

In-Space Assembled Telescope (iSAT)

Study Members Telecon 2

May 17/18, 2018

Nick Siegler

Chief Technologist, NASA Exoplanet Exploration Program NASA Jet Propulsion Laboratory, California Institute of Technology

Today's Agenda

- 1. Review of Study Goals and Activities
- 2. Review of Roles
- 3. Workshop Update
- 4. Towards a Reference Telescope (*Dave Redding*)
- 5. Short Tutorial on Decision-Making Process
- 6. Begin Selection Criteria Brainstorming

Telecon #1 presentation slides:

https://exoplanets.nasa.gov/exep/technology/in-spaceassembly/iSAT_working_group_telecons/

Study Charter: https://exoplanets.nasa.gov/internal_resources/864

Review of Study Goals and Activities

Study Objective and Deliverables

• Study Objective:

- "When is it advantageous to assemble space telescopes in space rather than to build them on the Earth and deploy them autonomously from individual launch vehicles?"

• Deliverables:

A whitepaper by May 2019 assessing:

- 1. the telescope size at which iSA is necessary (*an enabling capability*)
- 2. the telescope size at which iSA is cheaper or lower risk with respect to traditional launch vehicle deployment (*an enhancing capability*)
- 3. the important factors that impact the answers (e.g., existence of HEOfunded infrastructure, architecture of space telescope (segments or other), cryogenic or not, coronagraph capable (stability) or not, etc.)
- 4. A list of technology gaps and technologies that may enable in-space assembly

The intention of the whitepaper is to inform NASA and the 2020 Decadal Survey of the cost and risk benefits of the iSA of telescopes. 4

Activity 1a

Concept Design and Architecture for the iSAT

Select a reference <u>design and architecture</u> concept for a 20 m, filled aperture, non-cryogenic space telescope to be assembled and tested in space.

- Paradigm shift in architecture: Modularization
- An example, from the 2012 OpTIIX study (NASA JSC/GSFC/JPL/STScI):

6 launch modules for assembly

Activity 1b: Concept for Assembling and Testing the ISAT

Select a reference in-space <u>assembly and testing concept</u> for the "assemble-able" space telescope architecture, defining robotics, orbit, launch vehicle, and assembly platform.

Activities 2a and 2b

(Not Yet Funded)

Detailed Engineering Design and Costed

Activity 2a: Advance the engineering fidelity of the concepts sufficiently so that they can be costed.

- a) Inputs from Activity 1a and 1b
- b) Select a team of NASA engineers, academia, government labs, and commercial companies to conduct the work.
- c) Needs funding

Activity 2b: Estimate, through an independent body, the cost of designing, architecting, assembling, and testing the reference 20 m space telescope?

- a) Input design from Activity 2a
- b) Identify risks
- c) Parameterize the cost to smaller apertures

Activity 3 Deliver Final Whitepaper

Write and deliver the Final Whitepaper

a) Submit to APD Director who submits to 2020 Decadal Survey

Review of Roles (US Persons Only)

The iSAT Study Working Group

Role of the Study Members

- 1. The heart of the Study the folks whose recommendations will lead to a new paradigm (or not)...
- 2. Will generate criteria of evaluation
- 3. Will generate concepts of modularized telescope designs and architectures (a.k.a. options)
 - ...and later the assembly and testing concepts
- 4. Will provide the Study with evaluation teams
- 5. Will reach consensus on the criteria assessment for each concept
- 6. Membership will change from "telescope design and architecture" focus to "robotic assembly, orbit, platform, launch vehicle, and test" focus
- 7. Bi-weekly telecons

How will iSAT Study WG Produce a Recommendation?

Workshop Update

Telescope Modularization Workshop

June 5-7, Caltech, Pasadena, CA

- Goal:
 - Generating concepts for a 20 m modularized telescope
- Draft Agenda:
 - <u>https://exoplanets.nasa.gov/exep/technology/in-space-assembly/iSAT_study_workshops/</u>
- A block of rooms is available at the Marriott Residence Inn Old Town Pasadena
 - Deadline to book is May 18th
 - <u>https://exoplanets.nasa.gov/exep/technology/in-space-assembly/iSAT_study_workshops/</u>
- Logistics questions:
 - Jennifer Gregory (jgregory@jpl.nasa.gov)

Towards a Reference Telescope

Dave Redding

NASA Jet Propulsion Laboratory, California Institute of Technology

Telescopes for Astronomy and Exo-Planets

Context for iSAT

• Telescopes for direct imaging of ExoPlanets have:

- Large aperture, for high resolution and high sensitivity in UV through NIR wavelengths... D = 20 m
- A coronagraph or starshade to suppress the starlight from the system being observed...
 Coronagraph

• Coronagraphic telescopes have:

- Active optics, to phase segments and shape the Wavefront (WF)
- Ultra-stable optics, combining passive and active methods...
 - Stable materials, L2 environment, passive and active thermal control
 - WF Sensing and Control, metrology, actuators, DMs
- Space telescopes in general have:
 - Vacuum environment, with sun and deep space exposure
- LUVOIR provides 2 architectural touchpoints...

- LUVOIR A: 15 m on-axis
 - On-axis JWST-derived configuration
 - Shielded from the Sun, then optics heated to 270K
 - Gimballed telescope

- LUVOIR B: 8 m off-axis (preliminary)
 - Off-axis config is better for coronagraphy
 - Primary mirror f/2.7: 20 m PM-SM separation

Off-Axis 20-Meter Optical Layout

.Candidate conceptual design

Parameter	Assumption
Entrance pupil diameter	20 meter
Field of View	3x3 arc-minute
Final F/#	F/30
Image size	530 x 530 mm (implied by EPD, F/#, and FOV)
Primary mirror ROC and F number	80 meter ; F/2.0
Primary-secondary spacing	36.5 meter
AOI, maximum on each mirror	16.0° primary; 17.5° secondary; 5.6° tertiary; 8.4° fold.
RMS WFE (nanometer)	18.6 maximum, 10.4 average

Different Views: Off-Axis 20-Meter Concept

Off-Axis Assembly Concept

- PM optics in 6-segment modules
- Truss structure in pre-assembled bays
- Spider robot places modules

Very Short Tutorial on the Decision-Making Process

Features of Kepner-Tregoe Decision Process

Decisi	ion State	ment									
u					Opti	on 1	Opti	on 2	Opti	on 3	
Description		Featur	e 1								
scri		Featur	e 2								
De		Featur	е З								
	Musts										
		M1				•		•	~		
		M2			•	/		?	?		
tior		М3			•	/		•	×		
Evaluation	Wants		Weights								
Eva		W1	w1%		Rel s	core	Rel s	core	Rel score		
	W2 w2%					core	Rel s	core	Rel score		
		W3	w3%		Rel s	core	Rel s	core	Rel score		
			100%	Wt sum =>	Sco	re 1	Sco	re 2	Score 3		
	Risks				С	L	С	L	С	L	
		Risk 1			М	L	М	L			
		Risk 2			Н	Н	М	M			
Final Decision, Accounting for Risks											
					C = Con	sequenc	e, L = Lil	kelihood			

Begin Selection Criteria Brainstorming

(switch to Excel)

Next Steps

Next Steps

- Telecon next week with the entire Working Group
 - 5/22 and 5/24
 - Advance work on Selection Criteria

First Face-to-Face Workshop for the Working Group

- June 5-7 at Caltech
- Focus is on Activity 1a: Designing and Architecting a Modularized Telescope
- Draft Agenda completed
- Breakout sessions

Additional Slides

Example of a Completed Trade Matrix

	CIIIIC	JOgy	development									-				
						ion 1	Option 2	Option	3	Option 4	Optio			ion 6	Notes	
		lame			S	PC	PIAACMC	HLC		VVC	VNC	- DA	VNC	- PO		
N	lusts		Programmatic													
	N	/1 - T	Science: Meet Threshold requirements? (1.6, x10)			Yes	Yes	· ·	Yes	No		No		U		
	N	//2	Interfaces: Meets the DCIL**?			Yes	Yes		Yes	Yes		Yes		U		
			TRL Gates: For baseline science is there a credible											Ŭ	✓ yes, or expected likely	
	N	//3	plan to meet TRL5 at start of FY17 and TRL6 at start			Yes	Yes		Yes	U		No		U	? unknown	
			of FY19 within available resources?												× no, or expected showstopper	
	N	//4	Ready for 11/21 TAC briefing			Yes	Yes		Yes	Yes		Yes		No		
		//5	Architecture applicable to future earth-			Yes	Yes		Yes	Yes		Yes		U		
		15	characterization missions			Tes	163		165	163		165		0		
= ^w	/ants			Weights	S	PC	PIAACMC	HLC		VVC	VNC	-DA	VNC	- PO		
	v	V1	Science	40											Range of opinions between "significant and small". For Si	
		а	Relative Science yield (1.6, x10) beyond M1-T			Sm/Sig	Best	Sn	m/Sig	VL		VL			and VNC2 the search area is ~3 times less than 360deg, an that was taken into acct in comparisons	
1	V	V2	Technical	30												
		а	Relative demands on observatory (DCIL), except for jitter and thermal stability			Best	Best	E	Best	Best		Small				
		b	Relative sensitivities of post-processing to low order aberrations			Best	Sig		Sig	VL		U			For n-lambda over D or different amplitudes the designs have the same relative ranking	
		с	Demonstrated Performance in 10% Light			Small	Sig	E	Best	Sig		VL			Demonstrated Performance (10%) and Prediction	
		d	Relative complexity of design			Best	Small		Best	Small		Sig			Identify "Best" and others are:	
		e	Relative difficulty in alignment, calibration, ops	20		Best	Small	E	Best	Small		Sig/Sm			-Wash	
		V3 a	Programmatic	30		Deet	Small			01-		01-			-Small Difference -Significant Difference	
	_	а	Relative Cost of plans to meet TRL gates			Best	Small		Best	Sig		Sig			-Significant Difference	
			Wt. sum =>	100%												
Risks			(all judged to be Hgh consequence)		C	PC	PIAACMC C L	HLC C L		C L	VNC-DA		VNC - PO			
	R	lisk 1	Technical risk in meeting TRL5 gate]	C	L	м		M/L	м/н	C	L	U		PIAA trend over the last three working days lower, but	
	R	lisk 2	Schedule or Cost risk in meeting TRL5 Gate			L	м		M/L	м/н		н			recommendation to keep M	
	R	lisk 3	Schedule or Cost risk in meeting TRL6 Gate	-		L	L		L	м		м				
	R	lisk 4	Risk of not meeting at least threshold science	-		L	τ.		L	н		н				
	R	lisk 5	Risk of mnfr tolerances not meeting BL science			L	L		L	M/L		н			One dissent, previous TDEM performance track record an Bala's assessment should be taken into account.	
	R	lisk 6	Risk that wrong architecture is chosen due to assumption that all jitter >2Hz is only tip/tilt			L	м/н		м	м/н		м				
R		lisk 7	Risk that wrong architecture is chosen due to any assumption made for practicality/simplicity		open ended question, spawned evaluations on Risk 5, Risk 6, Risk 8, and Oppty 1											
	R	lisk 8	Risk that ACWG simulations (by JK and BM) overestimate the science yield due to model fidelity		discussed; not enough understanding at this time to make an evaluation.									Model validation is a risk that needs to be evaluated in the future		
pportunities		ies	(judged to be High benefit)	SPC		PIAACMC	HLC		VVC	VNC-DA			- PO			
					В	L	B L	в	L	B L	В	L	В	L	1	
	C	Oppty 1	Possibility of Science gain for 0.2marcsec jitter, x30			L	м/н		м	L		н				
al D	ecisi	ion, A	ccounting for Risks and Opportunit	ies:												
							C = Conseque	nce. L = Lik	eliho	od. B=Benefit					indicates those few areas where consensus was not achi	

Comments on Reference Telescope

- We need to select a reference telescope that we can use to explore the benefits of iSA (cost, risk, opportunities enabled).
 - Size, operating wavelength, aperture, operational temperature, etc.
 - o "Parameterizable"
- So it doesn't matter which telescope is selected as long as we don't select one that is very unlikely or atypical.
- And we don't want to design the telescope in this Study.
- Hence the need for a reference telescope

Proposed Study Reference Telescope

- **1.** Operational destination is Sun-Earth L2
- 20-meter, filled-aperture, non-cryogenic telescope operating at UV/V/NIR
 - We will examine parameterized designs so that we can also explore smaller apertures
- ^{3.} A high-contrast coronagraph will be the observatory instrument tasked to directly image and spectrally characterize Earth-sized planets.
 - The coronagraph will have the capability to actively sense and control input light wavefront errors due to all reasonable disturbance sources.
- f/(>2) to reduce polarization effects to coronagraph performance
- 5. Off-axis secondary mirror (to assist coronagraph throughput and performance)

