

Gaia Flight Operations Experience

NASA Technology Colloquium Series. 28 Sep 2017 D. Milligan / Gaia Spacecraft Operations Manager

ESA UNCLASSIFIED - For Official Use

Presentation Plan

• Gaia Mission, Spacecraft and Ground Segment

- Mission Phases
 - •Launch, LEOP and Transfer
 - Commissioning
- Some challenges and what we learned
- Gaia's ultra stable performance
- Precision time
- Rate stability & clanks
- Thermal stability
- Conclusions

ESA UNCLASSIFIED - For Official Use

ESA | 28/09/2017 | Slide 2

*

a The Gaia Scientific Mission

- Produce a map of 1 billion stars (Vmag<=20)
- High Accuracy (based on Hipparcos principles):
 - Astrometry (position typically 10'sµas, a (euro) coin on the moon)
 - Photometry (luminosity, chemical composition etc)
 - Spectrometry (Radial velocity).
- Each star 70 times in 5 years (The Hipparcos Star Catalogue in 3 minutes)
- 3D map of our galaxy gives structure, history (dark matter), but includes asteroids to Quasars.
- 100,000's Object Discoveries expected including exoplanets, brown dwarfs.
- Test of general relativity

ESA UNCLASSIFIED - For Official Use

ESA | 28/09/2017 | Slide 3

*

· = ■ ► = = + ■ = = = = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ₩ ■

a The Gaia Spacecraft

- Launch mass ~ 2 tonnes
- Designed around the Payload Module (top of Conic Structure ø3.2m)
- Optical Telescope with two FoVs, Torus structure of SiC
- Service Module (lower Conic Structure)
- Deployable Sunshield Assembly (~10m diameter deployed)

ESA UNCLASSIFIED - For Official Use

The Gaia Spacecraft – bespoke units

- Two Propulsion Subsystems:
 - Chemical MMH MON, 2x8 10N thrusters for orbit maintenance
 - Micro Propulsion Cold Gas (N₂) 2x6 (1µN to 1mN) for attitude control
- AOCS sensors
 - Fibre Optic Gyros, Sun Sensors, Automatic Star Trackers
 - Payload in the loop (rates) in science mode
- Communications
 - X-band U/L (low 125bps, med 4kbits), D/L (low 62.5bps-16kbps, med 250kbps, high 4.3-8.7Mbps 6 rates selectable)
 - Phased Array Antenna with GMSK with Concatenated Convolutional Punctured Coding

ia The Gaia Spacecraft - PLM

- Light from FoVs focussed by a series of mirrors onto Focal Plane Assembly (106 CCDs in an array of ~ 1 billion pixels)
- CCDs read in TDI mode binning matches star transit rate
- Rubidium Atomic clock used for onboard time (1.6uS end-to-end TCo requirement)

ESA UNCLASSIFIED - For Official Use

ESA | 28/09/2017 | Slide 6

The Gaia Spacecraft - PLM

- MOC (ESOC): Mission Control System (MCS), first 'science kernel' mission based on S2K V5
- Mission Planning System (including D/L modelling and data driven scheduling)
- Flight Dynamics System, including ground based optical observations for orbit determination (150m, 2.5mm/s). Use of DDOR.
- Ground Stations, 35m deep space network:
 - New Norcia, Cebreros, Malargüe
- Science Operations Centre (SOC) ESAC
- Data Processing and Analysis Consortium 9 units (DPAC)
 - Largest Computing Project in Astronomy to date

ESA UNCLASSIFIED - For Official Use

ESA | 28/09/2017 | Slide 8

Presentation Plan

- Gaia Mission, Spacecraft and Ground Segment
- Mission Phases
 - •Launch, LEOP and Transfer
 - Commissioning
- Some challenges and what we learned
- Gaia's ultra stable performance
- Precision time
- Rate stability
- Thermal stability
- Conclusions

ESA UNCLASSIFIED - For Official Use

ESA | 28/09/2017 | Slide 9

*

Launch & Manoeuvres

- Launch 19-Dec-2013, 09:12:19z
- 4 day LEOP
 - First signal acquisition auto sequence monitoring
 - Attitude acquisition and sun shield deployment
 - Prepare and execute day#2 manoeuvre (23.5 m/s)
 - Start commissioning (power allowing)
- **L2 insertion** part 1 after 19 days, 7 days later second part (166 m/s total). Excellent performance (thrust vectoring)

Lift-off on Soyuz from Kourou, CSG – courtesy of Arianespace

ESA | 28/09/2017 | Slide 10

ESA UNCLASSIFIED - For Official Use

Transfer Commissioning

- During the transfer (19 days to first insertion manoeuvre) the more complex spacecraft units and modes gradually exercised.
- Systematic check-out of redundant units not done
 - Backup units checked when prior knowledge of failure would lead to changed FDIR
 - Critical redundant units tested out of the loop (e.g. CPS)
- During transfer various units commissioned (CDU, PDHU. MPS etc).
- Power reduced to decontamination other more power demanding units brought online
 - Phased Array Antenna
 - Telescope Focal Plane Assembly

ESA UNCLASSIFIED - For Official Use

ESA | 28/09/2017 | Slide 11

Iterative Telescope Commissioning

- Focal Plane Video Processing Units have thousands of configuration parameters
- The telescope is part of the AOCS control loop
 - The atomic clock pulses are used to time the CCD data extraction
 - The spin rate must be precisely aligned for this `TDI' to work
- The telescope must be finely focussed ground command to mirror motors
 - but changes focal length changes star rate
- Iteratively
 - Change focus, adapt parameters, change S/C rate
- Performed with a dedicated attitude scan law

 Ecliptic Pole Scanning (multiple scans of well known parts of the sky)
- Commissioning completed by June 2014
 ESA UNCLASSIFIED For Official Use

ESA | 28/09/2017 | Slide 12

■ II ► II = + II = ⊆ II II = Ξ = H = 0 II = II H H

Presentation Plan

- Gaia Mission, Spacecraft and Ground Segment
- Mission Phases
 - •Launch, LEOP and Transfer
 - Commissioning
- Some challenges and what we learned
- Gaia's ultra stable performance
- Precision time
- Rate stability & clanks
- Thermal stability
- Conclusions

ESA UNCLASSIFIED - For Official Use

ESA | 28/09/2017 | Slide 13

*

Some Challenges (MPS examples)

- Occasional LCL tripping in flight (x2 in 4 years)
- Partial unpowering of thruster circuits (SEU/ESD) Erratic thruster performance \rightarrow S/C safe mode
- **Fixed by new autonomy** (On Board Control Procedure resets LCL before the S/C overreacts!)

ESA UNCLASSIFIED - For Official Use

ESA | 28/09/2017 | Slide 14

4

Some Challenges (MPS examples)

- After L2 insertion thruster 3 showed anomalous thrust (cx7)
- Control stabilised but not good enough for fine performance
- A non functioning heater in a mass flow sensor but with the scale factor and bias change in the • main SW full functionality recovered
- Main SW had **configurable parameter** to work around the problem (no SW patch needed) •

Some Challenges (PLM example)

- After telescope first light **dimming seen** seen first on the Basic Angle Monitor laser interference pattern – then confirmed on the stars themselves.
- Contamination by water ice.
- Periodic re-activation by ground of the decontamination heaters removes the problem, period between operations increasing (possibly last operation now performed)
- Mirror re-focus operations also performed

More science data!

For several reasons (telescope ice mitigation, **better telescope** performance), more data generated (+ c45%).

More ground station time possible – but operations concept needed changing (controller team not large enough)

Solution – move rapidly to more automated operations: implemented with onboard link protection (Nov 2014)

ESA UNCLASSIFIED - For Official Use

Presentation Plan

- Gaia Mission, Spacecraft and Ground Segment
- Mission Phases
 - •Launch, LEOP and Transfer
 - Commissioning
- Some challenges and what we learned
- Gaia's ultra stable performance
- Precision time
- Rate stability & clanks
- Thermal stability
- Conclusions

ESA UNCLASSIFIED - For Official Use

ESA | 28/09/2017 | Slide 18

*

Timing (1/4)

- End-to-end <u>scientific</u> time correlation accuracy req: 1.6uS
- Gaia has an on-board atomic clock
- The Ground Stations have MASERS, checked against GPS time
- End-to-end <u>operational</u> time correlation accuracy req: 1ms

ESA UNCLASSIFIED - For Official Use

Timing (2/4)

- Basic Principles of Time Dilation
 - Kinematic Time Dilation Diurnal
 - General Relativity includes acceleration and gravity (gravitational potential)
 - Long term 'drift' Gaia's clock c 0.1s ahead after 5 years
- Perfect clocks at the ground station and at Gaia run at different rates

$$T = \frac{T_G}{\sqrt{1 - v_G^2 c^{-2}}}$$

$$T = \frac{T_G}{\sqrt{1 - 2U_G c^{-2}}}$$

where
$$U_G = \frac{GM}{r}$$

4

- Time correlation (uncorrected relativistically)
 - Short term diurnal effect clearly visible
 - Not possible to monitor onboard clock health
 - Not possible to identify timing problems on the ground

Figure 6: Relativistically uncorrected time couple deviation from long term fit. ESA UNCLASSIFIED - For Official Use

ESA | 28/09/2017 | Slide 21

· = ■ ► = = + ■ + ■ = ≔ = ■ ■ ■ = = = ■ ■ ■ ■ = = ₩ ₩ · • •

Timing (4/4)

- Offline analysis removes diurnal relativistic effect
 - Jumps at ground station transitions gone offsets of ground station clocks visible
- MCS integration: quicker response S/C proper time vs S/C dynamic time

Dynamic Stability (1/4)

- Micro Propulsion Subsystem attitude control (acquiring science) Telescope rate measurement
 - Primarily opposing Solar Radiation Pressure (photon momentum)
 - Seasonal variation (sun- distance) seen (torque difference 10uNm)
 - Need account for MLI ageing when predicting mission lifetime

Figure 12: MPS commanded thrust and torque output July 2015

ESA UNCLASSIFIED - FOR UTTICIALUSE

ESA | 28/09/2017 | Slide 23

Dynamic Stability (2/4)

- Achieved rate stability circa 0.1 mas/s
 - Rate error equivalent to one rotation in 420 years!
- Several effects can be seen : micro-meteorites

ESA UNCLASSIFIED - For Official Use

ESA | 28/09/2017 | Slide 24

Dynamic Stability (3/4)

- Achieved rate stability circa 0.1 mas/s
 - Rate error equivalent to one rotation in 420 years!
- Several effects can be seen : CPS Tank Bubble (correlated with temperature)

*

Dynamic Stability (4/4)

- Achieved rate stability circa 0.1 mas/s
 - Rate error equivalent to one rotation in 420 years!
- Several effects can be seen : Star Tracker Map
 - Astro Stellar Estimator (telescope \rightarrow rates, STR \rightarrow attitude) due to nearby companion stars not in the STR map

ESA UNCLASSIFIED - For Official Use

LON | 20/09/2017 | Slide 26

Dynamic Stability & Clanks

- Another signature is in the rate data (in particular in science ground processing)
- Many small `(micro-)clanks'
- Repeatable triangular shape related to CCD transit time with no net rate change
- Effect removed in ground processing

Thermal Stability (1/5)

- Extremely stable thermally telescope passively cooled and protected by the sun shield
- This thermal stability is needed (telescope thermo-elastic effects)
 - No heater switching on the spacecraft
 - Most HKTM temperatures must be low pass filtered & have an unusual event so see anything in the short term
- Need to monitor flat or highly repeatable trend lines:
 - Accuracy / range
 - Filtering

ESA UNCLASSIFIED - For Official Use

Sunshield shown in AIT \rightarrow

ESA | 28/09/2017 | Slide 28

Thermal Stability (2/5)

• Interesting temperature event on the sun shield:

• What caused it?

ESA UNCLASSIFIED - For Official Use

ESA | 28/09/2017 | Slide 29

Thermal Stability (3/5)

Sunspot transit (Solar Const. -3W/m2 or -0.2%) ٠

18/10/2014

21/10/2014

23/10/2014

25/10/2014

28/10/2014

*

Figure 21. Full Sun disk images showing sunspot AR12192 as it passed across the face of the Sun in 2014. (Images courtesy NASA/SDO and the AIA, EVE and HMI science teams.)

ESA UNCLASSIFIED - For Official Use

Thermal Stability (4/5)

Another sunshield (H-frame) thermal event

ESA UNCLASSIFIED - For Official Use

ESA | 28/09/2017 | Slide 31

Thermal Stability (5/5)

Another example – this time permanent change – MLI damage?

- Micro-meteorite hit detected thermally!
 - Combining this data should allow directional information

ESA UNCLASSIFIED - For Official Use

ESA | 28/09/2017 | Slide 32

= 88 🛌 == += 88 💻 🚝 == 88 88 == == 💷 🖬 🖬 88 == 1*1

The Gaia mission \rightarrow breakthrough Astrometry Mission

Technological firsts and bespoke system design has delivered extraordinary performance.

Flexibility of the space and ground segments and the dedication of the teams involved, key to delivering mission performance when challenges come. (Operations Services, Automation)

The **extraordinary precision** make **subtle effects** visible across subsystems not visible on other missions. Think about how you'll do this (thermal sensors etc)

Timing (relativistic effects)

Fine detail – in periodic highly repeatable trends

Dynamic / Thermal HKTM monitoring of new set of phenomena

See also papers: D. Milligan et al. / Acta Astronautica 127 (2016) 394–403

D. Milligan et al. / Flying ESA's Ultra-Precise Gaia Mission, SpaceOps Korea 2016

ESA UNCLASSIFIED - For Official Use

European Space Agency

ESA | 28/09/2017 | Slide 33