simulation variable - captures full 
spacecraft architecture's state at each servicing mission 
evaluation point 

[varies] 

inst_replaced 
Monte Carlo simulation variable - captures each 
instrument's state of replacement at each servicing 
mission evaluation point 

binary vector 

downtime Monte Carlo simulation variable - Downtime due to 
mass-servicing and transit to servicing location days 

failures Monte Carlo simulation variable - Number of failures 
per servicing mission failures 

module_replacements Monte Carlo simulation variable - Modules that were 
replaced per servicing mission modules 

scope_state Monte Carlo simulation variable - State of spacecraft 
per servicing mission binary vector 

row_inst_a Monte Carlo simulation variable - Row number of 
instrument A row number 

row_inst_b Monte Carlo simulation variable - Row number of 
instrument B row number 

row_inst_c Monte Carlo simulation variable - Row number of 
instrument C row number 

row_inst_d Monte Carlo simulation variable - Row number of 
instrument D row number 

utility_inst_a Monte Carlo simulation variable - Utility-to-science of 
instrument A at given evaluation time arcmin2*photons 

utility_inst_b Monte Carlo simulation variable - Utility-to-science of 
instrument B at given evaluation time arcmin2*photons 

utility_inst_c Monte Carlo simulation variable - Utility-to-science of 
instrument C at given evaluation time arcmin2*photons 

utility_inst_d Monte Carlo simulation variable - Utility-to-science of 
instrument D at given evaluation time arcmin2*photons 

p_util_science_a Monte Carlo simulation variable - Distribution of 
utility-to-science of instrument A over mission lifetime arcmin2*photons 

p_util_science_b Monte Carlo simulation variable - Distribution of 
utility-to-science of instrument B over mission lifetime arcmin2*photons 

p_util_science_c Monte Carlo simulation variable - Distribution of 
utility-to-science of instrument C over mission lifetime arcmin2*photons 

p_util_science_d Monte Carlo simulation variable - Distribution of 
utility-to-science of instrument D over mission lifetime arcmin2*photons 

p_util_science Monte Carlo simulation variable - Distribution of 
utility-to-science of spacecraft over mission lifetime arcmin2*photons 

MC_results.m_serv_mat Monte Carlo results variable - Mass serviced per 
servicing mission kg 

MC_results.downtime 
Monte Carlo results variable - Total downtime due to 
failure, servicing, or transit at each servicing mission 
evaluation point 

weeks 
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MC_results.service_downtime_vec Monte Carlo results variable - Downtime due to mass-
servicing or transit per servicing mission weeks 

MC_results.mean_m_serv_vec Monte Carlo results variable - Avg serviced mass per 
servicing mission kg 

mean_service_downtime Total average downtime due to mass-servicing or 
transit time weeks 

mean_downtime Total average downtime due to failure, mass-servicing, 
or transit to servicing location weeks 

failed_downtime Total average downtime due to spacecraft failure weeks 
service_downtime_frac Fraction of intended mission lifetime used for servicing [unitless] 

failed_downtime_frac Fraction of intended mission lifetime when spacecraft 
is in failed state [unitless] 

Trade 
Metrics 

stahl_cost1 Cost of developing the optics USD FY13 
cost_flightsystem.program_level1 Cost of developing the spacecraft bus (NR) USD FY13 

cost_flightsystem.program_level2 Cost of developing the spacecraft bus and infrastructure 
(NR) USD FY13 

USCM8_cost1 Cost of developing the spacecraft bus and infrastructure 
(NR+R) USD FY13 

NICM_cost_a Cost of developing instrument A USD FY13 
NICM_cost_b Cost of developing instrument B USD FY13 
NICM_cost_c Cost of developing instrument C USD FY13 
NICM_cost_d Cost of developing instrument D USD FY13 
NICM_cost Cost of developing the instruments USD FY13 
flightsyscost Total cost of developing the flight system USD FY13 

cost_servicing Total cost of developing components for servicing 
missions USD FY13 

cost_for_flightsystem Total cost of flight system over mission lifetime USD FY13 
cost_to_launch Total cost of launching the flight system USD FY13 
cost_servicing_launch Total cost of launching servicing missions USD FY13 
cost Total cost of spacecraft over mission lifetime USD FY13 

baseline_cost Total cost of spacecraft assuming entire spacecraft is 
serviced every servicing mission (modularity level = 1) USD FY13 

serviceability Cost margin relative to the baseline cost per mass 
serviced in servicing missions USD FY13 

utility_to_science Total utility-to-science over mission lifetime arcmin2*photons 
state_probability State probability matrix [unitless] 
expected_productivity Expected productivity arcmin2*photons 
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APPENDIX B: STAKEHOLDER QUESTIONS AND ANSWERS 

• What ground stations will we use? DSN? How often should we assume passes occur and 
how long will they be? 

• Is there a set of launch vehicles which we can use for making initial estimates? 
• What are the mission goals? How does this telescope relate to current and future 

telescopes (ATLAST)? 
• What is the expectation of the optical capability of the new telescope (optical bandwidth, 

aperture size, angular resolution, FOV, pointing stability, spectral resolution, contrast, 
inner working angle, wavefront error, wavefront stability, uninterrupted observation time, 
lifetime, operational efficiency) 

• What operational orbits should we consider? 
• What is the budget for this mission? 
• Is there an available cost model for this mission (spacecraft, ground systems, launch 

vehicle)? Is there a cost model for a federated satellite system? 
• When will this telescope operate? What is its expected lifetime? What other space assets 

will be available for utilization at that time? 
• What mirror technologies should we consider? 
• What detector technologies should we consider? 
• What adaptive optics technologies should we consider? 
• Are there specific technology insertion goals for this telescope? 
• Does the data need to be secure? 
• Who is going to receive the data? 
• What data management system should we use? 
• Is NASA interested in soliciting additional stakeholders for the project (ESA, 

Commercial, Hosted Payloads)? 

Stakeholder Responses 

Dan Lester 

• What are the mission goals? How does this telescope relate to current and future 
telescopes (ATLAST)? 

It's really up to the science community to define priority goals for a new space telescope. If the 
assumption is that this telescope is going to be a LARGE DIAMETER, OPTICAL telescope, 
then the best science case for that kind of telescope was probably made by the ATLAST team. 
But that's not really a consensus science case. It does seem perfectly reasonably to adopt the 
ATLAST goals as notional goals, which may or may not actually represent a consensus priority 
by the astronomical community. But there have been many other large telescopes (infrared, X-
ray, ultraviolet, radio) proposed, so you pretty much have to decide which one you're interested 
in designing. These are YOUR goals. Not the goals of the community. So your 
"assumption/rationale" that the science goals/requirements for this telescope are the same as for 
ATLAST seems one sensible approach. There are many other sensible approaches. This exercise 
can then be taken as an existence proof as to whether there is an affordable strategy to build a 
telescope defined by the ATLAST requirements. 
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• What is the expectation of the optical capability of the new telescope (optical bandwidth, 
aperture size, angular resolution, FOV, pointing stability, spectral resolution, contrast, 
inner working angle, wavefront error, wavefront stability, uninterrupted observation time, 
lifetime, operational efficiency) 

These are all expectations that depend on budget. You basically want a telescope you can afford 
that will do as much as possible. That being the case, you want a telescope that is at least a factor 
of three larger in diameter than what we virtually have now, which would be JWST. It's 
commonly understood that a flagship project, in order to be sellable, has to be an order of 
magnitude better than what you had before. In light gathering power, a factor of three in diameter 
would do it. So I think you need an 18+ m diameter telescope. Well, if this is really to be an 
optical (as in "visual wavelength" telescope, then maybe we're talking a factor of three over 
HST. That would be a 7-m telescope. But I think the reason that NASA chose to develop a 6m 
near-IR large telescope instead of a 6-m optical telescope is because that's where the best science 
was thought to be. 

As to optical bandwidth, it's simple to have a telescope that can perform well across the 
reflectivity spectrum of aluminum. The would go longward from the near-UV. If the telescope is 
not going to be cold, there isn't much sense in having it work any farther into the infrared than 2-
3 microns, as for HST. But be careful about UV requirements, as those will completely dominate 
the wavefront error, pointing, and cleanliness requirements for the telescope. An optimal UV-
capable telescope could be enormously expensive. 

Pointing stability should serve diffraction-limited performance of an 18+ m aperture telescope, 
on a time scale of at least hours. Same with wavefront error and stability.  

Spectral resolution isn't about the telescope. It's about the focal plane instruments. If this is a 
serviceable telescope, where new instruments can be installed, this isn't an obviously important 
question. In any case, high spectral resolution isn't advantageous in wavelengths at which the 
Earth's atmosphere is transparent, because at such wavelengths, much larger ground-based 
telescopes will win every time for photon-hungry and background-tolerant applications like high 
spectral resolution.  

As to lifetime, that's a dangerous game to play. If you go to NASA and ask them to buy into a 
telescope with a 40 year lifetime, for example, you're asking them to commit to 40 years of 
operating budgets. They simply won't do that, unless you give them a clear picture of the science 
those forty years will buy. We have no way of telling what that science might be. In fact, our 
science priorities evolve pretty dramatically on time scales of a decade or so. Ordinarily, I'd say a 
ten-year lifetime is defensible. Perhaps with a serviceable telescope, you could try for twenty. 
But you're going to pay a stiff price for long lifetime. I think the best idea is to design a telescope 
with fixed science capabilities that will last for ten years, and then make serviceability and 
servicing as extra-cost options. ROI isn't necessarily proportional to observing time, once you get 
past the highest priority questions.  

Operational efficiency is pretty much dependent on what you're trying to accomplish. If you get 
outside of LEO, the operational efficiency could be quite high, in terms of the fraction of the 
time that data is being taken. I would assume that the planned scheduling efficiency of JWST, 
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which is something like 95%, should apply to this. That mainly dictates slew times and 
engineering time requirements.  

I think the bottom line to all this is trying to come up with a concept for a huge telescope with 
optimum imaging performance, and see if you can do it in such a way that is affordable. Once 
you have that, there are many useful directions one can take.  

• Is there an available cost model for this mission (spacecraft, ground systems, launch 
vehicle)? Is there a cost model for a federated satellite system? 

There are plenty of cost models for federally funded space telescopes. In fact, a big piece of 
NASA develops and supports such cost modeling for space missions. Probably the most 
important part of a credible cost model is one that develops a clear picture of technological 
readiness. That is, you don't start cutting metal until you have cogently identified all technology 
needs, and made appropriate investments to relieve them. Identifying technology lapses late in 
the project is HUGELY expensive. Should assess the subsystems with regard to current TRL.  

The cost curve for large space telescope development has a pretty well understood profile, and 
NASA SMD funding is simply incapable of supporting a peak funding rate of more than about 
$500M/yr for an astronomical telescope. 

That said, to the extent this mission makes any requirements on human space flight, it would be 
very hard to come up with a believable cost model. We don't have good cost models for human 
space flight outside of LEO. That being the case, maybe you should assume that the 10-year 
budget is <$5B, and just make the thing optionally serviceable. Or else assume that the servicing 
is done robotically.   

• Is there a set of launch vehicles which we can use for making initial estimates? 

If you want to keep costs down, and $/lb low, you need to be looking at Falcon Heavy. I suppose 
you should look at SLS, but I don't have a lot of confidence that support for that launcher will 
continue. It might be a dead end, as we've made no serious plans about what we'd put on it, and 
it's already understood to be a very expensive lift option. 

• What operational orbits should we consider? 

For the highest performance, in terms of thermal stability, accessibility, and field of regard, you 
won't do better than Sun-Earth L2. DO NOT put this telescope in LEO. A very large optical 
telescope will be seriously compromised by putting it in LEO, for many reasons.  

• What is the budget for this mission? 

I frankly don't think it's sellable if the LCC (not including servicing) is over $5B. JWST is a bad 
example to follow, in terms of LCC affordability. NASA, Congress, and the science community 
will avoid such expensive instruments like the plague in the future. Some serious thought should 
be given to making such a telescope useful to other nations, with the hope that those other 
nations can invest in it. That's feasible only if those other nations see obvious roles for 
themselves in telescope development. Another country won't buy in to such a telescope 
scientifically unless they can exercise their technological expertise in building it. Nations largely 
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don't pay for space astronomy. They pay for technology development that leads to good space 
astronomy. 

So therein lies the challenge. Can you design a very capable telescope three times the size of 
JWST for 50% less money?   

• What ground stations will we use? DSN? How often should we assume passes occur and 
how long will they be? 

That's not a big issue. Ground station operations are a function of data rate, comm architecture, 
and on-board data storage. That's not going to drive mission design. But for a mission at ES L2, 
you'd pretty much assume you're going to use a DSN-like comm station. If you had to build a 
completely new DSN station, just for this mission, it would be a small fraction of the mission 
budget. 

• What mirror technologies should we consider? 
• What detector technologies should we consider? 
• What adaptive optics technologies should we consider? 

These are things that come out of focused trade studies. It doesn't make a lot of sense to think 
about these before establishing the telescope requirements.  

• Are there specific technology insertion goals for this telescope? 

There are many aspects to this question. Technology insertion strategies can apply to system or 
technology obsolescence, and technology applicability to different stakeholder groups. I think an 
important one for this telescope is that technologies developed should allow for extensibility in 
telescope design. That is, whether I want to expand this particular telescope, or build a new much 
larger one after this one, I want the technologies developed for this one to be applicable to the 
next gen one. For example, one concept for ATLAST was putting the largest primary mirror 
possible in the largest launch shroud. That's not an extensible strategy, at least until someone 
decides to build a much bigger launcher. That is, the strategies that one develops here 
(construction, deployment, alignment, etc.) to make, say, an 18m telescope, should lead to 
envisioning a much larger one, or even expanding this one. 

Another technology insertion goal is servicing. One would like a design that is not only ideally 
serviceable, but one that is amenable to new instruments. While one might not be sure about the 
prospects for servicing and instrument replacement, the telescope should not be designed in such 
a way to prevent that from happening.  

• Why are hexagons used as the standard for mirror segments? 

Because they fill space efficiently. Round segments don't. Since hexagons are roughly round, 
they are more symmetrically fabricatable.  

• Does the data need to be secure? 

Not "secure" in terms of national security. But it will be understood that preselected mission 
teams get first dibs on the data they've proposed to get.  
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• Who is going to receive the data? 

Once the comm packages come down to Earth, the standard model is to have some institution 
(STScI for HST, or IPAC for IR data), manage, distribute, and archive the data. This is just a 
service you buy, and there are many with that experience, 

• What data management system should we use? 

That's up to the data management institution, and is not a decision for the observatory designers, 
nor an engineering decision. The observatory designers might like to set some specifications 
about what the data management system should be capable of doing. It clearly has to be one that 
serves a multitude of worldwide users who can't be assumed to have any engineering expertise.  

• Is NASA interested in soliciting additional stakeholders for the project (ESA, 
Commercial, Hosted Payloads)? 

I don't think "hosted payloads" has much to do with this. Commercial? That would require that 
industry see observatory operations as a money-making concept. I don't think that would happen. 
Certainly other national space agencies -- ESA, Roscosmos, JAXA, CSA, etc. could be polled 
about this, as per my suggestion above. But this isn't an engineering question except, as I said 
above, to the extent of assessing how their engineering expertise overlaps. 

Lee Feinberg 

I agree with almost all of your observatory requirements but I personally would advocate you go 
larger than 16.8-meters.  I know that size was chosen for the deployed ATLAST and so there is 
some existing work done at that scale but once you buy into the idea of assembly and economies 
of scale based on identical mirrors and modules then 20+meters makes a lot more sense (I’m OK 
bigger than 20-meters but 16.8-meters is still at the size that you would consider deployment and 
not enough bang for the buck).  This argument is supported by the next generation of hexagonal 
mirror ground telescopes which are 30 meters (TMT) and 39 meters (EELT).   The argument of 
course is that the major costs are in the NRE of making the first modules, facilitizing, and 
solving how to assemble - the incremental cost of additional area is not significant.  For size and 
high contrast dynamics and pointing may actually be the limiting issue (we want to take 
advantage of the resolution) but the hope is active solutions can mitigate this (an area I urge you 
to focus on!).  Conveniently, the 20-meter telescope size we chose using JWST segment size has 
exactly the number of hexagonal elements as the next generation deformable mirror from Boston 
micro-machines that the VNC group is using and which is critical to achieving high contrast.   In 
addition, Marc Postman has done some thinking about the science for a 20-meter (and hopefully 
will spend more time on this issue in the future) and can comment on that aspect of things. 

!I’m very interested to hear what you are thinking on where and how assembly will be 
accomplished - that seems to be a key nut to crack.  With respect to servicing, do you want to 
consider two key roles for human involvement: troubleshooting (if there is a major issue that 
robots cannot solve) and reduced latency telerobotics.  

With regards to cost, TMT’s model relies quite a bit on international contributions (China, India 
and Japan are all contributing significantly) and on economies of scale. We’ve studied mirror 
segment economies of scale from JWST and a ground telescope but a lot more needs to be done 
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here.  I suspect there are other economies of scale arguments that would be very helpful to 
explaining why bigger doesn’t cost that much more and I would urge you to talk to your 
economist colleagues at MIT to help with that.  Also, I’m not sure how you cost the assembly 
piece so you may want to study the HST cost arguments. 

Swati Mohan 

• What are the mission goals? How does this telescope relate to current and future 
telescopes (ATLAST)? 

1. Find earth-like planets around other stars and determine if they carry the signature of life. 

2. Look at the universe as far back in time as possible and understand our origins. 

3. Look at galactic centers to understand their structure, formation, etc. 

4. STScI has a lot of information on this. 

5. We would think it relates closely to ATLAST. 

• What is the expectation of the optical capability of the new telescope (optical bandwidth, 
aperture size, angular resolution, FOV, pointing stability, spectral resolution, contrast, 
inner working angle, wavefront error, wavefront stability, uninterrupted observation time, 
lifetime, operational efficiency). 

1. 80% Strehl ratio at 633 nm. 

2. Rules of thumb you can use for an F1 primary are: 

 Radius of curvature of PM = 2 * PM_diameter 

 Radius of curvature of SM = 0.25 * PM_diameter 

 PM-SM_distance = 0.9 * PM_Diameter 

 SM_Diameter = 0.15 * PM_Diameter 

3. You should decide the telescope operational temperature requirements based on the 
mission objectives.  Is this UV, optical, IR or some combination? 

4. The rest of the requirements depend on the application and will be determined based on 
the mission objectives. 

• Is there an available cost model for this mission (spacecraft, ground systems, launch 
vehicle)? Is there a cost model for a federated satellite system? 

1. We don't know of any available cost model.  Or a model for a federated satellite system. 

• Is there a set of launch vehicles which we can use for making initial estimates? 

1. Atlas V, Delta IV heavy, the SLS with either the Atlas V or Delta IV heavy fairing, the 
SLS with 8 and 10 meter fairings that are on the drawing board.  Could also look at Dragon. 
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• What operational orbits should we consider? 

1. Fixed at ESL2. 

2. Other Lagrange points. 

3. GEO (to assemble?). 

• What is the budget for this mission? 

1. $5-10B in 2013 $. 

• What ground stations will we use? DSN? How often should we assume passes occur and 
how long will they be? 

1. If at SE-L2 (or L1) would use the 34 m antennas at DSN. 

2. If Earth orbiting would use TDRSS. 

3. Full coverage for critical events.  One 8 hour pass a day otherwise. 

• What mirror technologies should we consider? 

1. Actuated hybrid mirrors with either a nanolaminate or polished silicon carbide surface. 

• What detector technologies should we consider? 

1. Suggest you pick a representative set of instruments and base the detectors on current 
state of the art. 

• What adaptive optics technologies should we consider? 

1. Actuated hybrid mirrors with rigid body actuators for the primary. 

2. Actuated hybrid mirrors with rigid body actuators for the secondary and a primary with 
rigid body actuators. 

• Are there specific technology insertion goals for this telescope? 

1. A great deal of technology needs to be developed to enable the telescope.  Marc Postman 
has a chart that summarizes these.  OpTIIX does a number of them: on-orbit assembly and 
servicing, actuated hybrid mirrors, laser metrology, wavefront sensing and control. 

• Why are hexagons used as the standard for mirror segments? 

1. They are stackable and reasonably close to circles which makes them easier to polish.  
Manufacturing inertia (machines, tooling, etc. already developed) will likely keep it that way. 

• Does the data need to be secure? 

1. Data security should be the same as a for a NASA science mission. 
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• Who is going to receive the data? 

1. Assuming mission is at L2, Level 0 data will come through the DSN to the GDS at the 
institution operating the mission; JPL, GSFC, etc.  The data will then be processed into Level 1 
data and shipped to the institution(s) in charge of science; STScI, universities, etc. 

• What data management system should we use? 

1. We would expect the institution managing the project/mission to choose.  JPL has more 
experience with planetary missions.  GSFC with Earth orbiting.  We would probably pick 
something at JPL since mission is at L2. 

2. This shouldn’t be a driver for this study. 

• Is NASA interested in soliciting additional stakeholders for the project (ESA, 
Commercial, Hosted Payloads)? 

1. Not something that we can answer other than the cost is so high that NASA will likely 
want partners to help defray it. 

Tupper Hyde 

• What ground stations will we use? DSN? How often should we assume passes occur and 
how long will they be? 

DSN, mainly Australia site for 4 hours per day. Same as JWST. 

• Is there a set of launch vehicles which we can use for making initial estimates? 

Any EELV, Falcon 9, F9 Heavy, Ariane, SLS 

• What are the mission goals? How does this telescope relate to current and future 
telescopes (ATLAST)? 

UVOIR Astronomy and Earth-size exoplanets. Same science goals as ATLAST 16.8-m. Should 
consider servicing to enable 40+ year life. 

• What is the expectation of the optical capability of the new telescope (optical bandwidth, 
aperture size, angular resolution, FOV, pointing stability, spectral resolution, contrast, 
inner working angle, wavefront error, wavefront stability, uninterrupted observation time, 
lifetime, operational efficiency). 

Same as assumed for ATLAST 16.8-m design. 

• What operational orbits should we consider? 

SE-L2 for science. Any for assembly/servicing. 

• What is the budget for this mission? 
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Cost should be an output of the trade. $10B (of today’s dollars) is not unreasonable. I bet the 
range will be like $5-15B. 

• Is there an available cost model for this mission (spacecraft, ground systems, launch 
vehicle)? Is there a cost model for a federated satellite system? 

Several large telescope cost models are in the literature. I would recommend the one by Phil 
Stahl. NASA will provide DSN costs. 

• When will this telescope operate? What is its expected lifetime? What other space assets 
will be available for utilization at that time? 

Assume mission start in 2020 and launch by 2030. It should operate at least 10 years or up to 40 
with servicing. You could assume a geo servicer such as the NASA Restore mission would be 
operating regularly by 2028 (ssco.gsfc.nasa.gov) 

• What mirror technologies should we consider? 

Glass and AHM segments. Size and number of segments is a trade. 

• What detector technologies should we consider? 

Same at ATLAST. 

• What adaptive optics technologies should we consider? 

Image and/or laser truss wavefront sensing with mirror actuation. Bandwidth (update rate) of 
wavefront control depends on thermal time constants. Coronagraphs will have additional 
deformable mirrors. 

• Are there specific technology insertion goals for this telescope? 

In the servicing options, upgrades for new technology in instruments should be considered. 

• Does the data need to be secure? 

No 

• Who is going to receive the data? 

A space telescope science institute (such as STScI) would archive the data and provide it to 
investigators 

• What data management system should we use? 
• Is NASA interested in soliciting additional stakeholders for the project (ESA, 

Commercial, Hosted Payloads)? 

We expanded the stakeholder names at the meeting. I don't think adding ESA or commercial for 
this scope of study will be useful. 
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APPENDIX C: COMPONENTS DATABASE 
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APPENDIX D: STRUCTURAL DSM 
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1 Robotic Arm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 EM Coil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 UDP 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 Primary Mirror Segment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 Surface Normal Actuator 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 Surface Parallel Actuator 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 Backframe per segment 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 Bus structure 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 Magnetic Isolation Device 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 Viscoelastic Isolation Device 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 Active Damper 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 Deployment Device for Solar Array 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 Gimbal Device 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 UDP Comm interface 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 UDP Power interface 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 Laser Communications Box 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 RF Communications Box 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 Direct Downlink Antennas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 Crosslink Antennas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 RAM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 Power Convertor Unit (PCU) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 Data Interface Unit (DIU) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 Instrument A 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 Instrument B 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 Fine Guidance Sensors 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 Instrument C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 Instrument D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 Thermal blanket {bus} 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 External radiator {bus} 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 Thermoelectric cooler (TEC) {optics} 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 Cryocooler {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 Thermostatic heater {optics} 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 Heat pipe network {bus} 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 Thermal sensor {optics} 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 Momentum Wheel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 Solar Sail 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 Star Tracker 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38 Solar Array per 100 watts 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 Battery per watt-hour 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 Distribution per 100 watts 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
41 Connectors and Wiring 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
42 Light Shield 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 Deployment Device for Antenna 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
44 Secondary Mirror Segment 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45 Primary Mirror Baffle 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
46 CPU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 Data Management Unit (DMU) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
48 Thermostatic heater {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
49 Thermostatic heater {bus} 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
50 Thermal sensor {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
51 Thermal sensor {bus} 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
52 Thermal blanket {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
53 Science Payload support structure 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 Monopropellant hydrazine thruster 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 Arcjet thruster 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 Hall thruster 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 Propellant (and tank) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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APPENDIX E: THERMAL DSM 
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1 Robotic Arm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 EM Coil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 UDP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 Primary Mirror Segment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 Surface Normal Actuator 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 Surface Parallel Actuator 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 Backframe per segment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 Bus structure 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 Magnetic Isolation Device 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 Viscoelastic Isolation Device 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 Active Damper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 Deployment Device for Solar Array 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 Gimbal Device 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 UDP Comm interface 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 UDP Power interface 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 Laser Communications Box 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 RF Communications Box 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 Direct Downlink Antennas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 Crosslink Antennas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 RAM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 Power Convertor Unit (PCU) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 Data Interface Unit (DIU) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 Instrument A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 Instrument B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 Fine Guidance Sensors 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 Instrument C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 Instrument D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 Thermal blanket {bus} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 External radiator {bus} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 Thermoelectric cooler (TEC) {optics} 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
31 Cryocooler {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 Thermostatic heater {optics} 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
33 Heat pipe network {bus} 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 Thermal sensor {optics} 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 Momentum Wheel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 Solar Sail 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 Star Tracker 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38 Solar Array per 100 watts 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 Battery per watt-hour 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 Distribution per 100 watts 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
41 Connectors and Wiring 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
42 Light Shield 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 Deployment Device for Antenna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
44 Secondary Mirror Segment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45 Primary Mirror Baffle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
46 CPU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 Data Management Unit (DMU) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
48 Thermostatic heater {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
49 Thermostatic heater {bus} 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
50 Thermal sensor {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
51 Thermal sensor {bus} 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
52 Thermal blanket {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
53 Science Payload support structure 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 Monopropellant hydrazine thruster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 Arcjet thruster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 Hall thruster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 Propellant (and tank) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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APPENDIX F: DATA DSM 
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1 Robotic Arm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 EM Coil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 UDP 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 Primary Mirror Segment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 Surface Normal Actuator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 Surface Parallel Actuator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 Backframe per segment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 Bus structure 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 Magnetic Isolation Device 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 Viscoelastic Isolation Device 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 Active Damper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 Deployment Device for Solar Array 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 Gimbal Device 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 UDP Comm interface 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 UDP Power interface 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 Laser Communications Box 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 RF Communications Box 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 Direct Downlink Antennas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 Crosslink Antennas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 RAM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 Power Convertor Unit (PCU) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 Data Interface Unit (DIU) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 Instrument A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 Instrument B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 Fine Guidance Sensors 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 Instrument C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 Instrument D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 Thermal blanket {bus} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 External radiator {bus} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 Thermoelectric cooler (TEC) {optics} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 Cryocooler {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 Thermostatic heater {optics} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 Heat pipe network {bus} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 Thermal sensor {optics} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 Momentum Wheel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 Solar Sail 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 Star Tracker 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38 Solar Array per 100 watts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 Battery per watt-hour 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 Distribution per 100 watts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
41 Connectors and Wiring 1 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
42 Light Shield 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 Deployment Device for Antenna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
44 Secondary Mirror Segment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45 Primary Mirror Baffle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
46 CPU 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 Data Management Unit (DMU) 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
48 Thermostatic heater {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
49 Thermostatic heater {bus} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
50 Thermal sensor {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
51 Thermal sensor {bus} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
52 Thermal blanket {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 Science Payload support structure 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 Monopropellant hydrazine thruster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
55 Arcjet thruster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
56 Hall thruster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
57 Propellant (and tank) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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APPENDIX G: POWER DSM 
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1 Robotic Arm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 EM Coil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 UDP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 Primary Mirror Segment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 Surface Normal Actuator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 Surface Parallel Actuator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 Backframe per segment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 Bus structure 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 Magnetic Isolation Device 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 Viscoelastic Isolation Device 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 Active Damper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 Deployment Device for Solar Array 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 Gimbal Device 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 UDP Comm interface 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 UDP Power interface 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 Laser Communications Box 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 RF Communications Box 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 Direct Downlink Antennas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 Crosslink Antennas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 RAM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 Power Convertor Unit (PCU) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 Data Interface Unit (DIU) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 Instrument A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 Instrument B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 Fine Guidance Sensors 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 Instrument C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 Instrument D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 Thermal blanket {bus} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 External radiator {bus} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 Thermoelectric cooler (TEC) {optics} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 Cryocooler {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 Thermostatic heater {optics} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 Heat pipe network {bus} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 Thermal sensor {optics} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 Momentum Wheel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 Solar Sail 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 Star Tracker 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38 Solar Array per 100 watts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 Battery per watt-hour 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 Distribution per 100 watts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
41 Connectors and Wiring 1 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
42 Light Shield 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 Deployment Device for Antenna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
44 Secondary Mirror Segment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45 Primary Mirror Baffle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
46 CPU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 Data Management Unit (DMU) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
48 Thermostatic heater {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
49 Thermostatic heater {bus} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50 Thermal sensor {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
51 Thermal sensor {bus} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 Thermal blanket {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 Science Payload support structure 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 Monopropellant hydrazine thruster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 Arcjet thruster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 Hall thruster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 Propellant (and tank) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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APPENDIX H: OPTICAL DSM 
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1 Robotic Arm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 EM Coil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 UDP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 Primary Mirror Segment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 Surface Normal Actuator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 Surface Parallel Actuator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 Backframe per segment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 Bus structure 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 Magnetic Isolation Device 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 Viscoelastic Isolation Device 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 Active Damper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 Deployment Device for Solar Array 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 Gimbal Device 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 UDP Comm interface 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 UDP Power interface 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 Laser Communications Box 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 RF Communications Box 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 Direct Downlink Antennas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 Crosslink Antennas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 RAM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 Power Convertor Unit (PCU) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 Data Interface Unit (DIU) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 Instrument A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 Instrument B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 Fine Guidance Sensors 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 Instrument C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 Instrument D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 Thermal blanket {bus} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 External radiator {bus} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 Thermoelectric cooler (TEC) {optics} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 Cryocooler {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 Thermostatic heater {optics} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 Heat pipe network {bus} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 Thermal sensor {optics} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 Momentum Wheel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 Solar Sail 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 Star Tracker 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38 Solar Array per 100 watts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 Battery per watt-hour 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 Distribution per 100 watts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
41 Connectors and Wiring 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
42 Light Shield 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 Deployment Device for Antenna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
44 Secondary Mirror Segment 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45 Primary Mirror Baffle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
46 CPU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 Data Management Unit (DMU) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
48 Thermostatic heater {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
49 Thermostatic heater {bus} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50 Thermal sensor {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
51 Thermal sensor {bus} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 Thermal blanket {inst} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 Science Payload support structure 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 Monopropellant hydrazine thruster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 Arcjet thruster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 Hall thruster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 Propellant (and tank) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DSM
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APPENDIX I: DESCRIPTION OF ATLAST REQUIREMENTS 
AND THEIR IMPLICATIONS 

As previously referenced, the optical and instrument baselines used in the TITANS AE 
architectural model originate in the ATLAST requirements as developed by NASA for the 
proposed 16.8-m class space observatory.  This baseline does not vary substantially within the 
tradespace explored in this project; accordingly, the relevant subsystem models have been 
simplified to streamline the evaluation process.  However, the imposed ATLAST requirements  
(Table XXXIV) do offer substantial guidance for the design of these subsystems which may be 
of interest to the reader.  The proposed design implementation of the ATLAST requirements for 
the TITANS AE set of architectures is documented here.   

Table XXXIV: ATLAST Key Optical Performance Requirements and Goals5 

 

For the optical train, three ATLAST requirements drive design considerations relevant to 
TITANS AE: (1) optical bandwidth; (2) aperture size; and (3) wavefront error.  The optical 
bandwidth indicated here stretches across the ultraviolet (UV), optical (O/VIS), and near infrared 
(IR/NIR) wavelength ranges and drives the selection of mirror coatings.  A variety of aluminum 
and silver-based coatings exist which are appropriate for this range of wavelengths; however, 
many coatings experience a substantial reflectance fall-off in the extreme (‘far’) UV ranges.80  
Accordingly, the use of separate channels for more and less reflection-sensitive instruments may 
be appropriate (see below).  

As in the ATLAST case, mirror diameter has been fixed at the 16.8-meter size class.  (This in 
turn drives the angular resolution requirements specified in Table 1).  The TITANS AE design 
also uses the three-ring hexagonal mirror format common to the ATLAST proposal.  This 
approach minimizes wavefront complications due to mirror segmentation while still permitting 
launch of the primary mirror.  (The appropriate balance between segmentation and mirror size is 
further addressed in Appendix K.)   

Requirement Name Requirement Goal Science Drivers 
Optical Bandwidth 0.2 – 2.5 µm 0.11 – 2.5 µm Solar system exploration 
Aperture Size 16.8 m   
Angular Resolution 6 – 12 mas 3.5 mas  
Field of View 5 arcmin  Extragalactic star formation 
Pointing Stability 1 mas  Exoplanet characterization, life detection 
Spectroscopic Resolution 300 120000 Extragalactic star formation 
Contrast 1e+07 1e+10 Exoplanet characterization, life detection 
Inner Working Angle 50 -100 mas 40 -50 mas Exoplanet characterization, life detection 
Wavefront Error 37 nm 0.07 nm Exoplanet characterization, life detection 
Wavefront Stability 10 nm 0.07 nm Exoplanet characterization, life detection 
Uninterrupted Observation Time 2 hours   
Operational Efficiency 90%   
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Finally, the wavefront error requirement of 37 nm specifies the tolerance for manufacturing 
errors and polishing imperfections within the optical train.  Because this number specifies the 
total error budget for the observatory, the wavefront error contribution of each element must 
represent only a fraction of this value.  This value represents an incremental improvement on the 
expected performance of the JWST optical train.81  More challenging, however, is the “goal” 
error of .07 nm.  Such accuracy can only be achieved with adaptive optics.  The TITANS AE 
design presupposes such an adaptive optics system is integrated into secondary mirror assembly, 
permitting fine control of wavefront across the entire FOV of the telescope.   

At the instrument level, the ATLAST requirements most important for instrument design include 
the majority of the remaining requirements.  The FOV requirement of 5 arcmin necessitates the 
inclusion of a wide field of view instrument.  The stability requirements drive the design of the 
fine guidance sensors.  Meeting the spectral resolution requirement (R=300) suggests an imaging 
spectrometer design; the higher resolution “goal” (R=12000) on the other hand necessitates a 
dedicated, likely slit-based spectrograph/detector approach.  The contrast and inner working 
requirements specify the performance for coronographic elements.  Finally, the optical 
bandwidth requirement imposes an additional constraint (in addition to those it imposes on the 
optical train): each instrument will require additional detector channels for each of the UV, VIS 
and NIR wavelength ranges it attempts to analyze, due to the nature of detector technologies. 

ATLAST meets and exceeds the requirements specified above with the following combination of 
instruments (Figure I.1). 

 
Figure 94: Tentative ATLAST Science Instruments and their FOV17 

The decision to include both a Three-Mirror Anastigmat (TMA) and Cassegrain focal plane 
helps balance the tradeoff between FOV control and throughput losses associated with the 
inclusion of additional mirrors and interfaces in the optical pathway.  For the particularly photon-
starved (reflectivity-loss-sensitive) instruments, the Cassegrain focal plane minimizes bounces, 
compensating for the lower reflectivity of the optics in the UV, and the general lack of photons 
available to be collected for exoplanet purposes.  The TMA focal plane allows many instruments 
to “pick off” light from the observatory field of view for various scientific purposes.  As 
suggested above, these include fine guidance sensing, WFOV imaging and lower-resolution 
and/or imaging (relatively wide area) spectroscopy.   

Because the TITANS AE architectural model does not require the degree of specificity included 
in the ATLAST model, these instruments have been incorporated into four “packages” for 
launch, assembly and servicing purposes.  This decision reflects the wide range of functionalities 
any instrument package may possess (including multiple modes and detector planes) while 
meeting the outlined scientific objectives.    
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APPENDIX J: FORMS AND FUNCTIONS FOR HISTORICAL 
MISSIONS 

 

    

Hubble JWST Kepler IRIDIUM Structures Subsystem 
        

Protecting 
      Radiation Protecting Light Shield 

     Dust Protecting Aperture door, light shield 
 

Photometer Dust Cover 
   Micrometeoroid Protecting Aperture door, light shield 

2-layer aluminum 
meteoroid shields Graphite Cyanite Structure 

   Stray Light Protecting Aperture door, light shield Sun shield, central baffle Sun Shield N/A 

  Temperature Protecting Multi-layer insulation; heaters; 
thermal blankets 

Sun shield, radiator 
shades, MLI Focal Plane Radiator 

 

Supporting Aluminum shell; graphite-epoxy 
frame; storage bay ring; solar arrays, 
high gain antennas - latches on light 
shield 

primary mirror - 
backplane; secondary 
mirror - "tripod" booms; 
bus electronics - bus 
electronics box; 
instruments - ISIM truss 
structure 

Solar panels - fixed to side 
of telescope structure; 
support system electronics 
- honeycomb aluminum 
box at base of photometer 

electronics - spacecraft bus; 
antennas - communication 
panel 

Pointing 

    
  Bus Pointing 

 

solar pressure trim flap, 
reaction wheels, thrusters Reaction Wheels; thrusters thrusters 

  Articulated Pointing 

 

primary mirror segments - 
hexapod with actuators; 
HG antenna - two-axis 
gimbal 

 
N/A 

Preventing Jitter 

 
Tower structure 

(operational) Reaction 
wheels as only moving 
part N/A 

Deploying 

N/A 

Extendable booms; 
spreader bars; stem 
deployers; gimbals; 
tension cables N/A N/A 

Stowing N/A 
Unitized pallet structure; 
hold-downs N/A N/A 

Interfacing 
      Launch Vehicle Interfacing 

 
Clamp-band 

Vehicle Adapter Ring with 
umbilicals 

 
  Ground System Interfacing 

 

Omni antenna, high gain 
antenna 

High gain antenna; 2x 
omnidirectional low gain 
antennas 

K-band antenna panel, L-
band phased array antenna 
x3 

  AIT Interfacing Gas purge system test port 
 

test port 
Access Providing 

      Physical Access Providing Outer doors; latches; handrails; 
footholds N/A N/A N/A 

  Digital Access Providing 
 

N/A N/A test port 
On-orbit Assembling 

      Manipulating N/A N/A N/A N/A 

  Integrating N/A N/A N/A 
K-band inter-satellite 
antenna panel 

    
              

Power Subsystem     

    Power Generating Solar Array 
 

Solar Array Solar Array 
  Size (Surface area or mass) 19 m2 

 
10.2 m2 

   Amount 2800 W 
 

1100 W 2000 W 
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Power Storing Batteries 
 

Battery (Lithium ion) 
     

              

Thermal Subsystem     

    
Insulating spacecraft Multi-layer insulation (MLI) ; new 

layers (NOBL) added 5-layer sunshield MLI MLI and/or thermal shields 

Controlling temperature of optics (ie: mirrors) Thermostatically controlled heaters Central baffle / radiator 
(cooling) 

Controlled heaters; 
Thermal blankets (cooling)   

Controlling temperature of spacecraft bus and 
subsystems       Standard active and/or 

passive thermal designs 

Cooling instrument and/or detectors 
Thermoelectric coolers, Heat pipes, 
Capillary Pumped Loop subsystems; 
Cryogenic dewar 

Passive radiator enclosure; 
Cryogenic dewar; Joule-
Thomson cooler 

Propane and ammonia heat 
pipes; External radiator 

Standard active and/or 
passive thermal designs 

Isolating instrument(s) from warm sources on 
spacecraft Thermal insulation; Thermal isolation Thermal insulation; 

Thermal isolation 
Thermal insulation; 
Thermal isolation 

Thermal insulation; Thermal 
isolation 

  
              

Avionics/Comm Subsystem 
        

    Avionics functions 
      Data collecting from target Collected by Science Instrument 
Control & Data Handling (SICDH) 

From interface with optics 
subsystem Photometer, CCD Radiator L-band antenna 

  Data processing from target Data Management System(DF-224 
computers) Moongoose 5 processor RAD750 Processor on-board processor 

  Storing of data from target Engineering/Science Tape Recorder, 
Solid State Recorder 

Solid state recorder 
(471Gbits) 

16 GB Solid State 
Recorder N/A 

  Scheduling of tasks and resources between 
telescope subsystems Data Management System(DF-224 

computers) Moongoose 5 processor RAD750 Processor 

teleport network ( = teleports 
connecting the satellites 
through Earth stations to a 
MPLS Multiprotocol Label 
Switching) 

  Scheduling of tasks and resources between 
FSS satellites Data Management System(DF-224 

computers) Moongoose 5 processor RAD750 Processor 

teleport network ( = teleports 
connecting the satellites 
through Earth stations to a 
MPLS Multiprotocol Label 
Switching) 

  Interfacing with FSS 
Data Management System (Data 
Interface Units) Moongoose 5 processor RAD750 Processor 

teleport network ( = teleports 
connecting the satellites 
through Earth stations to a 
MPLS Multiprotocol Label 
Switching) 

  Processing received data from the ground 
station 

Data Management System(DF-224 
computers) Moongoose 5 processor RAD750 Processor on-board processor 

  Storing of the received data Engineering/Science Tape Recorder, 
Solid State Recorder 

Moongoose 5 processor, 
Solid state recorder 

RAD750 Processor, 16 GB 
SSR on-board processor 

  Formatting the data for sending / receiving Data Management System(DF-224 
computers) Moongoose 5 processor RAD750 Processor on-board processor 

Comm functions 

    
  Transmitting target data (image) to ground 

Low gain and high gain antenna 
Communications loop between HST 
and Tracking and Data Relay System 
Satellite (TDRSS)  

Far omni antenna, high-
gain antenna, near omni 
antenna 

parabolic-dish high gain 
antenna, 2 TX low gain, 2 
RX low gain  

single, 48 beam TX/RX 
phased array antenna, one 
omni antenna, also two fixed 
and two steerable antennas 

  Receiving data from the ground station 

  Electrical power distributing between all 
subsystems 1 x Power Control Unit, 4 x Power 

Distribution Units Electrical power unit 
20 amp-hr rechargeable 
lithium-ion battery Electrical power unit 

  Electrical power collecting / generating Solar arrays, batteries, charge current 
controllers 

Solar arrays, 37Ah NiH2 
battery 

4 non-coplanar solar 
panels solar arrays, 2000W 

  

                

    

    
Systems 

    Launching 
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  Launch Vehicle 
Shuttle Discovery Ariane 5 ECA 

United Launch Alliance 
Delta II 7925 Dnepr, Falcon 9 

  Launch Location KSC Kourou, French Guiana 
Cape Canaveral Air Force 
Station TBD 

  Launch Date April, 1990 2018? March, 2009 2015-2017? 

  Orbit 600 km L2 Earth-trailing heliocentric 780 km 
Operations 

      Deploy Single Shuttle launch 
Fold-up in Ariane 5 rocket 
to L2 

Boeing Delta II to Earth-
trailing heliocentric 

10 satellites, 7 launches on 
Spacex Falcon 9 

  Control Goddard (partial pre-program, partial 
real-time) 

Space Telescope Science 
Institute 

LASP (mostly auto-rolls 
every 6 months) 

Analysis and monitoring of 
performance 

  Collect Data 
Cassegrain reflector - 2.4 m mirror 6.5 m mirror 

1.4 m mirror, .95 m 
photometer 

Cross-linked architecture 
captures device signals (like 
cell towers) 

  Distribute Data 
TDRSS Deep Space Network Deep Space Network 

Gateway facility to 
telephone and internet 
infrastructures 

  Decommission Piece-by-piece until robotically-
assisted de-orbit 

10 year lifespan based on 
fuel, unclear 
decommission plan ?? 

Atmospheric burn-up after 
orbital decay 

Manufacturing 

    Measuring light 
(http://www.jwst.nasa.gov/mirrors.html) 2.4-m-diameter primary mirror 

6.5-m-diameter primary 
mirror 

1.4-m-diameter primary 
mirror N/A 

  Being lightweight 
Inch-thick top and bottom plates 
sandwiching a honeycomb lattice 

Use of beryllium (strong 
but light material) (1/10 of 
the mass of Hubble's 
mirror per unit area) 

 
N/A 

  Mirror fitting into a rocket 
N/A 

18 segments on a structure 
that folds up N/A N/A 

  Fitting without gaps (high filling factor) 1-segment mirror 
Hexagonal shape for each 
segment 1-segment mirror N/A 

  Providing a 6-fold symmetry to reduce the 
number optical prescriptions N/A 

Hexagonal shape for each 
segment N/A N/A 

  Focusing the light into the most compact 
region on the detectors Circular shape for primary mirror 

Approximately circular 
shape for primary mirror 

Circular shape for primary 
mirror N/A 

  Focusing correctly on faraway galaxies 

N/A 

6 actuators attached to the 
back of each primary and 
secondary mirror segment 
+ 1 actuator in the center 
to correct curvature N/A N/A 

  Keeping cold at -220°C N/A Cryogenic system N/A N/A 

  Shaping, smoothing, polishing Computer-controlled polishing 
machines Industrial machines 

 
N/A 

  
Testing the change in mirror segment 
shape due to the exposure to cryogenic 
temperatures  

Support the mirror on both sides with 
138 rods exerting varying amounts of 
force 

PhaseCam Laser 
interferometer 

 
N/A 

  Improving the mirror's reflectivity 
65-nm-thick aluminum coating (+ 
protective 25-nm-thick magnesium 
fluoride coating) Gold coating Enhanced silver coating N/A 

Seeing newly forming stars, and faintly visible 
comets as well as objects in the Kuiper Belt. 

 

MIRI 
(http://ircamera.as.arizona.
edu/MIRI/instrument.htm) 

 
N/A 

Studying thousands of galaxies in 5 years 

 

NIRSpec and 
microshutters 
(http://www.jwst.nasa.gov/
nirspec.html) 

105-square-degree field of 
view N/A 

Imaging in the NIR 

 

NIRCam 
(http://www.jwst.nasa.gov/
nircam.html) 

 
N/A 

Pointing 

 

FGS/NIRISS 
(http://www.jwst.nasa.gov/
fgs.html) 

4 CCDs located on science 
focal plane N/A 

Measuring large aspheres 

 

SSI-A 
(http://www.nasa.gov/topic
s/technology/features/web
b-spinoffs.html) 

 
N/A 

Compensating spherical aberration 
  

Schmidt corrector N/A 

Mass-producing satellites on a gimbal 

N/A N/A N/A 

Patented technology by the 
engineer who set up  the 
automated factory for 
Apple's Macintosh 

Providing utmost reliability 

   

Microwave inter-satellite 
communications links 
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APPENDIX K: PROPOSED METHODOLOGY FOR 
CALCULATING INSTRUMENT-LEVEL SCIENCE VALUE 

 

Although detailed calculation of science utility was unnecessary for evaluation of the TITANS 
AE tradespace, the ability to accurately assess the relative values of various discoveries and the 
observatories and instruments which produce them remains a desirable capability for future 
comparisons between system architectures.  This appendix offers a partial proposal for 
accomplishing this objective, with emphasis on instrument-level characterization. 

For general a general set of astronomical observations, the total science utility can be expressed 
as a function of the value of each discovery weighted relative to the value of the given class of 
discoveries: 

!"#$%!!"#$%"$!!"#$#"% = (!"#$%&'()!!"#$%! ∗ !"#$%&!!"!!"#$!"#$%#&)
!

!!!
 

Eq. K.1 

Where i represents the class of discovery for n classes of discovery.  A discovery “class” for 
these purposes represents a kind of observation, e.g., “faint object characterization,” where an 
observation is defined as the set of photons collected for the purpose.  Developing relative 
weightings and valuations of discovery classes is difficult and inherently subjective, but may be 
accomplished with reference to the decadal survey or direct communication/polling of 
stakeholders (scientists).  The decadal survey already suggests priorities for various kinds of 
missions and scientific efforts, which implies that a weighting schema is feasible.   

Within a single class of discoveries/observations, a second set of weightings is desirable to 
distinguish how useful a given observation/set of photons is from a scientific perspective.  The 
usefulness of a photon can be described as our ability to distinguish it (via optics and 
instruments) from other photons.  This discrimination can come in a variety of dimensions: 
photometric, spatial, spectral or polarimetric, among others.  For different classes of 
observations, certain kinds of discrimination have greater value than others; spatial 
discrimination is more valuable for surveys and imaging operations, while spectral 
characterization is arguably more valuable for exoplanet characterization.  For a given weighting 
associated with each discrimination class z, optics and instruments can be evaluated against 
observation class i by referencing their discovery efficiency: 

!"#$%&'()!!"#$%! = !! (!"#$%"&"'()"*'!!"#$ℎ!"#$!)
!

!!!
∗ !"#$%&'()!!""#$#%&$' 

Eq. K.2 

As suggested, discovery efficiency here refers to the capabilities of a given combination of 
instrument and optical train to discriminate between classes of photons.  This equation suggests 
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that doubling an instrument’s capacity to discriminate photons (e.g., doubling spectral resolution) 
only doubles discovery value if, for the current class of discoveries, such a doubling is useful 
(and is so reflected in the discrimination capacity weightings).   

These first two equations capture the bulk of the subjective elements of utility estimation, 
permitting objective evaluation of optics and instrument performance in the forgoing discussion.  
Objective evaluation of performance is a non-trivial problem on its own, with much of the 
challenge lying in a determination of the appropriate units.  Past efforts have suggested units 
such as “productivity rate” (images per unit time) or another form of “discovery efficiency” 
(throughput * FOV, or photons per arcmin2, occasionally photons per arcmin2 per unit 
wavelength).24,13 While each of these options captures some aspects of instrument performance, 
they collectively focus imaging operations for comparison (arguably, they are equations 
‘optimized’ for imaging systems comparison).  As the bulk of astronomical observations 
includes a non-imaging component, or are entirely non-imaging, a more general equation is 
required to fully assess such systems’ performance.  Such observations have only one parameter 
which is fundamentally comparable across all operations: the amount of time required to 
complete them.   

At a theoretical level, for a given observation target, the amount of time required to confirm 
detection of the target is related to the photon flux density collected from the target and the 
sensitivity of the instrument/optics train.  For these purposes, both sensitivity and flux density 
may be appropriately defined in Janskies or AB magnitude (Janksy/flux units used here for 
simplicity).  The Jansky, defined as 10-26 Watts per m2 per Hz, is the integral of the spectral 
radiance over the source solid angle, and may be applied to point or extended sources.  
Sensitivity, meanwhile, provides the minimum effective flux which can be extracted as signal 
from background noise in a given integration time and over a given wavelength range.  Such 
values have been calculated for existing systems (Figure K.1). 
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Figure K.1: The faintest flux that can be detected at 10σ  in a 104s integration for a variety 
of telescope systems.82 

Below the specified sensitivity threshold, any photons detected will not generate meaningful 
science; to make use of them, it would be necessary to increase the integration time or improve 
instrument performance.  By contrast, sources above this threshold flux density will be 
observable in a smaller amount of time, or for the same time allocation, can be observed at a 
higher degree of discrimination/granularity.  In this way, any photons collected above the 
sensitivity threshold can be “spent” on decreasing the integration time (allowing for more 
science operations), or increasing the fidelity of the current science operation (by discriminating 
in more detail between the kinds of photons), effectively increasing the number of 
unidimensional science operations.   

In designing and evaluating instruments, available technologies allow for the optimization of 
certain science operations.  At a basic level, any instrument is capable of discriminating the 
photons associated with a target in any dimension (spectral/spatial//photometric/polarimetric), 
provided that instrument is equipped with detectors, a limited set of tools and enough time.  
Using a one-pixel detector, a coronagraph and an adjustable slit/grating, a spatial and spectral 
image cube at very high contrast and high resolution over a wide field of view can be 
created…in a very long time.  What distinguishes instruments from a scientific standpoint is how 
they are optimized for one or more of these discrimination tasks, and how efficiently they use the 
available flux density.  The first of these parameters – optimization – addresses the overhead 
time cost associated with each science operation.  An imaging instrument can be used to take 
spectral measurements if a filter wheel is applied.  For a multispectral image, three (or more) 
images are taken, one at each filter wavelength range.  The time required to collect enough flux 
to reach an SNR of 10 is directly linked to the amount of flux available (and hence, the number 
of ways the available flux is being subdivided).  So, collecting 5 wavelength subranges takes five 
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times as long as collecting one panchromatic image of that target (assuming an even spectral 
distribution of flux in this degenerate case).  Additionally, because time is required to adjust the 
filter wheels, an additional 5x penalty is occurred relative to the baseline panchromatic option.  
By comparison, the imaging aspect of the operation incurs much less penalty.  Dividing a single 
detector into 1000 pixels over the same FOV means the image takes 1000 times as long to 
collect.  However, no overhead cost is incurred, because all detectors collect simultaneously/in 
parallel.  This reflects the efficient use of the available flux density per unit time associated with 
the two dimensional detector.  In effect, less input flux is wasted as a result of parallelization.  To 
use another example, a single spectrograph replaced by a cluster of spectrographs (as in JWST’s 
NIRSpec) increases the parallelization and thus efficiency of collections.  NIRSpec could be 
used for imaging operations by simply iterating the spectral collections over a large spatial area – 
but at a substantial time penalty2.    

Once photons are detected and discriminated/separated, a final step involves accounting for the 
actual collection capability of the optics system.  The size of the primary mirror and associated 
resolving power determine the amount of light collected from each detection and also the degree 
to which that light can be resubdivided.  Taken together, these factors suggest the following 
qualitative formula: 

!"#$%&'()!!""#$#%&$'
= !ℎ!"!#$!!"##$%&$'! ∗ !ℎ!"!#$!!"#$%!"!#$%&' ∗ !ℎ!"!#$!!"#"$#"% 

Eq. 91 

Where “photons collected” loosely corresponds to optical performance, “photons discriminated” 
accounts for the design of the instrument-level optics pathway, and “photons detected” captures 
the sensitivity and capability of the detectors themselves.   

This conceptual framework can be made quantitative by returning to the flux density notation 
introduced previously.  For a given class of target at a specified distance, an expected flux 
density profile, angular size and working area can be specified (where working area refers to the 
presence or absence of alternative signal sources in the vicinity).  This total flux (10-26 
W/(m2*Hz*s), when collected by an optical train with a specified mirror collection area, after 
experiencing differential throughput losses associated with the optical train yields the total flux 
collected and available for sensing at the optical bench (“photons collected”).  At this point, the 
target is “picked off” by an instrument (in whole or in part) for analysis.  (Larger targets may 
have an effective angular size greater than the FOV of the instrument, necessitating additional 
observations).  The relevant photons are divided spectrally, spatially and polarimetrically by the 
instrument workbench, with losses associated with each discrimination accounted for (“photons 
discriminated”).  Finally, with any extraneous signals suppressed (via coronagraphy or other 
methods), detectors of a given size, well depth and pixel density can record the target to a degree 

                                                
2 Arguably, opening all of the microshutters at once converts NIRspec into a sort of imaging 
system.  But assuming that only a few could be open at a time, an image could still be produced 
with enough time penalty.%
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of photometric accuracy within the limitations of the detector sensitivity (“photons detected”).  
These factors, when combined, yield the following equation: 

!"# ∗!"#! ∗ !"#! ∗ ! !"#$ ∗ !"#
!"# ∗ !" ∗ !"#$ ∗ !"# ∗

(!"# ∗ !"#!"# ∗ !"")
!"#

= !"#$%&'()!!""#$!"#$%!(!"#$%:!"#$%&'("'#!!"#!10!!!@!!"# = 10 

Eq. 92 

 

where:  

TFD  = Total (source) Flux Density (10-26 W/(m2*Hz) 
MCA  = Mirror Collection Area (m2) 
OTL  = Optical Train Losses (expressed as % of original remaining) 
SWR  = Spectral Wavelength Range (required wavelength coverage, Hz or λ) 
SB  = Spectral Bandwidth (number of subdivisions in wavelength range – unitless) 
IFOV  = Instrument Field of View (arcmin2) 
ETS  = Effective Target Size (arcmin2) 
NPOL  = Number of desired polarization characterizations 
ITL  = Instrument Throughput Losses (expressed as % of original remaining) 
CSF  = Contrast/Suppression Factor (ratio of intensity of target & suppressed source) 
EPF  = Effective Parallelization Factor (# of sub-observations conducted in parallel) 
ESF  = Effective Serialization Factor (# of sub-observations conducted in series) 
EDD = Effective Detector Density (degree of sampling of diffraction limit) 
EDS = Effective Detector Sensitivity (10-26 W/Hz) 

This equation, while not fully characterized, captures the core logic of discovery efficiency – the 
amount of time it takes to make a notional discovery/observe a notional target.  It appropriately 
penalizes complex science operations through the time mechanic.  It also captures that some 
complexity/increased discrimination of photons is easier than other complexity for a given 
instrument.  Finally, it captures that a given instrument may be more efficient for some 
discoveries than for others; a wide field instrument with a limited coronographic capability and 
set of spectral filter wheels will have a lower discovery efficiency against the exoplanet mission 
set (still non-zero), but a higher discovery efficiency for surveys.   

Future work to on this proposed framework can leverage the rich history of existing instruments 
and observatories to revise and validate the model.  Such efforts can leverage past efforts to 
evaluate new telescope proposals: the ATLAST final report includes several assessments of 
observatory performance phrased in similar units and terms (Figure K.2).  James Webb’s 
resources include Exposure Time Calculators, which provide results relevant to a discovery 
efficiency analysis.82 
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Figure 2. The average number of F, G, K stars where SNR=10 R=70 spectrum of an Earth 
twin could be obtained in < 500 ksec as a function of telescope aperture, D. The growth in 

the sample size scales as D3.17  

Additionally, the Hubble legacy of upgrades (and historical attempts to determine discovery 
efficiency) offers a rich dataset for model assessment, with extensibility to other systems and 
wavelength regimes following thereafter. 
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APPENDIX L: LAUNCH MASS CAPABILITY 
CALCULATIONS 

In order to determine the launch cost of servicing missions for the EM-L2 and LOTUS servicing 
locations, the launch mass capability of the various launch systems to these orbits must be 
determined. Due to a lack of reported data, the launch mass capability was estimated based upon 
known data for mass-to-LEO and mass-to-SE-L2 capabilities for each system. The rocket 
equation was used for this analysis: 

 !" = !! ln !!
!!

  

Eq. 93 

where the variables are described in Table XXXV. 

Table XXXV: Variables of the rocket equation, with units 

Variable Description Units 
!" Change in Speed !/!! 
!! Effective Exhaust Velocity !/! 
!! Initial Total Mass !" 
!! Final Total Mass !" 

 

For this calculation, three assumptions are made. First, the !" requirement for both EM-L2 and 
LOTUS orbits is assumed to be approximately the !" requirement for Lunar orbit. Second, the 
final total mass !! is assumed to be approximately the mass of the payload, !, in kilograms. 
Finally, the initial total mass !! is assumed to be approximately the sum of the payload mass ! 
and the mass of the rocket and propellant, !, in kilograms. Thus, the effects of staging are not 
encompassed in this calculation. However, this is meant to be a first-approximation value of the 
mass-to-orbit capability of these rockets, and thus these assumptions are considered to be valid. 
For final implementation of this model, actual mass-to-orbit data for each launch system for each 
destination orbit should be obtained from the manufacturer. 

The !" requirement for each orbit is known, and the payload mass capability of each launch 
system is known for LEO and SE-L2. Therefore, the rocket equation can be rearranged and used 
to develop a system of two equations with two unknowns: 

 

 !!!"# = !! ln !!"#!!
!!"#

  

Eq. 94 

 !!!"#! = !! ln !!"#!!!
!!"#

  

Eq. 95 
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where !" and ! are the change in velocity and payload mass for the orbit indicated in the 
subscript (known values), and !! and ! are the effective exhaust velocity and rocket/propellant 
mass for the launch system under consideration (unknown values). Using this set of equations, 
approximations for the effective exhaust velocity and the rocket/payload mass for each launch 
system can be calculated, and are documented in Table XXXVI. 

Table XXXVI: Calculated effective exhaust velocity and rocket/payload mass for the 
launch systems under consideration 

Launch System Effective Exhaust Velocity !! [m/s] Rocket/Payload Mass ! [kg] 
SLS 3056 851261 

Falcon 9 7659 18489 
Falcon Heavy 2194 1801390 

Atlas V 4904 114857 
Delta IV Heavy 8425 34977 

 

Once these parameters for each launch system have been calculated, the mass-to-lunar-orbit 
capability for each launch system can be calculated, again via rearrangement of the rocket 
equation: 

 !!"#$% = !

!
!!!"#$%

!! !!
  

Eq. 96 

The results of this calculation are documented in Table XXXVII. 

Table XXXVII: Payload mass to lunar orbit capability of the launch systems under 
consideration 

Launch System Payload Mass to Lunar Orbit [kg] 
SLS 35815 

Falcon 9 7113 
Falcon Heavy 20836 

Atlas V 17967 
Delta IV Heavy 15870 
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microprocessor and a ground based laptop. Integrated autonomous UAV agents into a simulated airspace architecture.

Howard Stone, Complex Fluids Laboratory Princeton, NJ; May 2010-2012

Investigated biomimetic viscoelastic wrinkling and folding similar to structures found on the leaves of plants. Thesis quantified
relationship between fibroblast cell traction forces and initial cell culture density.

Wellman-HST Summer Institute for Biomedical Optics Boston, MA; Jun-Aug 2011

Designed, automated (in LabVIEW), and calibrated a device to noninvasively measure the sti↵ness of tissue. Tested on human
cancer samples as well as in vitro metastatic models. Worked with Professor Seemantini Nadkarni

Society Memberships
Sigma Xi, Materials Research Society, Biomedical Engineering Society, American Institute of Aeronautics and Astronautics

Journal Articles
Scott MA, Liu MC, Wu Y, Dixit AC, Yanik MF. Rapid Three-dimensional Laser Microprinting of Sca↵olds Containing Internal

Patterns of Proteins. Nature Communications (submitted May 2013)

Kim P, Abkarian M, Dixit AC, Stone HA, Dynamics of interacting folds under biaxial compressive stresses. Soft Materials (in
prep, abstract APS 2013)

Conference Articles
Dixit AC, Falusi J, Kim S, Savit G, and Stengel RF. [Three articles] 1. Development of an iPhone-controlled UAV, 2. Flight
Test of a UAV Operating in a Simulated Airspace, and 3. Integration of UAV in Flight and Ground Operations. AIAA
Infotech@Aerospace 2013.

Roy A, Steele L, Blanchard E, Dixit AC, and Wisnivesky J. The Association between Asthma Education and Use of Environ-
mental Control Practices. 2010 Pediatric Academic Societies.

Other Experience
Technical Skills
Fabrication: Micro/nano fabrication techniques, CNC, machine shop skills (mill, lathe); Computer: MATLAB, LabVIEW,
CAD Creo Elements, HTML, R, ImageJ, UNIX, Illustrator, Java, LATEX; Imaging Tools: SEM, XRD, AFM, TEM, Confocal;
Aerospace: Certified private pilot, experimental aircraft design, control systems, networked architectures Languages: Basic
conversational knowledge of Italian and Gujrati

Leadership
Volunteer Instructor: MIT Museum; Captain: Princeton Varsity Sprint Football;
Co-Founder: Princeton Biomedical Engineering Society; Co-President: Princeton Materials Engineering Society

mailto:acdixit@mit.edu


Sherrie Hall   
shall6@mit.edu 70 Pacific St., Apt. 642B  
706-713-6713 Cambridge, MA 02139  
 
Education:  
• Massachusetts Institute of Technology – Cambridge, Massachusetts  

  PhD, Aeronautics and Astronautics: 2016 
 GPA – 5.00  

• Georgia Institute of Technology – Atlanta, Georgia      
Master of Science in Aerospace Engineering: August 3, 2012 
GPA – 3.88  
Bachelor of Science in Aerospace Engineering, Highest Honors: May 8, 2011 
GPA – 3.95 

Honors Program, Music Certificate  
• Cedar Shoals High School – College Preparatory Diploma  
 Overall GPA – 4.40, Valedictorian  
 
Experience:  
• MIT Man Vehicle Lab and Space Systems Lab – Graduate research as Systems Engineer for joint 

human and robotic geologic Lunar surface exploration. Coordinating with Skolkovo Tech.  
• Caltech Space Challenge 2013 – Expedition ASAPH (Team Voyager). In five days, designed a detailed, 

feasible human mission to Phobos with robotic reconnaissance missions to Phobos and Demos  
• University NanoSat Program 7 –  Prox-1 Propulsion Team Lead, lead low-thrust propulsion design, test, 

and integration on Prox-1 satellite (Georgia Tech) through PQR. PROX-1 granted launch through AFRL.   
TERSat Science Payload Engineer, worked with design, test, and integration of the scientific payload 
(VLF transmitter and receiver) on the TERSat spacecraft (MIT) leading up to FCR.  

• Boeing Satellite Development Center, El Segundo – Test Engineer. Summer intern working on the 
IntelSat program during the second Integration Verification Test and Environmental Build test phases of 
the first 702MP spacecraft, IS-22 (in orbit), and the next in line, IS-21 

• Georgia Tech High Power Electric Propulsion Lab – Graduate research studying anomalous charged 
particle mobility in crossed electric and magnetic fields using magnetized ions to model trapped electrons 
Undergraduate research working with Helicon Hall Thrusters for spacecraft propulsion systems  

 
Publications:  
• Expedition ASAPH¸ Caltech Space Challenge, Team Voyager Final Report, Published online (2013) 
• Journal of the Stockholm Junior Water Prize, Radionuclides in the Water Environment Federation, 

Miocene Aquifers of Coastal Georgia (2006) 
• Groundwater, Radionuclides in the Miocene Aquifers of Coastal Georgia National Groundwater 

Association, (abstract) (2006) 
 
Memberships and Volunteerism:  
• Member of Phi Sigma Pi National Honor Fraternity, AIAA, Sigma Gamma Tau, Tau Beta Pi, SAME, 

National Society of Collegiate Scholars, Golden Key National Honor Society 
• Co-leader of Girl Scout troop 12042 and member of Northeast GA Gold Award Committee 
• Georgia Tech Oxford Summer Study Abroad Program, 2009  
• Society of Women Engineers and Girl Scout engineering outreach volunteer  
• GT Symphony Orchestra – first Violin fall 2007- fall 2010 (second violin fall and spring 2009)  

 
Competencies:  Matlab, Solid Edge, Autocad, Mathematica, STK 8/9, Microsoft Office, Space Propulsion, Satellite 

Systems, Human Factors, Systems Engineering, Integration and Testing, collaborative team design projects 
 
Awards: 
• National Science Foundation Graduate Research Fellowship 
• President’s Fellowship (Georgia Tech) 
• David C. Garret President’s Scholar (Georgia Tech) 
• Points of Light National Community Service Award – Bronze, 2006; Silver, 2007; Bronze, 2008 
• Girl Scouts of the USA Social Responsibility Award, 2009 
• Boeing Scholar  
• Georgia Engineering Foundation Scholarship – 2007, 2008, 2009, 2010 
• Girl Scout Gold and Silver Award Recipient  



ROBERT (ROBBIE) J. HARRIS, JR. 
3278 Patterson Drive 

Pearl, MS 39208 
769-226-4102 

robbie.harris@sloan.mit.edu 
 

EDUCATION  
 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Cambridge, MA 
Leaders for Global Operations (LGO) Fellow 2012 - Present 
Candidate for MBA, MIT Sloan School of Management, June 2014 
Candidate for SM, Aeronautics and Astronautics (Space Systems Focus), MIT School of Engineering, June 2014  
• New Student Recruiting Committee; Web Forums Sub-committee Co-chair; InterviewFest Sub-committee Co-chair   
• LGO Seminar Committee 
 
GEORGIA INSTITUTE OF TECHNOLOGY Atlanta, GA 
BS in Mechanical Engineering 2006 – 2007 
• Recipient of Shell scholarship for students selected by dean 
 
UNIVERSITY OF MISSISSIPPI Oxford, MS 
BBA in Management (Behavioral Focus), magna cum laude 2001 - 2005 
• President of Alpha Kappa Psi Professional Business Fraternity, Rho Tau Chapter 
• Re-founding Father of Delta Kappa Epsilon Fraternity, Chi Chapter 
 
EXPERIENCE  
 
EATON – AEROSPACE DIVISION Jackson, MS 
Senior Project Engineer (promoted from Project Engineer) 2008 - 2012  
Leadership and Teamwork 
• Led $500K design and development for business jet reservoir while maintaining 99% on-time milestone completion 
• Coordinated design and test activities with major corporate customers to maintain “green” customer ratings 
• Managed qualification testing efforts for multiple aerospace hydraulic components to fulfill FAA requirements 
• Directed 10 technical professionals to accomplish project objectives to support delivery schedules 
• Volunteered to lead 6S implementation initiative in office area of 100 employees 
Innovation and Strategy 
• Created reservoir design tool to streamline and standardize work, making future effort weeks shorter and error-proof  
• Taught workshop on optimal reservoir design to build strategic organizational capability that would allow Eaton to 

progress from proposing components to proposing systems 
• Developed design concepts and budgets for proposed hydraulic components to aid in capture of $100M contract 
• Investigated and advocated new sub-component supplier to facilitate improved reservoir design for savings of $4M 
• Performed research to develop appropriate product requirements, eliminating unnecessary design and testing 
• Completed Design For Six Sigma (DFSS) Green Belt training to learn robust, efficient design process 
 
HONEYWELL – AEROSPACE & DEFENSE DIVISION Torrance, CA 
Project Engineer 2007 - 2008  
• Oversaw $400K testing effort for proposed cooling systems to prove feasibility in new airliner  
• Generated and tracked detailed budgets and schedules for $4.9M project to maintain accountability 
• Designed test plans to efficiently demonstrate specifications and simulate service conditions  
• Supervised project work for lab engineers and technicians to meet all testing milestones 
• Authored test reports based on experimental results to support innovative system proposal 
• Defined key design parameters for supplemental cooling and turbomachinery systems by analyzing requirements 
 
CATERPILLAR Oxford, MS 
Intern Fall 2005 
• Constructed new quality-tracking system based on stakeholder input and product research to allow for automated 

statistical process control 
• Recruited peers to aid with quality-tracking system installation to facilitate setup for entire plant within 3 months 
 
ACTIVITIES AND INTERESTS  
• Speaker and small group leader for Kairos Prison Ministry 
• Co-chair of Missions committee for St. Mark’s United Methodist Church, Brandon, MS (2010 – 2011) 
• Lead for company relay team in the Mississippi Blues Marathon 
• Hobbies:  family time, reading, triathlon, weight training, travel 



Fernando Mier Hicks 
550 Memorial Dr. APT 17B2 
Cambridge, MA  02139  E-mail: fernandomierhicks@gmail.com 

  Research webpage: fernandomierhicks.blogspot.com

 
EDUCATION 
2012-present     Massachusetts Institute of Technology.  
  S.M Aeronautics and Astronautics. Space Propulsion Laboratory. Graduating December 2013 

2007-11  Monterrey Institute of Technology and Higher Education.  
  Mechatronics engineer, graduated with honors.  

EXTRACURRICULAR ACTIVITIES AND AWARDS 

2012 Recipient of CONACYT scholarship. 
2012  Appearance in MIT news, Popular Science website and others. 
2012 Best mechatronics Engineer graduate award by ANFEI. 
2011 1st place on national robotics competition “Robochallenge Advanced 2011”. 
2011 Recipient of Roberto Rocca Fellowship. 
2010 1st place on regional line-follower robot competition “Robochallenge 2010”. 
2010 Prominent Mechatronic student 2010 award. 
2010 1st place on national robotics competition, “Robochallenge Advanced 2010”.  
2009 1st place on regional robotics competition “I bet you can’t 2009”. 
2009 Suspension analysis of the ITESM FormulaSAE car in CAD software. 
2009  Member of student associations AEAGS, Mechatronics Congress and Compromiso. 
2008 Team leader of electric Go-Kart design competition “Electrathon” representing ITESM. 

RESEARCH EXPERIENCE 

2011  Four month internship at Willow Garage, a revolutionizing robotics company based in Sillicon 
Valley. The project focused on a new successful underactuaded adaptive gripper design 
2011  Summer research internship at Massachusetts Institute of Technology in the Space Propulsion 
Laboratory, under the guidance of Dr. Paulo Lozano. 
2010 Summer research internship on planetary robotics with Carnegie Mellon University team 
pursuing the Google Lunar X prize, under the leadership of Dr. Red Whittaker.  

PUBLICATIONS 

Matei C, Hicks F, Stanford S.," Kinetic and Dimensional Optimization for a Tendon-driven Gripper " 2013 IEEE 
International Conference on Robotics and Automatitation. ICRA 
 
Perna, L. E., Hicks, F. M. (2012) Progress Toward Demonstration of Remote, Autonomous Attitude Control of a 
CubeSat Using Ion Electrospray Propulsion Systems. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference  
 

mailto:fernandomierhicks@gmail.com
http://fmh-robotics.blogspot.com/
file://localhost/Volumes/AndrewOwensHD2/Dropbox/MIT/16.89%20Systems%20Engineering/16.89%20Spring%202013%20LTA/Submissions/Resumes/Health
file://localhost/Volumes/AndrewOwensHD2/Dropbox/MIT/16.89%20Systems%20Engineering/16.89%20Spring%202013%20LTA/Submissions/Resumes/Health
http://arc.aiaa.org/doi/abs/10.2514/6.2012-4289
http://arc.aiaa.org/doi/abs/10.2514/6.2012-4289


CHRISTOPHER MICHAEL JEWISON 
!
Current'Address:'' ' Permanent'Address:' ' Contact'Information:'
70!Pacific!Street,!#839B! ! 103!Horizon!Drive! ! jewisonc@mit.edu!
Cambridge,!MA!02139! ! Venetia,!PA!15367!! ! Cell:!(724)P986P9048!
!
Education!
!
Massachusetts!Institute!of!Technology,!Cambridge,!MA! September'2012'–'May'2014!
Candidate!for!Master!of!Science!in!the!Department!of!Aeronautics!and!Astronautics!
!

Cornell!University,!Ithaca,!NY! August'2008'–'January'2012!
B.S.!in!Mechanical!Engineering,!summa!cum!laude!
3.95/4.0!cumulative!GPA!
!
Peters!Township!High!School,!McMurray,!PA! August'2004'–'June'2008!
4.46/5.0!cumulative!GPA!–!Graduated!Valedictorian!
!
Previous!Work,!Research!and!Leadership!Experience!
!
Space!Systems!Lab,!Research!Assistantship,!MIT! September'2012'–'present'
• Researching!resource!aggregated!reconfigurable!control!under!the!support!of!Professor!David!Miller!!
• Developing!the!hardware!and!software!to!expand!the!SPHERES!experimental!satellite!testbed!on!the!

International!Space!Station!to!allow!for!the!research!of!robotic!servicing,!assembly!and!repurposing!!
!

Space!Systems/Loral,!Sr.!College!CoPop!Technical!Intern,!Palo!Alto,!CA! August'2010'–'August'2012!
• Worked!in!the!Systems!Mechanical!department!of!the!Spacecraft!System!Engineering!organization!
• Streamlined!the!process!of!analyzing!deployment!shock!data!to!qualify!satellites’!parts!for!flight!
• Served!as!systems!floor!support!for!the!duration!of!a!spacecraft’s!dynamics!testing!phase!

!
Flux!Pinning!Research!Team,!Structural!Lead,!Space!Systems!Design!Studio! May'2010'–'May'2012!
• Researched!the!feasibility!of!docking!and!reconfiguring!nanoPsat!modules!through!the!use!of!flux!pinning!

interfaces!under!the!guidance!of!Associate!Professor!Mason!Peck!and!a!graduate!student!team!
• Designed!and!built!mockPup!nanoPsat!modules!and!test!equipment!as!lead!of!the!structures!subPteam!

!
CUAir!–!Project/Design!Team,!Airframe!Lead,!Cornell!University! February'2010'–'June'2012!
• Dedicated!to!the!development!and!systems!integration!of!an!autonomous!intelligence!seeking!airplane!
• Designed!and!constructed!the!airplane!as!the!lead!of!the!mechanical!engineering!subPteam!
• Placed!2nd!overall!and!1st!in!the!mission!portion!of!the!AUVSI!Student!UAS!competition!in!June!2012!!

!
Fluid!Dynamics!Research!Lab,!Energy!Group,!Cornell!University! August'2011'–'May'2012!
• Investigated!the!effects!of!design!parameters!on!the!efficiency!of!lift!based,!verticalPaxis!wind!turbines!for!

energy!harvesting!in!a!small!scale,!urban!environment!under!the!guidance!of!Professor!C.H.K.!Williamson!
• Developed!a!theoretical!model!and!computer!simulation!to!predict!turbine!performance!
• Fabricated!and!experimented!on!prototypes!to!determine!the!optimal!configuration!for!power!generation!

!
Skills!
!
Computer:!! SolidWorks!–!Pro!E!–!ANSYS!–!FLUENT!–!C!–!MATLAB!–!VBA!!
HandsPon:! Design!lab,!machine!shop,!soldering,!experimental!design!and!testing!
Language:!!!!! German!(intermediate!writing!and!speaking)!
!
Memberships!and!Awards!
!
Member!of!American!Society!of!Mechanical!Engineers!(ASME)!
Member!of!American!Institute!of!Aeronautics!and!Astronautics!(AIAA)!
!

Engineering!Learning!Initiative!Grant!(2011),!College!of!Engineering,!Cornell!University!
Frank!O.!Ellenwood!Prize!(2012),!Sibley!School!of!Mechanical!and!Aerospace!Engineering,!Cornell!University!



!

!

Ioana JOSAN-DRINCEANU 
Address 70 Pacific Street, Apartment 204, 02139 Cambridge, MA, USA 
Mobile (+1) 617 – 583 2385 

Email ijosand@mit.edu  
Nationality Romanian 

Date of birth July 9, 1986 

Objective 

My goal is to actively contribute to the advancement of Environmental Control and Life Support Systems 
(ECLSS) technology so that humans can be sustained in space for longer periods of time. This would allow 
astronauts to explore even farther destinations from Earth and enrich our understanding of the Universe. 
 

Education 

2012 – present PhD candidate in Aeronautics and Astronautics, MIT (Massachusetts Institute of 
Technology), USA 

• Main research direction in the field of Environmental Control and Life Support Systems (ECLSS) for 
human space habitats 

2009 – 2011 Master studies in Electrical Engineering, EPFL (Swiss Federal Institute of Technology, 
Lausanne), Switzerland 

• Major specialization in electronics and microelectronics 
• Admitted with an excellence scholarship for 2 years 
• Minor specialization in space technologies at the Swiss Space Center 

 

Selected projects 

September 2012 – January 2013 Model-based amphibious racing challenge (MBARC) 
• Aeronautics and Astronautics department, MIT, “Fundamentals of Systems Engineering” class 
• Participated in the DARPA MBARC competition: I was part of the MIT team challenged to build an 

amphibious vehicle, I was in charge of the electrical systems for our vehicle, we won the first place in the 
final competition at Camp Pendelton, San Diego, CA in January 2013. 
 

November 2010 – December 2011 Gravity Gradient Earth Sensor (GGES) REXUS experiment 
• Swiss Space Center, EPFL and Microsystems for Space Technologies Laboratory, EPFL 
• As part of the team that was selected by ESA to participate in the REXUS program (Rocket Experiments 

for University Students), I was in charge of the hardware and software design of the payload boards of this 
experiment. The goal of GGES was to test a MEMS attitude determination sensor. The payload boards are 
responsible for MEMS sensor and inertial data collection. This was the topic of my Master thesis (which 
took place from February 2011 to July 2011).  

 

 

Additional training 

• Radioamateur HB9 licence 
• C, C++, LabVIEW, LaTeX, basic VHDL, VHDL-AMS 

 

Languages 

English, German, French, Romanian 
 
References available on request 



ANDREW OWENS 
235$Albany$Street$#1026B,$Cambridge,$MA$02139$

(t)$678@358@0458,$(e)$acowens@mit.edu$
EDUCATION 

Massachusetts)Institute)of)Technology,$Cambridge,$MA$
Master$of$Science$in$Space$Systems$(Advisor:$Prof.$Olivier$de$Weck),$September$2012@Present$
GPA:$5.00/5.00$

Rice)University,$Houston,$TX$
Bachelor$of$Science$in$Mechanical$Engineering,$Graduation$May$2012$
GPA:$3.80/4.00$(cum$laude)$

University)of)Technology)–)Sydney,$Sydney,$NSW,$Australia$
Semester$abroad$Fall$2009$

MASTER’S THESIS TOPIC 
Investigation$into$component$failure$impact$analysis,$reconfigurability,$and$failure$recovery$in$Environmental$Control$and$
Life$Support$Systems;$specifically,$modeling$of$the$effect$of$component$failure$on$system$functionality$and$determination$
of$potential$reconfigurations$for$full$or$partial$function$recovery.$

RELEVANT SKILLS 
• Design$Experience:$Team$Leadership,$Project$Planning,$Budgeting,$Fundraising,$Requirements$Definition,$Concept$

Generation/Evaluation,$Modeling,$Prototyping,$Fabrication,$Testing$and$Analysis,$Technical$Writing$and$Presentation,$
Troubleshooting,$On@Site$Repair$and$Reconfiguration$

• Software:$SolidWorks,$Autodesk$Inventor,$Pro/ENGINEER,$Creo$Elements/Pro,$Windchill,$MATLAB,$LabVIEW,$LaTeX,$
Microsoft$Office,$ImageJ,$OriginPro.$Familiar$with$Windows$and$Macintosh$operating$systems.$

RECENT EXPERIENCE 
Strategic)Engineering)Research)Group,$MIT,$Cambridge,$MA,$2012@Present$
HabNet$Research$Team$Member,$2012BPresent$

• Collaborated$with$3$other$team$members$under$Prof.$Olivier$de$Weck$to$develop$generalized$modeling$
environment$for$space$habitat$environmental$control$and$life$support$system$(ECLSS)$architectures$

• Utilized$Object@Process$Methodology$to$perform$a$functional$decomposition$of$ECLSS$
• Developed$method$for$decomposition$into$modular,$interchangeable$systems$to$enable$the$rapid$investigation$

and$characterization$of$various$technology$choices$
• Interfaced$with$Mars$Surface$Strategy$Team$at$Johnson$Space$Center$for$project$guidance$and$NASA$input$
• Developed$framework$for$modeling$of$spacecraft$and$habitat$thermal$control$systems$
• Researched$historical,$current,$and$proposed$life$support$technologies$
• Implemented$framework$using$the$Extravehicular$Mobility$Unit$(EMU)$ECLSS$as$a$case$study$
• Developed$flexible$MATLAB/Simulink$modeling$techniques$for$simulation$of$ECLSS$architectures$

Rice)University)Solar)Car)Team,$Rice$University,$Houston,$TX,$2010@2012$
CoBFounder$and$President,$2010B2011;$Presidential$Advisor$2012$

• Created$largest$student@led$engineering$design$project$at$Rice$to$build$Rice’s$first$solar$car$
• Placed$2nd$in$the$solar$power$division$at$the$Shell$Eco@Marathon$2012$
• Coordinated$fundraising$efforts,$contacting$15@20$companies$and$applying$to$grants$to$raise$over$$85,000$
• Planned$and$led$1$semester,$4$credit$design$class$offering$course$credit$to$28$students$for$solar$car$design$work$
• Recruited$over$100$team$members$from$all$academic$years$and$more$than$10$disciplines$
• Recruited$advisory$board$of$5$faculty$members$and$1$industry$expert$
• Proposed$2$solar@car$based$senior$design$projects$for$capstone$design$class,$recruited$faculty$sponsors,$and$

presented$to$over$150$mechanical,$electrical,$and$bioengineering$students$
• Drafted$club$constitution$and$formed$official$Rice$club$
• Corresponded$with$faculty,$administration,$and$students$to$generate$support$

PUBLICATIONS AND AWARDS 
• “Increasing$the$Efficiency$of$Single$Walled$Carbon$Nanotube$Amplification$by$Fe@Co$Catalysts$Through$the$

Optimization$of$CH4/H2$Partial$Pressures”$by$Alvin$W.$Orbaek,$Andrew$C.$Owens,$and$Andrew$R.$Barron$(Nano$
Letters,$2011)$

• MIT$Odge$Diversity$Award,$Spring$2013$
• MIT$Lemelson$Minority$Engineering$Presidential$Fellowship,$Fall$2012$
• Rice$University$Outstanding$Senior$Mechanical$Engineering$Student$Recognition$Award,$2012$
• Leadership$Rice$Director’s$11$(Student$Advisory$Board)$Member,$2011@2012$
• National$Merit$Rice$University$Scholarship,$2008@2012$



Eric D. Peters 
92 Webster Ave, Cambridge, MA 02141  •  e_peters@mit.edu  •  617.401.7437 

Education 
Massachusetts Institute of Technology, Cambridge, MA June 2014 (Expected) 
 Candidate for Master of Science in Aerospace Engineering 
 Research Assistant in Space Systems Laboratory under Prof. David Miller 
Massachusetts Institute of Technology, Cambridge, MA June 2011 
 Bachelor of Science in Aerospace Engineering 
 GPA: 4.2/5.0 
Relevant Courses 
Space Systems Engineering, Satellite Engineering, Space Propulsion, Structural Mechanics, Dynamics, Computational 
Methods, Aerodynamics, Principles of Automatic Control, Thermodynamics, Fluid Mechanics 
Experience 
Graduate Researcher – MIT Space Systems Laboratory May 2012 – Present 
Massachusetts Institute of Technology Cambridge, MA 
 Supporting hardware fabrication, integration, and testing for MicroMAS picosatellite in preparation for flight 

hardware delivery 
 Matured structural truss and electronics box designs of REXIS X-ray Spectrometer to PDR level 
 Research interests include structural modeling and early-stage design optimization 

Research Specialist – MIT Space Systems Laboratory July 2011 – May 2012 
Massachusetts Institute of Technology Cambridge, MA 
 Lead structural engineer for REXIS X-ray Spectrometer 
 Structural design/test lead for MicroMAS, including leading vibration and thermal-vacuum tests. 
 Designed motor to facilitate rotation of MicroMAS payload in vacuum environment 
 Served as mechanical/structures mentor to undergraduate students in Space Systems Engineering class. 

Undergraduate Researcher – MIT Space Systems Laboratory February 2010 – May 2011 
Massachusetts Institute of Technology Cambridge, MA 
 Responsible for design and structural analysis of components for CASTOR nanosatellite. 
 Redesigned structural trusses to comply with CDR feedback and matured hardware design for University 

Nanosatellite Program flight competition review (FCR) 
 Instrumental in fabrication and assembly of Engineering Test Unit. 

Student Investigator – MIT Man Vehicle Laboratory September 2009 – May 2010 
Massachusetts Institute of Technology Cambridge, MA 
 Developed an experiment to test the metabolic implications of varying the stiffness of a space suit ankle joint. 
 Designed and fabricated ankle joint exoskeleton for use in experiment. 
 Conducted experiment on human subjects.  

Undergraduate Researcher – Mars Gravity Biosatellite Program September 2008 – June 2009 
Massachusetts Institute of Technology Cambridge, MA 
 Developed experiment to assess effectiveness of exiting Waste Collection System hardware in microgravity. 
 Fabricated test equipment and conducted experiment onboard a parabolic research flight. 

Robotics Phase II Teacher July 2008 
Peddie Summer Science Institute Hightstown, NJ 
 Taught a hands-on, intermediate-level robotics class to 15 high school juniors that focused on completing several 

team-based, competitive challenges intended to teach the basics of gear ratios, motorized steering, variable-speed 
transmissions, and autonomous control. 

Activities 
Rocket Team: Developing numerical simulation to aid in the development of liquid-fueled rocket engines. 

Skills 
 Computer-Aided Design: SolidWorks, Kubotek KeyCreator 
 Structural Analysis: Ansys Workbench, Femap, NEi Nastran 
 Programming: Java, MATLAB, Unix, HTML 
 Mechanical: Skilled in the operation and programming of CNC mills, lathes, and OMAX Water Jet Machining Centers 
Publications 

 Peters,  E.  D.,  Corbin,  B.  A.,  and  Kendrick,  D.  P.,  “Validating  Waste  Collection  System  Hardware  Developed  for  
the Mars Gravity Biosatellite Program Aboard a Parabolic  Research  Flight,”  AIAA Region I-NE Student 
Conference, AIAA, Boston, MA, 2010. 

 Blackwell,  WJ,  et  al.  2012.  “Nanosatellites  for  Earth  Environmental  Monitoring:  The  MicroMAS  
Project,” Proceedings of the AIAA/USU Conference on Small Satellites, The Horizon, SSC12-I-2.  
 



MARGARET M. SHAW 
Apt. 810, 70 Pacific Street, Cambridge, MA 02139 (U.S. Citizen)  | mmshaw@mit.edu | (908) 500-0252 

EDUCATION 
Massachusetts Institute of Technology, Cambridge, MA August 2012-Present 

S.M. Candidate, Aeronautics and Astronautics 
GPA: 5.0/5.0 

Princeton University, Princeton, NJ September 2008-June 2012 

B.A. Astrophysics; Certificate in Planets and Life 
High Honors 

PUBLICATIONS 
! “A Modeling Approach for the Profit Analysis of Cellularized Spacecraft Architectures”, IAC 2013 Conference 

!  “Measuring NIR Atmospheric Extinction Using a Global Positioning System Receiver,” Blake, C.H. and Shaw, M.M. 2011, PASP, 
123, 1302 

!  “The Nyquist-Shannon sampling theorem and the atomic pair distribution function,” Farrow, C.L., Shaw, M.M., Kim, H., Juhas, 
P., and Billinge, S.J.L. 2011, Phys. Rev. B, 84, 13 

HONORS AND MEMBERSHIPS 
! NSF Graduate Research Fellowship (2012-2015)  

! Donald W. Douglas Fellowship (2012-2013) 

! Sigma Xi, American Institute of Aeronautics and Astronautics 

! AT&T Foundation Scholarship and William H. Cane Scholarship (2008-2012) 

RECENT RESEARCH EXPERIENCE 
Strategic Engineering Research Group, Aeronautics & Astronautics Dept., MIT  August 2012-Present  

! Research Area: Environmental Control and Life Support Systems (ECLSS) for Deep Space Habitation. 
Thesis advisor: Prof. Olivier de Weck 

! Developing HabNet, an integrated framework for architecting and modeling crewed habitation systems.  Physicochemical 
and bioregenerative technologies as well as in-situ resource utilization methods are considered. 

! S.M. topic (tentative): investigating the optimal use of physicochemical and bioregenerative technologies for long-duration, 
nearly closed ECLSS.  A trade is expected to exist between complexity and robustness of partial ecosystems. 

Electric Propulsion and Plasma Dynamics Lab, Mech./Aero. Engineering Dept., Princeton Univ. Fall 2011-Spring 2012 

! Senior thesis project entitled A Novel Thrust Measurement Method For Plasma Rockets With Magnetic Nozzles Using B-field 
Measurements.  Advisors: Profs. Edgar Choueiri (Mech./Aero. Engineering Dept.) & Jeremy Goodman (Astrophysics Dept.). 

! Developed a way to measure the thrust produced by high-power plasma propulsion devices that employ magnetic nozzles 
(e.g., VASIMR).  The B-field thrust measurement method indirectly determines the thrust by measuring the perturbations to 
the magnetic field due to the accelerated plasma in the vicinity of the magnetic nozzle. 

COMPUTER SKILLS 
Experience with UNIX operating systems. Programming experience in Matlab, Simulink, LabView, IDL, Java, Python, SM, 
Fortran, C, and Mathematica. Extensive experience using Object Process Methodology (a functional/formal decomposition 
tool).  Experience with emacs and Latex text editors. Familiar with the Satellite Toolkit for orbital maneuver design. 

LEADERSHIP AND ACTIVITIES 
Massachusetts Institute of Technology 
Co-President, Graduate Association of Aeronautics and Astronautics; Presenter, MIT Women’s Initiative; Co-Coordinator, 
Sidney Pacific Inter-Cultural Exchange; Graduate Women at MIT; Women’s Club Soccer 



School Address                                                                                            David Sternberg                                             Home Address 
70 Pacific Street                                                                                               davister@mit.edu                                                      835 Springbank Lane 
Cambridge, MA 02139                                                                                       (610) 420-6425                                                         Wayne, PA  19087                         
US Citizen 
Objective: To obtain a challenging position in the aerospace field to enhance my knowledge of space systems. 
 

Education: Massachusetts Institute of Technology                    Cambridge, MA 
  Candidate for Master of Science in Space Systems Engineering in the Space Systems Lab             June 2014 
  Structural and Systems researcher for ARMADAS, MEDUSA, and PHOENIX Projects; Research Assistantship 
  Thesis Area: Use of fully autonomous satlets for on-orbit servicing and assembly. 
  Bachelor of Science in Aerospace Engineering, Minor in Science, Technology, and Society                       June 2012 
  Graduate GPA: 5.0/5.0 
  Undergraduate GPA: 4.8/5.0 Merit Scholarship 
 

  The Haverford School                                                                      Haverford, PA 
                          Cum Laude Society, GPA: 4.2/4.3-unweighted                                                                                                June 2008   

 

Experience: Boeing Company                    Ridley Park, PA 
  Engineering Designer for Chinook Programs            Summer 2012 
  Redesigned in CATIA V5 M60 machine gun pintle mounts for the MH-47G to accommodate the conversion to  
  machined frames. Created a revision history for the UK Mk6 Interior stencils and marking stickers to determine  
  which were placed incorrectly on the aircraft or on the engineering drawings themselves. 
 

  NASA Jet Propulsion Laboratory                                                                                         Pasadena, CA 
Comet Sample Return Prototyper, Tester, and Analyst                                  Summer 2011 
Developed, tested, and analyzed new Comet Sample Return tools for a 2014 JPL mission. Created comet simulant 
and comparatively tested the performance of prototyped tool design with existing technologies. Machined several 
tools after creating SolidWorks models for each. Led to data collection and analysis for paper and proposal writing. 
 

SPHERES Team, MIT                     Cambridge, MA 
  Engineering and Machining UROP; Zero Robotics Researcher; Fluid Slosh Researcher    January 2009-Spring 2012 

Provided the mechanical support by CAD modeling and machining improved battery holders, expansion port covers, 
and docking mechanisms to further their mission capabilities on the International Space Station. Led two teams to 
develop several new game designs for Zero Robotics STEM competitions. Co-wrote a white paper for LEGO 
designing, programming, and testing. Developed a Fluid Slosh system in collaboration with FIT and ERAU. Total of 
Nine UROP opportunities. 

 

Piasecki Aircraft Corporation                                                           Essington, PA 
  UAV Flight Research Intern                                        Summer 2010 

Led the development work on FCS Class II and III UAVs. Removed slop, improved engine performance, and 
lightened body components. Designed, manufactured, and tested new components. 

  Summer Research Intern                                                       Summer 2007 
Video recorded test flights, assisted in resource procurement, and enhanced documentation and cataloguing of 
project plans and components on the X-49A Speedhawk. Led to ahead of schedule card completion. 
 

 

Washington Naval Station                  Washington D.C. 
NAVSEA Intern, Interim SECRET Clearance                                 January 2010 
Calculated and analyzed the loads applied to helicopter tiedowns to reduce radar signature of DDG-1000 destroyers. 
Assisted in testing of a LIDAR anemometer. Supported the systems engineering of the boat handling system. 

 

Leadership/Activities: 
 MIT Associate Advisor with Prof. Miller – advise seven freshmen with their coursework and MIT life  2011-Present 
 MIT Unified Grader and Lab TA- Grade  54  students’  assignments  weekly  and lab Teaching Assistant           2010-12 
 MIT Rocket Team Payload Section Lead / MIT UAV Team                     2010 
 First Place Team in GE Challenge, GE Intern for a Day, Third Place Team in Unified Flying Competition       2010 
 Volunteer at the American Helicopter Museum, West Chester, PA running their flight simulator for              2007-08 

visitors. Taught the basics of helicopter flight to 25+ people per day, six year olds and up.                                                         
Memberships:  

Tau Beta Pi- MIT Chapter, Aircraft Owners and Pilot Association, Aero Club of PA, Experimental Aircraft Association- 
Chapter 106, MIT Aero Club, American Institute of Aeronautics and Astronautics, National Society of Collegiate Scholars 

Skills and Awards: 
 

 Microsoft Office; C, JAVA; MATLAB; LabView; SolidWorks; CATIA V5; Altium V5; DWG TrueView; Machine 
Shop manufacturing; Design, build, and launch model rockets and aircraft; Engineering Release, Defective Material 
Report, and Mylar drawing creation; NAUI scuba diver, 200 hour Complex Private Pilot since July 25, 2008  

 Aero Club of PA Bob Shannon Scholarship, Drexel University Book Award; William Wallace Prize; Rensselaer 
Polytechnic Institute Medal; D.A.R. History Prize; Latin Honor Society; John C. Lober Prize in Mathematics; Barton 
Sensenig Science Prize; The Federal Reserve Bank of Philadelphia Prize in Economics 

Publications and Invited Talks: 
 “A Modeling Approach for the Profit Analysis of Cellularized Spacecraft Architectures”,  IAC  2013  Conference 
 SPHERES: An ISS Facility for Control Algorithm Development; Lecture to NSCU Commercial Space Club, Jan. 2012 

mailto:davister@mit.edu


KATHLEEN VOELBEL 
134 3rd Street #1, Cambridge, MA 02141  Cell: 386-479-3402  email: kathleen@sdm.mit.edu 

 
EDUCATION 

Massachuse tts Insti tute  of Technology , Cambridge, MA                                 
School of Engineering and Sloan School of Management; System Design and Management Fellow                                                       
Master of Science in Engineering and Management                                                               February 2014 
 
Bachelor of Science in Aerospace Engineering with Information Technology                                        2007               
 

EXPERIENCE 
MIT Humans and Automation Labora tory (HAL), Cambridge, MA       February 2012-Present 
Research Assistant                                                               
 Design interactive moving map for locomotive engineers to aid Situational Awareness and decision-

making en route using human factors methods 
 Supervise software development of working prototype for usability studies and experimental testing in 

train simulators 
 Present and report progress and findings to Federal Railroad Administration (FRA) sponsors 
 
United Sta tes Air Force  Reserve  (USAFR), Huntsville, AL                                    2011-Present 
USAFR Modeling and Simulation Project Lead (Part Time)                                                      
 Develop performance analysis models incorporating Computational Fluid Dynamics  (CFD) 

coefficients with potential savings of $450K per system 
 Identify and implement solutions from other domains resulting in 6x process and schedule 

improvement 
 Lead kick-off of tri-service, multi-agency project by developing innovative prioritization approach 
 
Raytheon Integra ted De fense  Systems ( IDS), Andover, MA                                       2007-2012 
Lead - System Test Interoperability (2010-2012) 
 Aligned technical and logistical requirements for military tactical communications for multi-million 

dollar flight tests 
 Interfaced with multiple government agencies including customers (government program offices) 
Representative - System Test customer interface to Integrated Product Team (IPT) (2009-2012) 
 Managed IPT test strategies and execution by comparing system-level and sub-system level 

requirements as stakeholder, approval authority and direct customer for requirements sell-off 
Manager - Government Furnished Equipment (GFE) (2008-2009) 
 Negotiated agreement to receive a high-demand, program-critical item on loan from the Air National 

Guard to off-set 3 months of schedule risk 
 Maintained accountability for GFE and Communications Secure (COMSEC) equipment valued at over 

$2.6 million 
Engineer - System Integration, Test and Whole Life (2007-2008) 
 Lead the time-critical retrofit effort of a deployed system in order to prevent down time and safety 

hazards of a persistent surveillance system 
 
United Sta tes Army Nationa l  Guard , Cambridge, MA                                        2007-2011 
Company Executive Officer (Part Time) (2010-2011) 
 Led 74 enlisted soldiers and 13 officers as second in command to fulfill short-term and long-term 

mission requirements 
 Oversaw maintenance program consisting of over $500K of sensitive items 
 Addressed mental health, medical and financial solider issues and mentored junior officers    
Platoon Leader, Assistant Platoon Leader & Tactical Intelligence Officer (Part Time) (2007-2010) 
 Awarded Army Commendation Medal for reinventing unit’s  security  clearance  processing,  increasing  

unit medical readiness from 8% to 60% and organizing esprit de corps training 
 

ADDITIONAL INFORMATION 
 Programming Languages- MATLAB, Objective C, Simulink  
 Publications- A Foot Placement Planning Algorithm for a Walking Quadruped, AIAA 

Infotech@Aerospace Conference (co-author/co-presenter) 
 Security Clearance- Active DoD clearance 



MARCUS'WU'SHIHONG'
Massachusetts)Institute)of)Technology,)Master)of)Science)in)Technology)and)Policy,)Master)of)Science)in)Aeronautics)and)Astronautics)

235)Albany)Street)#2027B,)Ashdown)House,)Cambridge,)MA)02139)

marcuswu@mit.edu)|)917)982)4951)
)

EDUCATION'' '

2014) MASSACHUSETTS'INSTITUTE'OF'TECHNOLOGY'''' Cambridge,)MA)))))))))))))))))))))))))))))) )'
! Master!of!Science!in!Technology!and!Policy,!Master!of!Science!in!Aeronautics!and!Astronautics!

• Research)at)MIT)Systems)Engineering)Advancement)Research)Initiative)(SEAri):)

R)Application)of)tradespace)exploration)methods)in)designing)for)affordability)in)aerospace)systems)

R)Professional)Publication:)“Enabling)Design)for)Affordability:)An)EpochREra)Analysis)Approach”)(2013)) )

• Classes:)Satellite)Engineering,)Space)Systems)Engineering,)Engineering)Apollo,)Science)Technology)and)

Public)Policy,)Modeling)and)Assessment)for)Policy,)Law)Technology)and)Public)Policy,)Microeconomics)

• Leadership)activities:)President)of)Singapore)Student)Society,)Social)Officer)in)graduate)dormitories,)'
)

2012) IMPERIAL'COLLEGE'LONDON'''' London,)United)Kingdom)))))))))))))))))))))))))))))))) )'
! Bachelors!of!Engineering!in!Electrical!&!Electronic!Engineering!(1st!Class!Honors)!!

• Academic)Achievements:)Nujira)Prize)for)Outstanding)Final)Year)Project)(2012))

)) Engineering)Dean’s)List)(2010,)2011,)2012))

• Classes:) Communications,) Control) Systems,) Energy) Systems,) Signal) Processing,) Electronic) Devices,)

Analogue)and)Digital)Electronics,)Computer)Architecture,)Algorithms,)Finance)Management)

• Group)Projects:)Design)of)an)‘EEBug’:)an)electronic)toy)car)that)is)activated)by)sound)(2010),)Assessing)

the)feasibility)of)implementing)piezoelectric)flooring)in)London)Underground)stations)(2011))

• Individual)Final)Year)Project:)‘Memristor)Modeling)Optimization’))(2012))

R Developed) a) software) model) that) predicts) behavior) of) memristors) developed) within) Imperial)

College)London)and)proposed)applications)of)memristor)technology)in)neuromorphic)applications))

R Professional) Publications:) “Modeling) of) Current) Percolation) Channels) in) Emerging) Resistive)

Switching)Elements”)(2012),)“Computing)Shortest)Paths)in)2D)and)3D)Memristive)Networks”)(2013))

• Leadership)Activities:)

R) Talent) Manager,) AIESEC) Imperial) (Association! Internationale! des! Étudiants! en! Sciences!
Économiques!et!Commerciales):)Organized)activities)and)leadership)tournaments)for)UK)colleges)

R) Investment)Club,)Electrical)Engineering)Society,)Singapore)Society,)Fellwanderers)
)

EXPERIENCE'

2011,)2009) DEFENCE'SCIENCE'&'TECHNOLOGY'AGENCY'(DSTA)' Singapore)))))) ))'
) Scholar)Intern)(Guided)Weapons)and)Armaments)Program)Centre,)Naval)and)Land)Systems)Division))))

! DSTA!provides!leadingGedge!technological!solutions!to!the!Singapore!Armed!Forces!(SAF))))
• Did)two)internships)spanning)6)months)and)3)months)in)2009)and)2011)respectively)

• Awarded)Certificate)of)Excellence)for)outstanding)performance)on)both)internships)

• 2009)Project:)‘Unmanned)Aerial)Vehicles)(UAV))for)naval)platforms’)

R Managed)the)acquisition)and)development)of)naval)UAVs)for)the)Republic)of)Singapore)Navy)(RSN))

R Assessed)performance)of)naval)UAVs)during)sea)trials)for)RSN)landing)ship)tanks)and)stealth)frigates)

R Evaluated)electromagnetic)interference)and)compatibility)of)UAV)with)shipboard)electronics)

• 2011)Project:)‘Evaluation)of)search)and)recovery)methods)in)asset)tracking)and)monitoring’)

R Conducted)inRdepth)research)into)asset)search)and)recovery)techniques)in)military)settings)

R Analyzed)feasibility)of)solutions)leveraging)on)Radio)Frequency)Identification)(RFID))technology))

R Proposed)system)operation)concept)and)future)scope)of)development)to)senior)management)
)

2007R2008! SINGAPORE'ARMED'FORCES! Singapore))))

) ) Combat)Medic)Specialist,)Headquarters)Medical)Corps)(SAF)HQ)MC))

• Completed)courses)and)trained)personnel)in)frontline)medical)care,)resuscitation)and)evacuation))

• Assisted)in)the)management)of)medical)scholarships)and)deployment)of)medical)officers))
)

SKILLS'AND'ACTIVITIES)

• Computer)Skills:))MATLAB,)C++,)C#,)SPICE,)Pascal,)Microsoft)Windows)applications)(Word,)Excel,)PowerPoint,)Visio))

• Languages:)Proficient)in)written)and)spoken)Mandarin)and)Japanese)

• Interests:)Enjoys)travelling,)professional)photography,)football,)music,)reading)and)leadership)activities)


